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1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced
norm ‖ · ‖, C a nonempty, closed and convex subset of H and A : H → H
be a nonlinear operator. The classical variational inequality problem (VIP) is
formulated as:

Find x ∈ C such that 〈Ax, y − x〉 ≥ 0, ∀ y ∈ C. (1.1)

The notion of VIP was introduced independently by Stampacchia [25] and
Fichera [11, 12] for modeling problems arising from mechanics and for solv-
ing Signorini problem. It is well known that many problems in economics,
mathematical sciences, mathematical physics can be formulated as VIP. We
denote the solution set of a VIP by VI(A,C). Due to the fruitful applications
of the VIP, many researchers in this area have developed different iterative
techniques to solve VIP (1.1). In particular, Goldsten in [13] introduced an
iterative technique defined as follows:{

x1 ∈ C,
xn+1 = PC(xn − λAxn),

(1.2)

for all n ∈ N, where λ ∈ (0, 2α
L2 ), A is α-strongly monotone and L-Lipschitz

continuous and PC is a metric projection defined from H onto C. The author
established that the iterative method (1.2) converges to the solution set of
VIP (1.1). However, it was observed that if A is monotone and L-Lipschitz
continuous, the iterative technique (1.2) may not converge to the solution
set of VIP (1.1), see [15] and the reference therein for details. In addition,
computing the value of λ may be very difficult or impossible.

In the light of these drawback, Korpelevich in [17] introduced and studied
the extragradient method (EM) defined as follows:

x1 ∈ C,
yn = PC(xn − λnAxn),

xn+1 = PC(xn − λnAyn),

(1.3)

for all n ≥ 1, where λn ∈ (0, 1
L2 ), A is monotone and L-Lipschitz continuous

and PC is a metric projection defined from H onto C. This method was im-
plemented with a more relaxed cost operator, however, the computation of λn
remains a challenge. More so, another drawback of this technique is that it
requires two projections onto the feasible set C per iteration, which is costly
when C does not have a simple structure. Since the inception of EM, many
authors have introduced, modified and studied different EM in which the cost
operator A is monotone and pseudomonotone. For example, He et al. [16],
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Apostol et al. [2], He et al. [15], Ceng et al. [4], Censor et al. [7], Nadezhkina
and Takahashi [19] and many others.

In the light of providing an affirmative answer to the set back of the EM,
Censor et al. [8] introduced and studied the subgradient extragradient method
(SGEM) as follows:

x1 ∈ C,
yn = PC(xn − λnAxn),

Tn = {w ∈ H : 〈xn − λnAxn − yn, w − yn〉 ≤ 0},
xn+1 = PC(xn − λnAyn),

(1.4)

where λn ∈ (0, 1
L) for all n ≥ 1, A is monotone and L-Lipschitz continuous

and PC is a metric projection defined from H onto C. They established that
the iterative method (1.4) converges to the solution of VIP (1.1). However,
computing the λn in the above iterative method is still a setback.

An interesting generalization of VIP (1.1) was introduced and studied by
Censor et al. in [9]. They introduced and studied the following split variational
inequality problem (SVIP) defined as:

Find x∗ ∈ C that solves 〈Ax∗, x− x∗〉 ≥ 0, ∀ x ∈ C (1.5)

and

y∗ = Tx∗ ∈ Q that solves 〈By∗, y − y∗〉 ≥ 0, ∀ y ∈ Q, (1.6)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces
H1 and H2, respectively, A : H1 → H1, B : H2 → H2 are two operators and
T : H1 → H2 is a bounded linear operator. The SVIP has wide applications
in many fields such as phase retrieval, medical image reconstruction, signal
processing, and radiation therapy treatment planning see ([3, 10, 5, 6]) and the
references therein. It is easy to see that, the SVIP (1.5) -(1.6) is a combination
of the classical VIP (1.1) and the well-known split feasibility problem (SFP)
introduced and studied by Censor and Elfving in [6]: Find x∗ ∈ C

Tx∗ = y∗ ∈ Q. (1.7)

In an attempt for Censor et al. in [9] to approximate the solution of SVIP
(1.5)-(1.6). They needed to convert the SVIP (1.5)-(1.6) into a constrained
VIP (1.1) in a product space H1 × H2. After which they applied the SGEM
to solve the equivalent SVIP (1.5)-(1.6) problem. It was observed that solving
a SVIP (1.5)-(1.6) in this manner, one will be faced with the problem of
converting the new product subspaces into H1 and H2. In addition, it was
observed that this method lack the splitting structure of the SVIP (1.5)-(1.6)
and in the process lacks the capacity in which the iterative method can be
applied to real life problem (see [9] and the references therein).
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In the light of these challenges, many authors have proposed different itera-
tive methods to solve the SVIP (1.5)-(1.6). For example, Tian and Jiang [26],
introduced and studied the following iterative method.

x1 ∈ C,
yn = PC(xn − γnT ∗(I − PQ(I − νA))Txn),

tn = PC(yn − λnByn),

xn+1 = PC(yn − λnBtn),

(1.8)

for n ∈ N, where γn ⊂ [a, b], for some a, b ∈ (0, 1
‖T‖2 ), λn ⊂ [c, d] for some

c, d ∈ (0, 1
L), ν ∈ (0, 2α), T : H1 → H2 is a bounded linear operator, A is α-

inversely strongly monotone and Lipschitz continuous, B is monotone and and
Lipschitz continuous. They established that the proposed iterative method
converges weakly to the solution set of SVIP (1.5)-(1.6). In addition, Pham
et al. [20] introduced a Halpern type iterative technique for solving the SVIP
(1.5)-(1.6) in real Hilbert spaces. They established that the iterative technique
converges strongly to the solution set of the SVIP (1.5)-(1.6).

In this area of research approximating a solution of split variational inequal-
ity problems (SVIP) has been an interesting problem to consider. However,
the iterative techniques that have been considered for this problem in the
literature require that the underlying operators to be α-inversely strongly, or
monotone, or pseudomonotone. It is well known that the underlying cost oper-
ators have crucial roles to play in real applications of these iterative methods.
In the light of this introducing an iterative technique with weaker monotonic-
ity condition on cost operators and better rate of convergence is highly sorted
after.

Remark 1.1. We observe the following drawback in the iterative processes
introduced and studied by different authors.

(1) In [21, 26, 27], this method requires three projections onto the feasible
set C per iteration, which will be expensive if C is not simple.

(2) In [9, 20, 26], the implementation of their iterative technique depends
on the knowledge of the bounded linear operator norm. This property
is crucial because any iterative technique that depends on the operator
norm require the value during the process of computation, which is a
very difficult or sometimes impossible to get. Hence, this make it
difficult to apply the iterative technique to real life problems.

(3) In [1, 9, 15, 16, 20, 26], the cost operators A and B are α-inversely
strongly or monotone, or pseudomonotone.

The purpose of this paper is to introduce and study a modified split vari-
ational inequality problem and fixed point problem (SVIPFPP), which is a
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generalization of SVIP (1.5)-(1.6) in infinite dimensional real Hilbert spaces,
in which the underlying cost operators are quaismonotone and Lipschitz con-
tinuous. The problem is defined as follows:

Find x∗ ∈ C that solves F (S) ∩ 〈Ax∗, x− x∗〉 ≥ 0, ∀ x ∈ C (1.9)

and

y∗ = Tx∗ ∈ Q that solves 〈By∗, y − y∗〉 ≥ 0, ∀ y ∈ Q, (1.10)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces
H1 and H2, respectively, S : H1 → H1 is a quasinonexpansive mapping, A :
H1 → H1, B : H2 → H2 are two quaismonotone operators and T : H1 → H2

is a bounded linear operator. As such, we propose a two SGEM for solving
the SVIPFPP with the following properties:

(1) It is easy to see that if F (S) = I(identity mappy), problem(1.9)-(1.10)
becomes SVIP (1.5)-(1.6).

