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Abstract. A kind of second order impulses nonlinear FDE with forcing term is studied

in this paper. By means of Kartsatos technique, we reduce it to a second order nonlinear

impulsive homogeneous equation. Several criteria on the oscillations of solutions are given

under some suitable nonlinear impulse functions. At last, an example can be illustrated our

results.

1. Introduction

Based on the oscillatory behavior of the forcing term, Wong[1] obtained
oscillation criteria for the linear nonhomogeneous equation

(r(t)x
′
(t))

′
+ p(t)x(t) = q(t).
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Nsar[2] considered the forced super-linear differential equation

x
′′
(t) + p(t) | x(t) |α−1 x(t) = q(t)

and established some oscillation criteria.
Yang[3] considered the forced nonlinear differential equation

(p(t)x
′
(t))

′
+ q(t)f(x(t)) = g(t)

and established some oscillation criteria.
The first order impulsive delay differential equation with forcing term can

be seen [4], [5]. Forced oscillation of second order super linear differential
equation with impulses can be seen [6], [7], [8].

In the paper, by means of Kartsatos technique and Riccati technique, forced
oscillation of second order FDE with non-linear impulses is studied. Several
criteria on the oscillations of solutions are given. We find some suitable nonlin-
ear impulse functions such that all the solutions of the equation are oscillatory.
At last, we give an example to demonstrate our results.

2. Main results

We consider the following systems with forcing term:{
x
′′
(t) + p(t)f(x(t), x(t− τ)) = q(t), t ≥ 0, t 6= tk,

x(t+k ) = gk(x(tk)), x
′
(t+k ) = hk(x

′
(tk)), k = 1, 2 · · · , (2.1)

0 < t1 < t2 < · · · < tk < · · · , lim
k→∞

tk = +∞, k = 1, 2 · · · , tk+1− tk > τ , f(u, v)

is continuous on (−∞,+∞) × (−∞,+∞) uf(u, v) > 0(uv > 0), | f(u, v) |≥
|ϕ(v)|, τ > 0, p(t) > 0 is not always equal to 0, vϕ(v) > 0(v 6= 0), ϕ

′
(v) ≥ 0,

and q(t) is continuous in [0,+∞). gk(x), hk(x) are continuous in (−∞,+∞),
and there exist positive numbers a∗k, ak, b

∗
k, bk

a∗k ≤
gk(x)

x
≤ ak, b∗k ≤

hk(x)

x
≤ bk.

The initial condition

x(t) = φ(t), t ∈ [t0 − τ, t0], φ ∈ PC([t0 − τ, t0], R).

Definition 2.1. A function x : [t0 − τ, t0 + α) → R(α > 0) is said to be a
solution of (2.1) if

(i) x(t) is continuous on [t0, t0 + α) \ {tk, k ∈ N}.
(ii) x(t) = φ(t), t ∈ [t0 − τ, t0], x(t+0 ) = x0, x

′
(t+0 ) = x

′
0.

(iii) x(t) satisfies the first equality of (2.1) on [t0, t0 + α) \ {tk, k ∈ N}.
(iv) x(t), x

′
(t) has two-side limits and left continuous at points tk, and

x(t+k ) = gk(x(tk)), x
′
(t+k ) = hk(x

′
(tk)).
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If z(t) ∈ C2[0,+∞), z
′′
(t) = q(t), there exists two constants p1, p2 and two

sequences {t′i}, {t
′′
i }, lim

i→+∞
t
′
i = lim

i→+∞
t
′′
i = +∞ such that z(t

′
i) = p1 ≤ z(t) ≤

p2 = z(t
′′
i ).

If the equation (2.1) has an eventually positive solution x(t). Without loss
of generality, x(t − τ) > 0, t ≥ t0 + τ . Let y(t) = x(t) − z(t) + p1, by the
equation (2.1), we have{

y
′′
(t) + p(t)ϕ(y(t− τ)) ≤ 0, t ≥ 0, t 6= tk,

a∗ky(tk) + c∗k ≤ y(t+k ) ≤ aky(tk) + ck, b
∗
k ≤

y
′
(t+k )+z

′
(tk)

x′ (tk)
≤ bk,

(2.2)

where c∗k = (a∗k − 1)(z(tk)− p1), ck = (ak − 1)(z(tk)− p1).
If the equation (2.1) has an eventually negative solution x(t). Without loss

of generality, x(t − τ) < 0, t ≥ t0 + τ . Let y(t) = x(t) − z(t) + p2, by the
equation (2.1), we have{

y
′′
(t) + p(t)ϕ(y(t− τ)) ≥ 0, t ≥ 0, t 6= tk,

aky(tk) + dk ≤ y(t+k ) ≤ a∗ky(tk) + d∗k, b
∗
k ≤

y
′
(t+k )+z

′
(tk)

x′ (tk)
≤ bk,

(2.3)

where d∗k = (a∗k − 1)(z(tk)− p2), dk = (ak − 1)(z(tk)− p2).

