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Abstract. In this paper, we utilize the notions of compatibility and subsequentially continu-

ity (alternately subcompatibility and reciprocally continuity) and prove common fixed point

theorems in Menger spaces satisfying implicit relation. Some illustrative examples are also

given which demonstrate the validity of our main results. We also present an integral-type

common fixed point theorem for four mappings in Menger space.

1. Introduction

Professor Karl Menger [25] introduced the notion of a probabilistic metric
space (briefly, PM-space) in 1942. The idea of Menger was to use distribution
functions instead of non-negative real numbers as values of the metric. The
notion of PM-space corresponds to situations when we do not know exactly
the distance between two points, but we know probabilities of possible values
of this distance. In fact the study such spaces received an impetus with the
pioneering work of Schweizer and Sklar [36]. Fixed point theory is one of the
most fruitful and effective tools in mathematics which has many applications
within as well as outside mathematics (see [6, 11, 13]).
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In 1986, Jungck [16] introduced the notion of compatible mappings for a
pair of self mappings in metric space. Most of the common fixed point the-
orems for contraction mappings invariably require a compatibility condition
besides assuming continuity of at least one of the mappings. Pant [28] no-
ticed these criteria for fixed points of contraction mappings and introduced
a new continuity condition, known as reciprocal continuity and obtained a
common fixed point theorem by using the compatibility in metric spaces. He
also showed that in the setting of common fixed point theorems for compatible
mappings satisfying contraction conditions, the notion of reciprocal continuity
is weaker than the continuity of one of the mappings. Further, Jungck and
Rhoades [17] termed a pair of self mappings to be coincidentally commuting or
equivalently weakly compatible if they commute at their coincidence points.
In 2008, Al-Thagafi and Shahzad [1] introduced the concept of occasionally
weakly compatible mappings in metric spaces which is the most general among
all the commutativity concepts. Recently, D̄oric et al. [12] showed that the
condition of occasionally weak compatibility reduces to weak compatibility in
the presence of a unique point of coincidence (or a unique common fixed point)
of the given pair of self mappings. Thus, no generalization can be obtained by
replacing weak compatibility with occasionally weakly compatibility. There-
after, Bouhadjera and Godet-Thobie [3] introduced two new notions namely
subsequential continuity and subcompatibility which are weaker than recip-
rocal continuity and compatibility respectively. Imdad et al. [14] improved
the results of Bouhadjera and Godet-Thobie [3] and showed that these re-
sults can easily recovered by replacing subcompatibility with compatibility or
subsequential continuity with reciprocally continuity. Several interesting and
elegant results have been obtained by various authors on various spaces (see
[4, 8, 15, 19, 27, 38]).

In metric fixed point theory, implicit relations are utilized to cover several
contraction conditions in one go rather than proving separate theorem for each
contraction condition. In 1999, Popa [35] used implicit relations rather than
contraction conditions to prove fixed point theorems in metric spaces whose
strength lies in its unifying power as an implicit function can cover several
contraction conditions at the same time. This fact is evident from examples
furnished in Popa [35]. Many researchers proved a number of fixed point
theorems in different settings employing implicit relations (see [2, 7, 9, 10, 14],
[20]-[24], [29]-[34]).

The purpose of this paper is to prove common fixed point theorems using the
notions of compatibility and subsequentially continuity (alternately subcom-
patibility and reciprocally continuity) satisfying implicit relation in Menger
spaces. Our results never require the conditions on completeness (or closed-
ness) of the underlying space (or subspaces) and continuity in respect of any
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one of the involved mappings. The results of this paper are generalizations
and refinement of several results recently appeared in the literature. Inspired
by the work of Branciari [5], we present an integral-type fixed point theorem
in Menger space.

2. Preliminaries

Definition 2.1. ([36]) A mapping 4 : [0, 1] × [0, 1] → [0, 1] is called a tri-
angular norm (briefly, t-norm) if the following conditions are satisfied: for all
a, b, c, d ∈ [0, 1]

(1) 4(a, 1) = a for all a ∈ [0, 1],
(2) 4(a, b) = 4(b, a),
(3) 4(a, b) ≤ 4(c, d) for a ≤ c, b ≤ d,
(4) 4(4(a, b), c) = 4(a,4(b, c)).

Examples of continuous t-norms are 4(a, b) = ab and 4(a, b) = min{a, b}.

Definition 2.2. ([36]) A mapping F : R → R+ is called a distribution
function if it is non-decreasing and left continuous with inft∈R F (t) = 0 and
supt∈R F (t) = 1.

We denote by = the set of all distribution functions while H always denotes
the specific distribution function defined by

H(t) =

{
0, if t ≤ 0;
1, if t > 0.

If X is a non-empty set, F : X ×X → = is called a probabilistic distance
on X and the value of F at (x, y) ∈ X ×X is represented by Fx,y.

Definition 2.3. ([36]) The ordered pair (X,F) is called a PM-space if X
is a nonempty set and F is a probabilistic distance satisfying the following
conditions: for all x, y, z ∈ X and t, s > 0

(1) Fx,y(t) = H(t)⇔ x = y,
(2) Fx,y(t) = Fy,x(t),
(3) if Fx,y(t) = 1 and Fy,z(s) = 1 then Fx,z(t+ s) = 1.

Definition 2.4. ([36]) A Menger space is a triplet (X,F ,4) where (X,F) is
a PM-space and t-norm 4 is such that the inequality

Fx,z(t+ s) ≥ 4 (Fx,y(t), Fy,z(s)) ,

holds for all x, y, z ∈ X and all t, s > 0.