(2) In comparison with different iterative techniques for solving SVIP
(1.5)-(1.6), iterative method is designed in such a way that the un-
derlying cost operators are quasimonotone, Lipschitz continuous, and
sequentially weakly continuous.

(3) Our methods do not require any product space reformulation of the
classical SVIP (1.5)-(1.6), thus, overcoming the challenges faced by the
authors in [9].

(4) Our proposed iterative method does not depend on the knowledge of
the bounded linear operator ‖T‖ unlike the following iterative methods
in which knowledge of the bounded linear operator is relevant for their
implementation (see [9, 20, 26]).

(5) The sequence generated by the proposed methods converges strongly
to a minimum-norm solution of the SVIPFPP in real Hilbert spaces
unlike [9, 20, 26].

(6) Our proposed iterative technique include inertial extrapolation steps.
We emphasize that the inertial extrapolation step helps to improve
the rate of convergence of an iterative method. The inertial steps
remarkably increase the convergence speed of these algorithm when
compared with others without extrapolation step of Algorithm 31 of
[24] and Algorithm 1 of [20].

The rest of this paper is organized as follows: In Section 2, we recall some
useful definitions and results that are relevant for our study. In Section 3, we
present our proposed method. In Section 4, we establish strong convergence
of our method and in Section 5, we present some numerical experiments to
show the efficiency and applicability of our method in the framework of infinite
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dimensional Hilbert spaces. Lastly in Section 6, we give the conclusion of the
paper.

2. Preliminaries

In this section, we begin by recalling some known and useful results which
are needed in the sequel. Let H be a real Hilbert space. The set of fixed points
of a nonlinear mapping T : H → H will be denoted by F (T ), that is

F (T ) = {x ∈ H : Tx = x}.
We denote strong and weak convergence by ”→” and ”⇀”, respectively. For
any x, y ∈ H and α ∈ [0, 1], it is well known that

‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2, (2.1)

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, (2.2)

‖x− y‖2 ≤ ‖x‖2 + 2〈y, x− y〉 (2.3)

and

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (2.4)

Definition 2.1. Let T : H → H be an operator. Then T is called

(a) L-Lipschitz continuous if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H;

(b) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;

(c) quasinonexpansive, if

‖Tx− y‖ ≤ ‖x− y‖, ∀x ∈ H, y ∈ F (T );

(d) monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

(e) pseudomonotone if

〈Tx, y − x〉 ≥ 0⇒ 〈Ty, y − x〉 ≥ 0, ∀x, y ∈ H;

(f) α-strongly monotone if there exists α > 0, such that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖2, ∀ x, y ∈ H;

(g) quasimonotone

〈Tx, x− y〉 > 0⇒ 〈Ty, x− y〉 ≥ 0, ∀ x, y ∈ H;
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(h) sequentially weakly continuous if for each sequence {xn}, we obtain
that {xn} converges weakly to x implies that Txn converges weakly to
Tx.

Remark 2.2. It is well known that α-strongly monotone is monotone, mo-
tone is pseudomonotone, pseudomonotone is quasimonotone. However, the
converses are not generally true.

Let C be a nonempty, closed and convex subset of H. For any u ∈ H, there
exists a unique point PCu ∈ C such that

‖u− PCu‖ ≤ ‖u− y‖, ∀y ∈ C.

The operator PC is called the metric projection of H onto C. It is well-known
that PC is a nonexpansive mapping and that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (2.5)

for all x, y ∈ H. Furthermore, PC is characterized by the property

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2

and

〈x− PCx, y − PCx〉 ≤ 0 (2.6)

for all x ∈ H and y ∈ C.

Lemma 2.3. ([14, 28]) Let C be a nonempty, closed and convex subset of
a real Hilbert space H and A : H → H b a L-Lipschitz and quasimonotone
operator. Suppose that y ∈ C and for some p ∈ C, we have 〈Ay, p − y〉 ≥ 0.
Then at least one of the following hold

〈Ap, p− y〉 ≥ 0 or 〈Ay, q − y〉 ≤ 0

for all q ∈ C.

Lemma 2.4. ([22]) Let {an} be a sequence of positive real numbers, {αn} be
a sequence of real numbers in (0, 1) such that

∑∞
n=1 αn = ∞ and {dn} be a

sequence of real numbers. Suppose that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condi-
tion

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then lim
k→∞

an = 0.
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3. Proposed algorithm

In this section, we present our proposed method for solving a quasimonotone
variational inequality problem and a fixed point problem.

Assumption 3.1. Suppose that the following conditions A and B are hold:

Condition A:

(1) The feasible sets C and Q are nonempty, closed and convex subsets of
the real Hilbert spaces H1 and H2, respectively.

(2) {Sn} is a sequence of nonexpansive mapping on H1.
(3) A : H2 → H2 and B : H1 → H1 are quasimonotone, sequentially

weakly continuous and Lipschitz continuous with Lipschitz constant
L2 and L1 respectively.

(4) S : H1 → H1 is a quasinonexpansive operator and f : H1 → H1 is a
contraction mapping with coefficient τ ∈ (0, 1).

(5) T : H1 → H2 is a bounded linear operator.
(6) The solution set

Ω := {x ∈ V I(B,C) ∩ F (S) : Tx ∈ V I(A,Q)} 6= ∅.

Condition B:

(1) αn ⊂ (0, 1), lim
n→∞

αn = 0 and
∑∞

n=0 αn =∞.
(2) {ηn} ⊂ (0, η0) ∈ (0, 1), η ∈ (1, 13

10), α ∈ (1, 13
10), ν, δ ∈ (0, 1

2) such that
2− η − νη > 0, 2− α− δα > 0, {ωn} ⊂ (0, 1) witht αn + ηn + ωn = 1,
λ0 > 0, µ0 > 0, and choose the nonnegative real sequence {Γn} and
{ζn} such that

∑∞
n=1 Γn <∞ and

∑∞
n=1 ζn <∞.

We present the following iterative algorithm.

Algorithm 3.2. Initialization Step:

Step 1: Choose x0, x1 ∈ H1, given the iterates xn−1 and xn for all n ∈ N,
choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

{
min

{
n−1

n+β−1 ,
εn

‖xn−xn−1‖}
}
, if xn 6= xn−1,

n−1
n+β−1 , otherwise,

(3.1)

with {εn} is a positive sequence such that εn = ◦(αn).

Step 2: Set

wn = xn + θn(Snxn − Snxn−1).

Then, compute

yn = PQ(Twn − λnATwn), (3.2)

zn = PΦn(Twn − ηλnAyn), (3.3)
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where

Φn = {x ∈ H2 : 〈Twn − λnATwn − yn, x− yn〉 ≤ 0}
and

λn+1 (3.4)

=

{
min

{
ν(‖Twn−yn‖2+‖yn−zn‖2)

2〈ATwn−Ayn,yn−zn〉 , λn + ζn

}
, if 〈ATwn −Ayn, yn − zn〉 > 0,

λn + ζn, otherwise.