Definition 2.2. A solution of (2.1) is said to be non-oscillatory if it is even-
tually positive or eventually negative.Otherwise,this solution is said to be os-
cillatory.

Using the method of steps, one can show that the initial problem has a
solution for any τ > 0. By the same method in [9], one can get sufficient
conditions that can guarantee the solution of (2.1) exists on [t0,+∞). In the
following, we always assume the solutions of (2.1) exists on [t0,+∞).

Lemma 2.3. Assume that

(A0) m ∈ PC1[R+, R] and m(t) is left-continuous at tk, k = 1, 2, · · · ,
(A1) For k = 1, 2, · · · , t ≥ t0,

m
′
(t) ≤ p(t)m(t) + q(t), t 6= tk,

m(t+k ) ≤ dkm(tk) + bk,

where q, p ∈ PC1[R+, R], dk ≥ 0 and bk are constants. Then

m(t) ≤ m(t0)
∏

t0<tk<t
dkexp(

∫ t
t0
p(s)ds)

+
∑

t0<tk<t

( ∏
tk<tj<t

djexp(
∫ t
tk
p(s)ds)

)
bk

+
∫ t
t0

∏
s<tk<t

dkexp(
∫ t
s p(σ)dσ)q(s)ds, t ≥ t0.
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The proof of the Lemma 2.3 can be seen in [10, Theorem 1.4.1].

Lemma 2.4. If x(t) is an eventually positive solution of the equation (2.1),

there exists a constant k0, such that z
′
(tk) = 0, for k ≥ k0, and

(H1) : (t1 − t0) +
b∗1
a1

(t2 − t1) + · · ·+ b∗1b
∗
2 · · · b∗n

a1a2 · · · an
(tn+1 − tn) + · · · = +∞,

(H2) :
| c1 |
a1

+
| c2 |
a1a2

+
| c3 |
a1a2a3

+ · · ·+ | cn |
a1a2 · · · an

+ · · · < +∞,

then for the equation (2.2), y
′
(tk) > 0, y

′
(t) > 0, t ∈ (tk, tk+1], tk > T > tk0.

Proof. Without loss of generality, let x(t − τ) > 0, t ≥ t0 + τ , by y(t) =
x(t)− z(t) + p1, then

y
′′
(t) = −p(t)f(x(t), x(t− τ)) ≤ 0,

we have y
′′
(t) ≤ 0 and is not always equal to 0.

At first, we claim y
′
(tk) > 0, tk > tk0 . If it is not true, there exists a

tj ≥ tk0 , y
′
(tj) ≤ 0, so bjy

′
(tj) ≤ y

′
(t+j ) ≤ b∗jy

′
(tj) ≤ 0. By y

′′
(t) ≤ 0 and is

not always equal to 0, we have y
′
(t) < y

′
(t+j ) ≤ 0, t ∈ (tj , tj+1]. Especially,

we have y
′
(tj+1) ≤ y

′
(t) < y

′
(t+j ) ≤ 0. Let y

′
(tj+1) = −α, (α > 0), then

y
′
(t+j+1) ≤ b∗j+1y

′
(tj+1) = −b∗j+1α,

y
′
(t) ≤ −b∗j+1α, t ∈ (tj+1, tj+2]. (2.4)

Especially, we have y
′
(t+j+2) ≤ b∗j+2y

′
(tj+2) ≤ −b∗j+1b

∗
j+2α. By induction, for

t ∈ (tj+m, tj+m+1]

y
′
(t) ≤ −b∗j+1b

∗
j+2 · · · b∗j+mα. (2.5)

Especially, we have

y
′
(t+j+m+1) = b∗j+m+1y

′
(tj+m+1) ≤ −b∗j+1b

∗
j+2 · · · b∗j+mb∗j+m+1α.

Integrating the inequality (2.4), from tj+1 to tj+2, we have

y(tj+2) ≤ y(t+j+1)− b
∗
j+1α(tj+2 − tj+1).

Let

y(tj+m)
≤ aj+2aj+3 · · · aj+m−1[y(t+j+1)− b∗j+1α(tj+2 − tj+1)

−b∗j+1α
b∗j+2

aj+2
(tj+3−tj+2)−· · ·− b∗j+1α

b∗j+2···b∗j+m−1

aj+2···aj+m−1
(tj+m−tj+m−1)

+
cj+2

aj+2
+

cj+3

aj+2aj+3
+ · · ·+ cj+m−1

aj+2aj+3···aj+m−1
].