Step 3: Compute

vn = wn + γnT
∗(zn − Twn), (3.5)

un = PC(vn − νnBvn), (3.6)

tn = Pψn(vn − ανnBun), (3.7)

where γn is chosen such that for small enough ε > 0, γn ∈
[
ε, ‖Twn−zn‖2
‖T ∗(Twn−zn)‖2−ε

]
if Twn 6= zn, otherwise γn = γ, ψn = {x ∈ H1 : 〈vn−νnBvn−un, x−un〉 ≤ 0}
and

µn+1 (3.8)

=

{
min

{
δ(‖vn−un‖2+‖un−tn‖2)

2〈Bvn−Bun,un−tn〉 µn + Γn

}
, if 〈Bvn −Bun, un − tn〉 > 0,

µn + Γn, otherwise.

Step 4: Compute

xn+1 = αnf(xn) + ωnxn + ηnStn. (3.9)

4. Convergence analysis

Lemma 4.1. The step-sizes γn, µn+1 and λn+1 in Algorithm 3.2 are well de-
fined.

Proof. The proof that λn+1, µn+1 and γn are well define follows similar ap-
proach as in Lemma 3.1 of [18] and Lemma 3.6 of [19], thus we omit it. �

Lemma 4.2. Let {xn} be a sequence generated by Algorithm 3.2 under As-
sumption 3.1. Then, {xn} is bounded.

Proof. Let p ∈ Ω. Then Tp ∈ V I(A,Q) ⊂ Q. Since lim
n→∞

θn
αn
‖xn − xn−1‖ = 0,

there exists N1 > 0 such that θn
αn
‖xn − xn−1‖ ≤ N1, for all n ∈ N. Then using
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Algorithm 3.2, we have

‖wn − p‖ = ‖xn + θn(Snxn − Snxn−1)− p‖
≤ ‖xn − p‖+ θn‖Snxn − Snxn−1‖

≤ ‖xn − p‖+ αn
θn
αn
‖xn − xn−1‖

≤ ‖xn − p‖+ αnN1. (4.1)

Also, using Algorithm 3.2, we have

‖zn − Tp‖2 = ‖PQn(Twn − ηATwn)− Tp‖2

≤ ‖Twn − ηλnAyn − Tp‖2 − ‖Twn − ηλnAyn − zn‖2

= ‖Twn − Tp‖2 + (ηλn)2‖Ayn‖2 − 2〈Twn − Tp, ηλnAyn〉
− ‖Twn − zn‖2 − (ηλn)2‖Ayn‖2 + 2〈Twn − zn, ηλnAyn〉

= ‖Twn − Tp‖2 − ‖Twn − zn‖2 − 2〈ηλnAyn, zn − Tp〉
= ‖Twn − Tp‖2 − ‖Twn − zn‖2 − 2〈ηλnAyn, zn − yn〉
− 2〈ηλnAyn, yn − Tp〉. (4.2)

Since Tp ∈ V I(Q,A) and yn ∈ Q, we have 〈ATp, yn − Tp〉 ≥ 0 and using
Lemma 2.3, we obtain 〈Ayn, yn − Tp〉 ≥ 0. Thus, (4.2) becomes

‖zn − Tp‖2 ≤ ‖Twn − Tp‖2 − ‖Twn − zn‖2 − 2〈ηλnAyn, zn − yn〉. (4.3)

Now, observe that

−‖Twn − zn‖2 = −‖Twn − yn + yn − zn‖2

= −‖Twn − yn‖2 − ‖yn − zn‖2 + 2〈Twn − yn, zn − yn〉
= −‖Twn − yn‖2 − ‖yn − zn‖2

+ 2〈Twn−yn−λnATwn+λnATwn−λnAyn+λnAyn, zn−yn〉
= −‖Twn − yn‖2 − ‖yn − zn‖2

+ 〈Twn − λnATwn − yn, zn − yn〉
+ 〈λnATwn − λnAyn, zn − yn〉+ 〈λnAyn, zn − yn〉. (4.4)

Since zn ∈ Q ⊂ H2, we have 〈Twn−λnATwn− yn, zn− yn〉 ≤ 0 and using the
step-size, we have (4.4) becomes

−‖Twn − zn‖2 ≤ −(1− λnν

λn+1
)‖Twn − yn‖2 − (1− λnν

λn+1
)‖yn − zn‖2

+ 2〈λnAyn, zn − yn〉, (4.5)
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this implies that

−2〈λnAyn, zn − yn〉 ≤ −(1− λnν

λn+1
)‖Twn − yn‖2

− (1− λnν

λn+1
)‖yn − zn‖2 + ‖Twn − zn‖2. (4.6)

Hence

−2〈ηλnAyn, zn − yn〉 ≤ −η(1− λnν

λn+1
)‖Twn − yn‖2

− η(1− λnν

λn+1
)‖yn − zn‖2

+ η‖Twn − zn‖2. (4.7)

Substituting (4.7) into (4.3), we have

‖zn − Tp‖2 ≤ ‖Twn − Tp‖2 − η(1− λnν

λn+1
)‖Twn − yn‖2

− η(1− λnν

λn+1
)‖yn − zn‖2 − (1− η)‖Twn − zn‖2. (4.8)

Since

‖Twn − zn‖2 ≤ 2‖Twn − yn‖2 + 2‖zn − yn‖2 and − (1− η) > 0,

we have

−(1− η)‖Twn − zn‖2 ≤ −2(1− η)‖Twn − yn‖2 − 2(1− η)‖zn − yn‖2,

thus, we have

‖zn − Tp‖2 ≤ ‖Twn − Tp‖2 − η(1− λnν

λn+1
)‖Twn − yn‖2

− η(1− λnν

λn+1
)‖yn − zn‖2 − 2(1− η)‖Twn − yn‖2

− 2(1− η)‖zn − yn‖2

= ‖Twn − Tp‖2 − (2− η − νλnη

λn+1
)‖Twn − yn‖2

− (2− η − νλnη

λn+1
)‖zn − yn‖2. (4.9)

Considering the limit (2− η − νλnη
λn+1

) = 2− η − νη > 0. Hence, there exists n0

such that for all n ≥ n0, we have 2 − η − νλnη
λn+1

≥ 0. Thus, it follows that, for



216 D. O. Peter, A. A. Mebawondu, G. C. Ugwunndi, P. Pillay and O. K. Narain

all n ≥ n0, we obtain

‖zn − Tp‖2 ≤ ‖Twn − Tp‖2 (4.10)

and this implies that

‖zn − Tp‖ ≤ ‖Twn − Tp‖. (4.11)

Furthermore, using Algorithm 3.2 with step-size γn and (4.11), we have

‖vn − p‖2 = ‖wn + γnT
∗(zn − Twn)− p‖

= ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2

+ 2γn〈wn − p, T ∗(zn − Twn)〉
= ‖wn − p‖2 + γ2

n‖T ∗(zn − Twn)‖2

+ 2γn〈Twn − Tp, zn − Twn〉
= ‖wn − p‖2 + γ2

n‖T ∗(zn − Twn)‖2

+ γn‖zn − Tp‖2 − γn‖Twn − Tp‖2 − γn‖zn − Twn‖2

≤ ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2

+ γn‖Twn − Tp‖2 − γn‖Twn − Tp‖2 − γn‖zn − Twn‖2

≤ ‖wn − p‖2 + γ2
n‖T ∗(zn − Twn)‖2

− γn(γn + ε)‖T ∗(zn − Twn)‖2

= ‖wn − p‖2 − γnε‖T ∗(zn − Twn)‖2

≤ ‖wn − p‖2, (4.12)

which implies that

‖vn − p‖ ≤ ‖wn − p‖. (4.13)

Using a similar approach as in (4.9), we obtain

‖tn − p‖2 ≤ ‖vn − p‖2 − (2− α− δµnα

µn+1
)‖vn − un‖2

− (2− α− δµnα

µn+1
)‖tn − un‖2, (4.14)

which implies that

‖tn − p‖ ≤ ‖vn − p‖. (4.15)
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Finally, using Algorithm 3.2, (4.15), (4.13) and (4.1) we have

‖xn+1 − p‖ = ‖αnf(xn) + ωnxn + ηnStn − p‖

=

∥∥∥∥αn(f(xn)− p) + ωn(xn − p) + ηn

(
Stn − p

)∥∥∥∥
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖

+ (1− αn − ωn)‖Stn − p‖
≤ αnτ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn − ωn)‖tn − p‖
≤ αnτ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn − ωn)‖vn − p‖
≤ αnτ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn − ωn)‖wn − p‖
≤ αnτ‖xn − p‖+ αn‖f(p)− p‖

+ (1− αn − ωn)[‖xn − p‖+ αnN1]

≤ αnτ‖xn − p‖+ αn‖f(p)− p‖
+ (1− αn)‖xn − p‖+ αnN1

= (1− αn(1− τ))‖xn − p‖

+ αn(1− k)

[
N1 + ‖f(p)− p‖

(1− τ)

]
≤ max

{
‖xn − p‖,

N1 + ‖f(p)− p‖
(1− τ)

}
. (4.16)

It follows by induction

‖xn − p‖ ≤ max

{
‖x0 − p‖,

N1 + ‖f(p)− p‖
(1− τ)

}
. (4.17)

Hence {xn} is bounded. �

Lemma 4.3. Let {xn} be a sequence generated by Algorithm 3.2 under As-
sumption 3.1 and suppose that there exists a subsequence {xnk

} of {xn} which
converges weakly to x∗ ∈ H1 and

lim
k→∞

‖wnk
− vnk

‖ = 0 = lim
k→∞

‖tnk
− vnk

‖.

Then x∗ ∈ Ω.

Proof. Let p ∈ Ω. We suppose that znk
6= Twnk

. It is easy to see from (4.12)
that

‖vnk
− p‖2 ≤ ‖wnk

− p‖2 − γnk
ε‖T ∗(znk

− Twnk
)‖2

≤ ‖wnk
− p‖2 − ε2‖T ∗(znk

− Twnk
)‖, (4.18)
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which implies that

ε2‖T ∗(znk
− Twnk

)‖2 ≤ ‖wnk
− p‖2 − ‖vnk

− p‖2

≤ (‖wnk
− vnk

‖+ ‖vnk
− p‖)2 − ‖vnk

− p‖2

≤ ‖wnk
− vnk

‖2 + 2‖wnk
− vnk

‖‖vnk
− p‖

+ ‖vnk
− p‖2 − ‖vnk

− p‖2

= ‖wnk
− vnk

‖2 + 2‖wnk
− vnk

‖‖vnk
− p‖. (4.19)

By using the hypothesis, we have

lim
k→∞

‖T ∗(znk
− Twnk

)‖ = 0. (4.20)

Thus

‖vnk
−p‖2 ≤ ‖wnk

−p‖2 + γ2
n‖T ∗(znk

−Twnk
)‖2 − γn‖znk

−Twnk
‖2, (4.21)

and this implies that

γnk
‖znk

− Twnk
‖2 ≤ ‖wnk

− p‖2 − ‖vnk
− p‖2 + γ2

nk
‖T ∗(znk

− Twnk
)‖2

≤ ‖wnk
− vnk

‖2 + 2‖wnk
− vnk

‖‖vnk
− p‖

+ γ2
nk
‖T ∗(znk

− Twnk
)‖2. (4.22)

From our hypothesis, we have

lim
k→∞

‖znk
− Twnk

‖ = 0. (4.23)

From (4.9), we have

‖znk
− Tp‖2 ≤ ‖Twnk

− Tp‖2 − (2− η − νλnk
η

λnk+1
)‖Twnk

− ynk
‖2

− (2− η − νλnk
η

λnk+1
)‖znk

− ynk
‖2. (4.24)

Now, observe that

‖znk
− Tp‖2 = ‖znk

− Twnk
+ Twnk

− Tp‖2

= ‖Twnk
− Tp− (Twnk

− znk
)‖2

= ‖Twnk
− Tp‖2 − 2〈Twnk

− Tp, Twnk
− zn〉+ ‖Twnk

− znk
‖2

≥ ‖Twnk
− Tp‖2 − 2‖T (wnk

− p)‖‖Twnk
− znk

‖+ ‖Twn − zn‖2

≥ ‖Twnk
− Tp‖2 − 2‖T‖‖wnk

− p‖‖Twnk
− znk

‖
+ ‖Twnk

− znk
‖2 (4.25)
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and this implies that

−‖znk
− Tp‖2 ≤ −‖Twnk

− Tp‖2 + 2‖T‖‖wnk
− p‖‖Twnk

− znk
‖

− ‖Twnk
− znk

‖2. (4.26)

Adding (4.24) and (4.26), we have

(2− η − νλnk
η

λnk+1
)‖Twnk

− ynk
‖2 + (2− η − νλnk

η

λnk+1
)‖znk

− ynk
‖2

≤ 2‖T‖‖wnk
− p‖‖Twnk

− znk
‖ − ‖Twnk

− znk
‖2. (4.27)

By using (4.23), we have

lim
k→∞

‖Twnk
− ynk

‖ = 0 = lim
k→∞

‖znk
− ynk

‖. (4.28)

Since ynk
= PQ(Twnk

− λnk
ATwnk

), from the characteristic of the metric
projection, we have

〈Twnk
− λnk

ATwnk
− ynk

, x− ynk
〉 ≤ 0, ∀ x ∈ Q (4.29)

and this implies that

〈Twnk
− ynk

, x− ynk
〉 − λnk

〈ATwnk
, x− ynk

〉 ≤ 0. (4.30)

Hence we obtain that

〈Twnk
− ynk

, x− ynk
〉 ≤ λnk

〈ATwnk
, x− ynk

〉
= λnk

〈ATwnk
, Twnk

− ynk
〉

+ λnk
〈ATwnk

, x− Twnk
〉. (4.31)

Since λnk
> 0, we have

1

λnk

〈Twnk
− ynk

, x− ynk
〉+ 〈ATwnk

, ynk
− Twnk

〉 ≤ 〈ATwnk
, x− Twnk

〉.