(2.6)
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Integrating the inequality (2.5), from tj+m to tj+m+1, we have

y(tj+m+1)
≤ y(t+j+m)− b∗j+1b

∗
j+2 · · · b∗j+mα(tj+m+1 − tj+m)

≤ aj+2aj+3 · · · aj+m−1aj+m[y(t+j+1)− b∗j+1α(tj+2 − tj+1)

−b∗j+1α
b∗j+2

aj+2
(tj+3 − tj+2)− · · · − b∗j+1α

b∗j+2···b∗j+m

aj+2···aj+m
(tj+m+1 − tj+m)

+
cj+2

aj+2
+

cj+3

aj+2aj+3
+ · · ·+ cj+m

aj+2aj+3···aj+m
].

(2.7)
By induction, for all m ∈ N , we have the the inequality (2.7) holds. By the
conditions (H1), (H2), when m → +∞, we have y(tj+m+1) → −∞. On the
other hand, y(t) = x(t)− z(t) + p1, when t→ +∞, x(t)→ −∞, it contradicts
x(t) > 0.

So, there exists a T ≥ tk0 , for all tk ≥ T , we have y
′
(tk) > 0, and by y

′
(t)

is monotone function, we have y
′
(t) > 0, t ≥ T . The proof of the Lemma 2.4

is completed. �

Lemma 2.5. If x(t) is an eventually positive solution of the equation (2.1),

the conditions (H1), (H2) hold, and there exists a k0, such that a∗k ≥ 1, z
′
(tk) =

0, k ≥ k0, then for the equation (2.2), y(t) > 0, tk > T > tk0.

Proof. Without loss of generality, let x(t− τ) > 0, t ≥ t0 + τ .

I) If there exists a tj ≥ t0 + τ, such that y(t+j ) ≥ 0. By the conditions

(H1), (H2) and the Lemma 2.4, we have y
′
(t) > 0, t ∈ (tj , tj+1], so

y(tj+1) > y(t+j ) ≥ 0, y(t+j+1) ≥ a
∗
j+1y(tj+1) + c∗j+1 ≥ a∗j+1y(tj+1).

By induction, there exists a T ≥ tk0 , we have y(t) > 0, for t > T.

II) If all tj ≥ tk0 , we have y(t+j ) < 0, i.e. y(tj) ≤
y(t+j )−c∗j

a∗j
< 0. By y(t) is

monotonically increasing in t ∈ (tj , tj+1],

y(t) < y(tj+1) < 0, t ∈ (tj , tj+1]. (2.8)

On the other hand, in (tk, tk+1], tk ≥ tj , we take a sequence {t′n}, then x(t
′
n) =

y(t
′
n) + z(t

′
n) − p1 = y(t

′
n) < 0, it contradicts x(t) > 0. So y(t) > 0, t ≥ T .

Summing up the above consideration, we have y(t) > 0, for t ≥ T . The proof
of the Lemma 2.5 is completed. �

Lemma 2.6. If x(t) is an eventually negative solution of the equation (2.1),

there exists an constant k0, such that z
′
(tk) = 0, for k ≥ k0, and

(H1) : (t1 − t0) +
b∗1
a1

(t2 − t1) + · · ·+ b∗1b
∗
2 · · · b∗n

a1a2 · · · an
(tn+1 − tn) + · · · = +∞,



104 C. Zhang, F. Yang and J. Yang

(H2)
′

:
| d1 |
a1

+
| d2 |
a1a2

+
| d3 |
a1a2a3

+ · · ·+ | dn |
a1a2 · · · an

+ · · · < +∞,

then for the equation (2.3), y
′
(tk) < 0, y

′
(t) < 0, t ∈ (tk, tk+1], tk > T > tk0.

Lemma 2.7. If x(t) is an eventually negative solution of the equation (2.1),

the conditions (H1), (H2)
′
hold, and there exists a k0, such that a∗k ≥ 1, z

′
(tk) =

0, k ≥ k0, then for the equation (2.3), y(t) < 0, tk > T > tk0.

Remark 2.8. If x(t) is an eventually negative solution of (2.1), by the con-

ditions (H1), (H2)
′
, the proof of the Lemma 2.6 and Lemma 2.7 are similar to

Lemma 2.4 and Lemma 2.5, so it is omitted here.