(4.32)

Using (4.28), we have

0 ≤ lim inf
k→∞

〈ATwnk
, x− Twnk

〉 ≤ lim sup
k→∞

〈ATwnk
, x− Twnk

〉. (4.33)

Now, observe that

〈Aynk
, x− ynk

〉 = 〈Aynk
, x− Twnk

〉+ 〈Aynk
, Twnk

− ynk
〉

= 〈Aynk
−ATwnk

, x− Twnk
〉+ 〈ATwnk

, x− Twnk
〉

+ 〈Aynk
, Twnk

− ynk
〉. (4.34)

Since A is Lipschitz continuous on H2,

lim
k→∞

‖ATwnk
−Aynk

‖ ≤ L2 lim
k→∞

‖Twnk
− ynk

‖ = 0. (4.35)
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Combining (4.33), (4.34) and (4.35), we have

0 ≤ lim inf
k→∞

〈Aynk
, x− ynk

〉 ≤ lim sup
k→∞

〈Aynk
, x− ynk

〉. (4.36)

In what follows, we now establish that Tx∗ ∈ V I(A,Q). To start with, we
consider the case in which lim supk→∞〈Aynk

, x− ynk
〉 > 0 for all x ∈ Q. Then

there exists a subsequence {ynkm
} of sequence {ynk

} such that

lim sup
m→∞

〈Aynkm
, x− ynkm

〉 > 0

for all x ∈ Q. It follows that we can find N0 such that

〈Aynkm
, x− ynkm

〉 > 0, ∀m > N0. (4.37)

Since A is quasimonotone, it follows that

〈Ax, x− ynkm
〉 > 0, ∀m > N0. (4.38)

Now observe that

‖wnkm
− xnkm

‖ = αnkm

θnkm

αnkm

‖Snkm
xnkm

− Snkm
xnkm−1‖

→ 0, as m→∞. (4.39)

Since, the subsequence {xnk
} of {xn} is weakly convergent to a point x∗ ∈ H1.

Again, since T is a bounded linear operator, we obtain that {Twnk
} converges

weakly to Tx∗. Hence, using the fact that lim
n→∞

‖Twnkm
− ynkm

‖ = 0, we have

that {ynkm
} also converges to Tx∗.

Now passing the limit as m→∞ in (4.38), we have

lim
m→∞

〈Ax, x− ynkm
〉 = 〈Ax, x− Tx∗〉 > 0. (4.40)

Hence, Tx∗ ∈ V I(A,Q).
Secondly, we consider the case in which lim supk→∞〈Aynk

, x− ynk
〉 = 0 for

x ∈ Q. Let {δk} be a non-increasing positive sequence defined by

δk = |〈Aynk
, x− ynk

〉|+ 1

k + 1
. (4.41)

Then, we obtain

lim
k→∞

δk = lim
k→∞
〈Aynk

, x− ynk
〉+ lim

k→∞

1

k + 1
= 0. (4.42)

This implies by (4.41), that

〈Aynk
, x− ynk

〉+ δk > 0 (4.43)
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for each k ≥ 1, since {ynk
} ⊂ Q, it implies that {Aynk

} is strictly non-zero
and lim infk→∞ ‖Aynk

‖ = N0 > 0. We therefore deduce that

‖Aynk
‖ > N0

2
. (4.44)

In addition, let {εnk
} be a sequence defined by εnk

=
Aynk
‖Aynk

‖2 . It implies

that

〈Aynk
, εnk
〉 = 1. (4.45)

Combining (4.43) and (4.45), we have

〈Aynk
, x+ δkεnk

− ynk
〉 > 0. (4.46)

By quasimonotonicity of the operator A on H2, we get that

〈A(x+ δkεnk
), x+ δkεnk

− ynk
〉 ≥ 0. (4.47)

Now, observe that

〈Ax, x+ δkεnk
− ynk

〉 = 〈Ax−A(x+ δkεnk
)

+A(x+ δkεnk
), x+ δkεnk

− ynk
〉

= 〈Ax−A(x+ δkεnk
), x+ δkεnk

− ynk
〉

+ 〈A(x+ δkεnk
), x+ δkεnk

− ynk
〉. (4.48)

Combining (4.47), (4.48) and applying the well-known Cauchy-Schwarz in-
equality, we have

〈Ax, x+ δkεnk
− ynk

〉 ≥ 〈Ax−A(x+ δkεnk
), x+ δkεnk

− yn〉
≥ −‖Ax−A(x+ δkεnk

)‖‖x+ δkεnk
− ynk

‖. (4.49)

Since A is Lipschitz continuous, we have

〈Ax, x+ δkεnk
− ynk

〉+ L2‖δkεnk
‖‖x+ δkεnk

− ynk
‖ ≥ 0. (4.50)

Combining (4.44) and (4.50) and using the definition of εnk
, we have

〈Ax, x+ δkεnk
− ynk

〉+
2L2

N0
δk‖x+ δkεnk

− ynk
‖ ≥ 0. (4.51)

Since, the subsequence {xnk
} of {xn} is weakly convergent to a point x∗ ∈ H1,

and T is a bounded linear operator, we obtain that {Twnk
} converges to Tx∗.

Hence, using the fact that lim
n→∞

‖Twnk
− ynk

‖ = 0, we have that {ynk
} also

converges to Tx∗. Taking limit as k →∞, since δk → 0, we have

lim
k→∞

[
〈Ax, x+ δkεnk

− ynk
〉+

2L2

N0
δk‖x+ δkεnk

− ynk
‖
]

= 〈Ax, x− Tx∗〉 > 0.

(4.52)

Hence Tx∗ ∈ V I(A,Q).
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Using a similar approach, we have x∗ ∈ V I(B,C). Hence, we conclude that
x∗ ∈ Ω. �

Theorem 4.4. Let {xn} be a sequence generated by Algorithm 3.2 under As-
sumption 3.1. Then {xn} converges strongly to p ∈ Ω, where p = PΩf(p).

Proof. Let p ∈ Ω. Using Algorithm 3.2, we have

‖wn − p‖2 = ‖xn + θn(Snxn − Snxn−1)− p‖2

= ‖xn − p‖2 + 2θn〈Snxn − p, Snxn − Snxn−1〉
+ θ2

n‖Snxn − Snxn−1‖2

≤ ‖xn − p‖2 + 2θn‖xn − xn−1‖‖xn − p‖+ θ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ θn‖xn − xn−1‖]
= ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖

+ βn
θn
βn
‖xn − xn−1‖]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ αnN1]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2. (4.53)

In addition, using Algorithm 3.2 and (4.53), we have

‖xn+1 − p‖2 = ‖αnf(xn) + ωnxn + ηnStn − p‖2

= ‖αnf(xn) + ωnxn + ηnStn − p‖2

≤ ‖ωn(xn − p) + ηn(Stn − p)‖2 + 2αn〈f(xn)− p, xn+1 − p〉
≤ ω2

n‖xn − p‖2 + η2
n‖Stn − p‖2 + 2ηnωn‖xn − p‖‖Stn − p‖

+ 2αn〈f(xn)− p, xn+1 − p〉
≤ ω2

n‖xn − p‖2 + η2
n‖tn − p‖2 + ωnηn(‖xn − p‖2 + ‖tn − p‖2)

+ 2αn〈f(xn)− f(p), xn+1 − p〉+ 2αn〈f(p)− p, xn+1 − p〉
≤ ωn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)‖tn − p‖2

+ 2αn〈f(xn)− f(p), xn+1 − p〉+ 2αn〈f(p)− p, xn+1 − p〉
≤ ωn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)‖vn − p‖2

+ 2αn〈f(xn)− f(p), xn+1 − p〉+ 2αn〈f(p)− p, xn+1 − p〉
≤ ωn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)‖wn − p‖2

+ 2αn〈f(xn)− f(p), xn+1 − p〉+ 2αn〈f(p)− p, xn+1 − p〉
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≤ ωn(ωn + ηn)‖xn − p‖2