Theorem 2.9. Suppose the conditions (H1), (H2) hold, if there exists a con-

stant k0, such that a∗k ≥ 1, z
′
(tk) = 0, k ≥ k0, ϕ

′
(v) ≥ c > 0 and F (t) > 0 is

continuous on [0,∞),

(H3) : lim
t→+∞

exp

(∫ t

t1

(−cF (s))ds

)
< +∞,

(H4) : lim
t→+∞

∫ t

t1

 ∏
t1<t0,k<s

1

θ0,k
exp

(∫ t

s
(−cF (τ))dτ

)[
p(s)− cF

2(s)

4

] ds = +∞,

where

θ0,k =

{
bk, t0,k = tk;
1, t0,k = tk + τ ;

then every solution of (2.1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.1). Without loss of gener-
ality, let x(t − τ) > 0(t ≥ t0 + τ). By (2.2) and the Lemma 2.4, Lemma 2.5,
we have

y(t) > 0, y
′
(t) > 0, y

′′
(t) ≤ 0, t ≥ T ≥ tk0 ≥ t0 + τ. (2.9)

Without loss of generality, T = t0 + τ ,

u(t) =
y
′
(t)

ϕ(y(t− τ))
,

by (2.9), we have u(t) > 0, t ≥ t0 + τ, t 6= tk, t 6= tk + τ .

u
′
(t) = y

′′
(t)

ϕ(y(t−τ)) −
y
′
(t)ϕ

′
(y(t−τ))y′ (t−τ)
ϕ2(y(t−τ))

≤ −p(t)− c[u(t)]2

= −[p(t)− cF 2(t)
4 ]− [cu2(t) + cF 2(t)

4 ]

≤ −[p(t)− cF 2(t)
4 ]− cu(t)F (t),
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u(t+k ) =
y
′
(t+k )

ϕ(y(t+k − τ))
≤ bku(tk), (2.10)

u(t+k + τ) =
y
′
(t+k + τ)

ϕ(y(t+k ))
≤
y
′
(t+k + τ)

ϕ(aky(tk))
≤ y

′
(tk + τ)

ϕ(y(tk))
≤ u(tk + τ), (2.11)

so, we have{
u
′
(t) ≤ −[p(t)− cF 2(t)

4 ]− cu(t)F (t), t 6= t0,k, k = 1, 2, · · · ,
u(t+0,k) ≤ θ0,ku(t0,k).

(2.12)

where t1 = t0,1 < t0,2 = t1 + τ < · · · < t0,2m−1 = tm < t0,2m = tm + τ < · · · ,
lim

m→+∞
t0,m = +∞,

θ0,k =

{
bk, t0,k = tk;
1, t0,k = tk + τ.

By (2.12) and the Lemma 2.3, we have

u(t) ≤
∏

t1<t0,k<t
θ0,k

[
u(t+1 )exp(

∫ t
t1

(−cF (s))ds)

−
∫ t
t1

( ∏
t1<t0,k<s

1
θ0,k

exp(
∫ t
s (−cF (τ))dτ)[p(s)− cF 2(s)

4 ]

)
ds

]
.

(2.13)

when t → +∞, by the condition of the Theorem 2.9, we have u(t) → −∞,
this contradicts u(t) > 0.

If x(t− τ) < 0(t ≥ t0 + τ), similar to the above method, and the condition

(H1), (H2)
′
, (H3), (H4) hold, we can get a contradiction. So every solution of

(2.1) is oscillatory. The proof of Theorem 2.9 is completed. �

Corollary 2.10. Suppose the conditions (H1), (H2) hold, if there exists a

constant k0, such that ak ≥ 1, z
′
(tk) = 0, k ≥ k0, F (t) = 0 and

lim
t→+∞

∫ t

t0+τ

∏
t0+τ<t0,k<s

1

θ0,k
p(s)ds = +∞,

then every solution of (2.1) is oscillatory.

Theorem 2.11. Suppose the conditions (H1), (H2) hold, if there exists a con-

stant k0, such that a∗k ≥ 1, z
′
(tk) = 0, k ≥ k0, ϕ

′
(v) ≥ c > 0, ϕ(ab) = ϕ(a)ϕ(b)

and F (t) > 0 is continuous on [0,∞),

(H3)
′

: lim
t→+∞

exp

(∫ t

t1

(−cF (s))ds

)
< +∞,
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(H4)
′

: lim
t→+∞

∫ t

t1

 ∏
t1<t0,k<s

1

ω0,k
exp

(∫ t

s
(−cF (τ))dτ

)[
p(s)− cF

2(s)

4

] ds = +∞,

where

ω0,k =

{
bk, t0,k = tk;

1
ϕ(ak)

, t0,k = tk + τ ;

then every solution of (2.1) is oscillatory.

Proof. Similar to the proof of the Theorem 2.9, let y(t) = x(t) − z(t) + p1,

u(t) = y
′
(t)

ϕ(y(t−τ)) , we also obtain u(t) > 0, t ≥ tk0 . So, we have{
u
′
(t) ≤ −[p(t)− cF 2(t)

4 ]− cu(t)F (t), t 6= t0,k, k = 1, 2, · · · ,
u(t+0,k) ≤ ω0,ku(t0,k),

(2.14)

where t1 = t0,1 < t0,2 = t1 + τ < · · · < t0,2m−1 = tm < t0,2m = tm + τ < · · · ,
lim

m→+∞
t0,m = +∞,

ω0,k =

{
bk, t0,k = tk;

1
ϕ(ak)

, t0,k = tk + τ.

By (2.14) and the Lemma 2.3, we have

u(t) ≤
∏

t1<t0,k<t
ω0,k

[
u(t+1 )exp(

∫ t
t1

(−cF (s))ds)

−
∫ t
t1

( ∏
t1<t0,k<s

1
ω0,k

exp(
∫ t
s (−cF (τ))dτ)[p(s)− cF 2(s)

4 ]

)
ds

]
,

(2.15)

when t → +∞, by the condition of the Theorem 2.11, we have u(t) → −∞,
this contradicts u(t) > 0.

If x(t− τ) < 0(t ≥ t0 + τ), similar to the above method, and the condition

(H1), (H2)
′
, (H3)

′
, (H4)

′
hold, we can get a contradiction. So every solution of

(2.1) is oscillatory. The proof of Theorem 2.11 is completed. �

Corollary 2.12. Suppose the conditions (H1), (H2) hold, if there exists a

constant k0, such that ak ≥ 1, z
′
(tk) = 0, k ≥ k0, F (t) = 0 and

lim
t→+∞

∫ t

t0+τ

∏
t0+τ<t0,k<s

1

ω0,k
p(s)ds = +∞,

then every solution of (2.1) is oscillatory.
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3. Example

Example 3.1. Consider{
x
′′
(t) + t2(1 + x2(t))x(t− 1) = sin t, t > 0, t 6= kπ, k = 1, 2, · · · ,

x((kπ + π
2 )+) = k+1

k x(kπ + π
2 ), x

′
((kπ + π

2 )+) = k+1
k x

′
(kπ + π

2 ).
(3.1)

In fact, p(t) = t2, q(t) = sin t, a∗k = ak = k+1
k ≥ 1, b∗k = bk = k+1

k , t0 = π
2 , τ =

1, f(x(t), x(t−1)) = (1+x2(t))x(t−1), ϕ(x(t−1)) = x(t−1), ϕ
′
(x(t−1)) = 1 =

c, tk = kπ + π
2 , tk+1 − tk = π > 1. Let F (t) = 1

t , z(t) = − sin t, z
′
(kπ + π

2 ) =

− cos(kπ + π
2 ) = 0, p1 = −1, p2 = 1, ck = (k+1

k − 1)(0 − (−1)) = 1
k , dk =

(k+1
k − 1)(0− 1) = − 1

k ,

(t1 − t0) +
b∗1
a1

(t2 − t1) + · · ·+ b∗1b
∗
2···b∗n

a1a2···an (tn+1 − tn) + · · ·
= π + π + · · ·+ π + · · · = +∞,

|c1|
a1

+ |c2|
a1a2

+ |c3|
a1a2a3

+ · · ·+ |cn|
a1a2···an + · · ·

= 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

n·(n+1) = 1− 1
n+1 < +∞,

|d1|
a1

+ |d2|
a1a2

+ |d3|
a1a2a3

+ · · ·+ |dn|
a1a2···an + · · ·

= 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

n·(n+1) = 1− 1
n+1 < +∞.

So the condition (H1), (H2), (H2)
′

hold. For the condition (H3), (H4) we have

lim
t→+∞

exp

(∫ t

t1

−1

s
ds

)
= lim

t→+∞

t1
t

= 0,

∫ t
t1

∏
t1<t0,k<s

1
θ0,k

s
t (s

2 − 1
4s2

)ds = 1
t

∫ t
t1

∏
t1<t0,k<s

1
θ0,k

(s3 − 1
4s)ds

≥ 1
t

∫ t
t1

∏
t1<t0,k<s

1
θ0,k

s2ds ≥ 1
t

∫ t
t1
sds = 1

2(t− t21
t )→ +∞, (t→ +∞).

Therefore, the conditions of Theorem 2.9 hold. So every solution of (3.1) is
oscillatory.
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