+ ηn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)θn‖xn − xn−1‖N2

+ 2αnτ‖xn − p‖‖xn+1 − p‖+ 2αn〈f(p)− p, xn+1 − p〉
≤ (ωn + ηn)2‖xn − p‖2 + ηn(ωn + ηn)θn‖xn − xn−1‖N2

+ αnτ‖xn − p‖+ αnτ‖xn+1 − p‖+ 2αn〈f(p)− p, xn+1 − p〉
≤ (1− 2αn + αnτ)‖xn − p‖2 + α2

n‖xn − p‖2

+ ηn(ωn + ηn)θn‖xn − xn−1‖N2

+ αnτ‖xn+1 − p‖+ 2αn〈f(p)− p, xn+1 − p〉, (4.54)

which implies that

‖xn+1 − p‖2 ≤ (1− 2αn(1− τ)

1− αnτ
)‖xn − p‖2

+
2αn(1− τ)

1− αnτ

[
ηn(1− αn)θn
2αn(1− τ)

‖xn − xn−1‖N2

+
αnN3

2(1− τ)
+

1

(1− τ)
〈f(p)− p, xn+1 − p〉

]
= (1− 2αn(1− τ)

1− αnτ
)‖xn − p‖2 +

2αn(1− τ)

1− αnτ
Ψn, (4.55)

where
N3 = sup

n∈N
{‖xn − p‖2 : n ≥ N}

and

Ψn =
ηn(1− αn)

2(1− τ)

θn
αn
‖xn − xn−1‖N2

+
αnN3

2(1− τ)
+

1

(1− τ)
〈f(p)− p, xn+1 − p〉.

According to Lemma 2.4, to conclude our proof, it is sufficient to establish
that lim supk→∞Ψnk

≤ 0 for every subsequence {‖xnk
− p‖} of {‖xn − p‖}

satisfying the condition:

lim inf
k→∞

{‖xnk+1 − p‖ − ‖xnk
− p‖} ≥ 0. (4.56)

To establish that lim supk→∞Ψn ≤ 0, we suppose that for every subsequence
{‖xnk

− p‖} of {‖xn − p‖} such that (4.56) holds. Then,

lim inf
k→∞

{‖xnk+1 − p‖2 − ‖xnk
− p‖2}

= lim inf
k→∞

{(‖xnk+1 − p‖ − ‖xnk
− p‖)(‖xnk+1 − p‖+ ‖xnk

− p‖)}

≥ 0. (4.57)
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It is easy to see from (4.54) and (4.14), that

‖xnk+1 − p‖2 ≤ ωn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)‖tn − p‖2

+ 2αn〈f(xn)− f(p), xn+1 − p〉
+ 2αn〈f(p)− p, xn+1 − p〉
≤ ωn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)‖vn − p‖2

− ηn(ωn + ηn)(2− α− δµnα

µn+1
)‖vn − un‖2

+ 2αn〈f(xn)− f(p), xn+1 − p〉
+ 2αn〈f(p)− p, xn+1 − p〉
≤ ωn(ωn + ηn)‖xn − p‖2 + ηn(ωn + ηn)‖wn − p‖2

− ηn(ωn + ηn)(2− α− δµnα

µn+1
)‖vn − un‖2

− ηn(ωn + ηn)(2− α− δµnα

µn+1
)‖tn − un‖2

+ 2αn〈f(xn)− f(p), xn+1 − p〉
+ 2αn〈f(p)− p, xn+1 − p〉

≤ (1− 2αn(1− τ)

1− αnτ
)‖xn − p‖2

+
2αn(1− τ)

1− αnτ
[ηn(1− αnk

)θn
2αn(1− τ)

‖xn − xn−1‖N2

+
αnN3

2αn(1− τ)
− ηn(1− αn)

2αn(1− τ)
(2− α− δµnα

µn+1
)‖tn − un‖2

− ηn(1− αn)

2αn(1− τ)
(2− α− δµnα

µnk+1
)‖vnk

− unk
‖2

+
1

(1− τ)
〈f(p)− p, xnk+1 − p〉

]
≤ ‖xn − p‖2 +

αnηn(1− αn)

1− αnτ
θn
αn
‖xn − xn−1‖N2 + αnk

N3

− ηn(1− αn)(2− α− δµnα

µn+1
)‖tn − un‖2

− ηn(1− αn)(2− α− δµnα

µn+1
)‖vn − un‖2

+
2αn

(1− αnτ)
〈f(p)− p, xn+1 − p〉

]
, (4.58)

which implies that
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lim sup
k→∞

(
ηnk

(1− αnk
)(2− α− δµnk

α

µnk+1
)‖tnk

− unk
‖2

+ ηnk
(1− αnk

)(2− α− δµnk
α

µnk+1
)‖vnk

− unk
‖2
)

≤ lim sup
k→∞

[
‖xnk

− p‖2 +
αnk

ηnk
(1− αnk

)

1− αnk
τ

θnk

αnk

‖xnk
− xnk−1‖N2

+ αnk
N3 +

2αnk

(1− αnk
τ)
〈f(p)− p, xnk+1 − p〉 − ‖xnk+1 − p‖2

]
≤ − lim inf

k→∞
[‖xnk+1 − p‖2 − ‖xnk

− p‖2] ≤ 0.

Thus, we have

lim
k→∞

‖tnk
− unk

‖ = 0 = lim
k→∞

‖vnk
− unk

‖. (4.59)

Using the triangular inequality and (4.59), we have

lim
k→∞

‖tnk
− vnk

‖ ≤ lim
k→∞

‖tnk
− unk

‖+ lim
k→∞

‖unk
− vnk

‖ = 0. (4.60)

Now using similar approach as in (4.58), we have

‖xnk+1 − p‖2 ≤ ωnk
(ωnk

+ ηnk
)‖xnk

− p‖2 + ηnk
(ωnk

+ηnk
)‖tnk

− p‖2

+ 2αnk
〈f(xnk

)−f(p), xnk+1 − p〉+2αnk
〈f(p)− p, xnk+1 − p〉

≤ ωnk
(ωnk

+ ηnk
)‖xnk

− p‖2 + ηnk
(ωnk

+ ηnk
)‖vnk

− p‖2

+ 2αnk
〈f(xnk

)−f(p), xnk+1 − p〉+2αnk
〈f(p)− p, xnk+1 − p〉

≤ ωnk
(ωnk

+ ηnk
)‖xnk

− p‖2 + ηnk
(ωnk

+ ηnk
)[‖wnk

− p‖2

− γnk
ε‖T ∗(znk

− Twnk
)‖2]

+ 2αnk
〈f(xnk

)−f(p), xnk+1 − p〉+2αnk
〈f(p)− p, xnk+1 − p〉

≤ (1− αnk
)2‖xnk

− p‖2 + θnk
‖xnk

− xnk−1‖N2

− ηnk
(1− αnk

)ε2‖T ∗(znk
− Twnk

)‖2

+ 2αnk
〈f(xnk

)−f(p), xnk+1 − p〉+2αnk
〈f(p)− p, xnk+1 − p〉

≤ ‖xnk
− p‖2 + αnk

θnk

αnk

‖xnk
− xnk−1‖N2

− ηnk
(1− αnk

)ε2‖T ∗(znk
− Twnk

)‖2

+ 2αnk
〈f(xnk

)−f(p), xnk+1 − p〉+2αnk
〈f(p)− p, xnk+1 − p〉,

(4.61)

which implies that
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lim sup
k→∞

(
ηnk

(1− αnk
)ε2‖T ∗(znk

− Twnk
)‖2
)

≤ lim sup
k→∞

[
‖xnk

− p‖2 + αnk

θnk

αnk

‖xnk
− xnk−1‖N2

+ 2αnk
〈f(xnk

)− f(p), xnk+1 − p〉

+ 2αnk
〈f(p)− p, xnk+1 − p〉 − ‖xnk+1 − p‖2

]
≤ − lim inf

k→∞
[‖xnk+1 − p‖2 − ‖xnk

− p‖2] ≤ 0.

Hence, we obtain

lim
k→∞

‖T ∗(znk
− Twnk

)‖ = 0. (4.62)

In the proof of Lemma 4.1 in [19] (establishing that γn is well defined), the
authors obtained that

‖Twn − zn‖2 ≤ 2‖T ∗(znk
− Twnk

)‖‖wn − zn‖, (4.63)

see Equation (3.14) of [19]. Using (4.62) and with the above inequality, we
have

lim
k→∞

‖znk
− Twnk

‖ = 0. (4.64)

From Algorithm 3.2 and (4.62), we have

lim
k→∞

‖vnk
− wnk

‖ = lim
k→∞

‖wnk
+ γnk

T ∗(znk
− Twnk

)− wnk
‖

= γnk
lim
k→∞

‖T ∗(znk
− Twnk

)‖ = 0. (4.65)

In addition, we have

‖znk
− Tp‖2 = ‖Twnk

− Tp− Twnk
+ znk

‖2

= ‖Twnk
− Tp‖2 − 2〈T (wnk

− p), Twnk
− znk

〉+ ‖Twnk
− znk

‖2

≥ ‖Twnk
− Tp‖2 − 2‖T‖‖wnk

− p‖‖Twnk
− znk

‖
+ ‖Twnk

− znk
‖2, (4.66)

which implies that

−‖znk
− Tp‖2 ≤ −‖Twnk

− Tp‖2 + 2‖T‖‖wnk
− p‖‖Twnk

− znk
‖

− ‖Twnk
− znk

‖2. (4.67)

Adding (4.67) and (4.9), we have

(2− η − νλnk
η

λnk+1
)‖Twnk

− ynk
‖2 + (2− η − νλnk

η

λnk+1
)‖znk

− ynk
‖2

≤ 2‖T‖‖wnk
− p‖‖Twnk

− znk
‖ − ‖Twnk

− znk
‖2. (4.68)
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Taking limit as k →∞, we have

lim
k→∞

‖Twnk
− ynk

‖ = lim
k→∞

‖znk
− ynk

‖ = 0. (4.69)

In addition, we have

lim
k→∞

‖Twnk
− znk

‖ ≤ lim
k→∞

‖Twnk
− ynk

‖+ lim
k→∞

‖ynk
− znk

‖

= 0. (4.70)

And also, we have

‖xn+1 − p‖2 = αn‖f(xn)− p‖2 + ωn‖xn − p‖2

+ ηn‖Stn − p‖2 − ηnδn‖xn − Stn‖2

≤ αn‖f(xn)− p‖2 + ωn‖xn − p‖2

+ ηn‖tn − p‖2 − ωnηn‖xn − Stn‖2

≤ αn‖f(xn)− p‖2 + ωn‖xn − p‖2

+ ηn‖vn − p‖2 − ωnηn‖xn − Stn‖2

≤ αn‖f(xn)− p‖2 + ωn‖xn − p‖2

+ ηn‖wn − p‖2 − ωnηn‖xn − Stn‖2

≤ αn‖f(xn)− p‖2 + ωn‖xn − p‖2 + ηn‖xn − p‖2

+ ηnθn‖xn − xn−1‖N2 − ωnηn‖xn − Stn‖2

= (ωn + ηn)‖xn − p‖2 + αn‖f(xn)− p‖2

+ ηnθn‖xn − xn−1‖N2 − ωnηn‖xn − Stn‖2

≤ ‖xn − p‖2 + αn‖f(xn)− p‖2

+ ηnθn‖xn − xn−1‖N2 − ωnηn‖xn − Stn‖2, (4.71)

which implies that

lim sup
k→∞

(
ωnk

ηnk
‖xnk

− Stnk
‖2
)

≤ lim sup
k→∞

[
‖xnk

− p‖2 + ηnk
αnk

θnk

αnk

‖xnk
− xnk−1‖N2

+ αnk
‖f(xnk

)− p‖2 − ‖xnk+1 − p‖2
]

≤ − lim inf
k→∞

[‖xnk+1 − p‖2 − ‖xnk
− p‖2]

≤ 0. (4.72)
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Thus, we have

lim
k→∞

‖xnk
− Stnk

‖ = 0. (4.73)

It is easy to see that, as k →∞, we have

‖wnk
− xnk

‖ = θnk
||Snk

xnk
− Snk

xnk−1||

= αnk
· θnk

αnk

||Snk
xnk
− Snk

xnk−1|| → 0. (4.74)

In addition, we have that

‖vnk
− xnk

‖ ≤ ‖wnk
− xnk

‖+ γn‖T ∗(znk
− Twnk

)‖ → 0, as k →∞, (4.75)

‖wnk
− vnk

‖ ≤ ‖wnk
− xnk

‖+ ‖xnk
− vnk

‖ → 0, as k →∞, (4.76)

‖tnk
− xnk

‖ ≤ ‖tnk
− vnk

‖+ ‖vnk
− xnk

‖ → 0, as k →∞, (4.77)

‖tnk
− wnk

‖ ≤ ‖tnk − xnk
‖+ ‖xnk

− wnk
‖ → 0, as k →∞, (4.78)

‖unk
− xnk

‖ ≤ ‖unk
− vnk

‖+ ‖vnk
− xnk

‖ → 0, as k →∞ (4.79)

and

‖tnk
− Stnk

‖ ≤ ‖tnk
− wnk

‖+ ‖wnk
− xnk

‖
+ ‖xnk

− Stnk
‖ → 0, as k →∞. (4.80)

Thus, we have

‖xnk+1 − xnk
‖ ≤ αn‖f(xnk

)− xnk
)‖+ ωn‖xnk

− xnk
‖

+ ηnk
‖Stnk

− xnk
‖ → 0, as k →∞. (4.81)

Now, since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
}

such that {xnkj
} converges weakly to x∗ ∈ H. In addition, using (4.77) and

the boundedness of {tnk
}, there exists a subsequence {tnkj

} of {tnk
} such that

{tnkj
} converges weakly to x∗ ∈ H1 and since S is demiclosed with (4.80), we

have that x∗ ∈ F (S). Hence, by (4.60), (4.65) and Lemma 4.3, we obtain that
x∗ ∈ Ω. Furthermore, since {xnkj

} converges weakly to x∗, we obtain that

lim sup
k→∞

〈f(p)− p, xnk
− p〉 = lim

j→∞
〈f(p)− p, xnkj

− p〉

= 〈f(p)− p, x∗ − p〉. (4.82)
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Hence, since p is a unique solution of Ω, it follows that

lim sup
k→∞

〈f(p)− p, xnk
− p〉 = 〈f(p)− p, x∗ − p〉 ≤ 0, (4.83)

we have obtain from (4.83) and (4.81)

lim sup
k→∞

〈f(p)− p, xnk+1 − p〉 ≤ 0. (4.84)

Using our assumption and (4.84), we have that

lim
k→∞

Ψnk
= lim

k→∞

(
ηnk

(1− αnk
)

2(1− τ)

θnk

αnk

‖xnk
− xnk−1‖N2 +

αnk
N3

2(1− τ)

+
1

(1− τ)
〈f(p)− p, xnk+1 − p〉

)
≤ 0.

Thus, From Lemma 2.4, we have that lim
n→∞

‖xn − p‖ = 0. �

5. Numerical example

In this section, we will give some numerical examples which will show the
applicability and the efficiency of our proposed iterative method in comparison
to Algorithm 31 in [24] and Algorithm 1 in [20], respectively.

Example 5.1. Let H1 = H2 = L2([0, 1]) be equipped with the inner product

〈x, y〉 =

∫ 1

0
x(t)y(t)dt, ∀ x, y ∈ L2([0, 1])

and norm

‖x‖2 =

∫ 1

0
|x(t)|2dt, ∀x, y ∈ L2([0, 1]).

Let B;A; f ;T : L2([0, 1])→ L2([0, 1]) be defined by

Ax(t) = max{0, x(t)}, t ∈ [0, 1], x ∈ L2([0, 1]);

Bx(t) =
x(t)

2
, t ∈ [0, 1], x ∈ L2([0, 1]);

fx(t) =

∫ t

0

t

2
x(s) dt t ∈ [0, 1], x ∈ L2([0, 1]);

and

Tx(s) =

∫ 1

0
K(s, t)x(t)dt x ∈ L2([0, 1]),

where K is a continuous real valued function on [0, 1] × [0, 1]. It is easy to
see that A is 1-Lipschitz continuous and monotone, B is γ-strongly monotone,
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f is a contraction on L2([0, 1]) and T is a bounded linear operator with the
adjoint operator

T ∗x(s) =

∫ 1

0
K(t, s)x(t)dt, x ∈ L2([0, 1])

(we use this example due to Remark 2.2).
Let Sn;S : L2([0, 1])→ L2([0, 1]) be defined by

Sx(s) =

∫ 1

0
tx(s)ds, ∀ t ∈ [0, 1]

and

Snx(t) = sinx(t).

Let C be defined by C = Q = {x ∈ L2 : 〈a, x〉 = b} where a 6= 0 and b = 2.
Then, we have

PC(x̄) = PQ(x̄) = max

{
0,
b− 〈a, x̄〉
‖a‖2

}
a+ x̄.

We choose αn = 2
200n+5 , ωn = 2n

100n2+8
, ηn = 1 − ωn − αn, θn = θ, η = 1.2, α =

1.1, ν = 0.3, δ = 0.1, λ0 = 1
3 ,Γn = 100

(n+1)1.3
, εn = αn

n0.01 , µ = 1
2 , ζn = 100

(n+1)1.2
for

all n ∈ N. Also if we consider ε = ‖xn − xn1‖ ≤ 10−5 as the stopping criterion
and choose the following as starting points:

Case (1): x0(t) = 2t2 + t+ 2, x1(t) = t;

Case (2): x0(t) = 2t2 + e2t + 1, x1(t) = 3t3 + 3;

Case (3): x0(t) = t3 + e3t + 2, x1(t) = cos(t).

Alg. 3.2 Alg. 31 in [24] Alg. 1 in [20]
Case(1) No of Iter. 10 28 26

CPU time(s) 0.1704 0.20101 0.1745
Case(2) No of Iter. 10 29 21

CPU time(s) 0.1713 0.2130 0.1810
Case(3) No of Iter. 15 30 27

CPU time(s) 0.1710 0.2201 0.1821

Table 1. Computation result for Example 5.1.
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Figure 1. Example 5.1, Top Left: Case(1); Top Right:
Case(2); Case (3); Bottom.

Example 5.2. ([18, 23]) Let H1 = H2 = l2(R) := {x = (x1, x2, x3, · · · ), xi ∈
R :

∑∞
i=1 |xi|2 < ∞} and ‖x‖ = (

∑∞
i=1 |xi|2)

1
2 for all x ∈ l2(R). Suppose the

operators T,A,B; f : l2(R)→ l2(R) are defined by

Tx = (0, x1,
x2

2
,
x3

3
, · · · ), x ∈ l2(R);

Ax = (7− ‖x‖)x, ∀ x ∈ l2(R);

Bx = (5− ‖x‖)x, ∀ x ∈ l2(R)

and

f(x) =
x

3
, ∀ x ∈ l2(R).

Then, it is easy to see that T is a bounded linear operator with the adjoint
operator T ∗y = (0, y1,

y2
2 ,

y3
3 , · · · ) y ∈ l2(R) and A,B are quasimonotone,



232 D. O. Peter, A. A. Mebawondu, G. C. Ugwunndi, P. Pillay and O. K. Narain

Lipschitz continuous and weakly sequentially continuous on l2(R), see [23].
Let C = Q = {x ∈ l2(R) : ‖x‖ ≤ 3}. Clearly, C and Q are nonempty, closed
and convex subsets of l2(R). Hence, we have

PC(x) = PQ(x) =

{
x, if ‖x‖ ≤ 3,
3x
‖x‖ , if otherwise.

(5.1)

In addition, we define S, Sn : l2(R)→ l2(R) are defined by Sx = (0, x12 ,
x2
2 , · · · )

and Snx = (0, x1, x2, x3, · · · ). We choose αn = 2
200n+5 , ωn = 2n

100n2+8
, ηn =

1 − ωn − αn, θn = θ, η = 1.2, α = 1.1, ν = 0.3, δ = 0.1, λ0 = 1
3 ,Γn =

100
(n+1)1.3

, εn = αn
n0.01 , µ = 1

2 , ζn = 100
(n+1)1.2

for all n ∈ N. Also if we consider

ε = ‖xn − xn1‖ ≤ 10−5 as the stopping criterion and choose the following as
starting points:

Case (1): x0 = (2, 2, 2, · · · ), x1 = (0.5, 0.5, 0.5, · · · );

Case (2): x0 = (1, 2, 3, 4, · · · ), x1 = (1, 1, 1, · · · );

Case (3): x0 = (0.1, 0.2, 0.3, · · · ), x1 = (2, 4, 6, · · · );

Alg. 3.2 Alg. 31 in [24] Alg.1 in [20]
Case(1) No of Iter. 7 22 14

CPU time 0.0812 0.1345 0.0823
Case(2) No of Iter. 3 20 8

CPU time 0.0821 0.1430 0.0913
Case(3) No of Iter. 5 50 12

CPU time 0.0810 0.0833 0.0819

Table 2. Computation result for Example 5.2.

6. Conclusion

A SEGM with an inertial extrapolation step is introduced and studied for
solving the SVIPFPP (1.9)-(1.10) in infinite dimensional real Hilbert spaces
when the cost operators are quasimonotone, sequentially weakly continuous
and Lipschitz continuous. In addition, we established that the proposed iter-
ative method converges strongly to the solution set of SVIPFPP (1.9)-(1.10).
Our method uses stepsizes that are generated at each iteration by some sim-
ple computations, which allows it to be easily implemented without the prior
knowledge of the operator norm or the coefficient of an underlying operator.
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Figure 2. Example 5.2, Top Left: Case (1) ; Top Right: Case
(2); Bottom Case (3).

In addition, we present some examples and numerical experiment to show the
efficiency and implementation of our method in the framework of infinite and
finite dimensional Hilbert spaces.
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