Every metric space (X, d) can be realized as a PM-space by taking F :
X ×X → = defined by Fx,y(t) = H(t− d(x, y)) for all x, y ∈ X.
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Definition 2.5. ([26]) A pair (A,S) of self mappings defined on a Menger
space (X,F ,4) is said to be compatible if and only if FASxn,SAxn(t)→ 1 for
all t > 0, whenever {xn} is a sequence in X such that Axn, Sxn → z for some
z ∈ X as n→∞.

Definition 2.6. ([37]) A pair (A,S) of self mappings defined on a non-empty
set X is said to be weakly compatible (or coincidentally commuting) if they
commute at their coincidence points, that is, if Az = Sz some z ∈ X, then
ASz = SAz.

Remark 2.7. Two compatible self mappings are weakly compatible, however
the converse is not true in general (see [37, Example 1]).

Definition 2.8. ([18]) A pair (A,S) of self mappings defined on a non-empty
set X is occasionally weakly compatible iff there is a point x ∈ X which is a
coincidence point of A and S at which A and S commute.

The following definition is on the lines of Bouhadjera and Godet-Thobie [3].

Definition 2.9. A pair (A,S) of self mappings defined on a Menger space
(X,F ,4) is said to be subcompatible iff there exists a sequence {xn} such
that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X and lim
n→∞

FASxn,SAxn(t) = 1, for all t > 0.

Remark 2.10. Two occasionally weakly compatible mappings are subcom-
patible, however the converse is not true in general (see [4, Example 1.2]).

Definition 2.11. ([23]) A pair (A,S) of self mappings defined on a Menger
space (X,F ,4) is said to be reciprocally continuous if for a sequence {xn} in
X, lim

n→∞
ASxn = Az and lim

n→∞
SAxn = Sz, whenever

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X.

Remark 2.12. ([28]) If two self mappings are continuous, then they are ob-
viously reciprocally continuous but converse is not true. Moreover, in the
setting of common fixed point theorems for compatible pair of self mappings
satisfying contractive conditions, continuity of one of the mappings implies
their reciprocal continuity but not conversely.
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The notion of subsequentially continuous mappings in Menger spaces is as
follows:

Definition 2.13. A pair (A,S) of self mappings defined on a Menger space
(X,F ,4) is called subsequentially continuous iff there exists a sequence {xn}
in X such that,

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X and lim
n→∞

ASxn = Az and limn→∞ SAxn = Sz.

Remark 2.14. If two self mappings are continuous or reciprocally continu-
ous, then they are naturally subsequentially continuous. However, there exist
subsequentially continuous pair of maps which are neither continuous nor re-
ciprocally continuous (see [4, Example 1.4]).

3. Implicit Relation

In 2008, Imdad and Ali [14] used the following implicit relations for the
existence of a common fixed point due to Popa [35].

Let Ψ denote the family of all continuous functions ϕ : [0, 1]4 → R satisfying
the following conditions:

(ϕ-1) For every u > 0, v ≥ 0 with ϕ(u, v, u, v) ≥ 0 or ϕ(u, v, v, u) ≥ 0 we
have u > v.

(ϕ-2) ϕ(u, u, 1, 1) < 0 for all u > 0.

Example 3.1. Define ϕ : [0, 1]4 → R as ϕ(t1, t2, t3, t4) = t1−φ (min{t2, t3, t4}),
where φ : [0, 1] → [0, 1] is a continuous function such that φ(s) > s for
0 < s < 1.

Example 3.2. Define ϕ : [0, 1]4 → R as ϕ(t1, t2, t3, t4) = t1−kmin{t2, t3, t4},
where k > 1.

Example 3.3. Define ϕ : [0, 1]4 → R as ϕ(t1, t2, t3, t4) = t1−kt2−min{t3, t4},
where k > 0.

Example 3.4. Define ϕ : [0, 1]4 → R as ϕ(t1, t2, t3, t4) = t1 − at2 − bt3 − ct4,
where a > 1 and b, c ≥ 0 (b, c 6= 1).

Example 3.5. Define ϕ : [0, 1]4 → R as ϕ(t1, t2, t3, t4) = t1− at2− b(t3 + t4),
where a > 1 and 0 ≤ b < 1.
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Example 3.6. Define ϕ : [0, 1]4 → R as ϕ(t1, t2, t3, t4) = t31 − kt2t3t4, where
k > 1.

4. Main Results

Theorem 4.1. Let P1, P2, . . . , P2n, A and B be self mappings of a Menger
space (X,F ,4), where4 is a continuous t-norm. If the pairs (A,P1P3 . . . P2n−1)
and (B,P2P4 . . . P2n) are compatible and subsequentially continuous, then

(1) the pair (A,P1P3 . . . P2n−1) has a coincidence point,
(2) the pair (B,P2P4 . . . P2n) has a coincidence point,
(3) there exists ϕ ∈ Ψ such that

ϕ

(
FAx,By(t), FP1P3...P2n−1x,P2P4...P2ny(t),
FAx,P1P3...P2n−1x(t), FBy,P2P4...P2ny(t)

)
≥ 0, (4.1)

holds for all x, y ∈ X and t > 0,
(4) suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,
...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,
A(P3 . . . P2n−1) = (P3 . . . P2n−1)A,
A(P5 . . . P2n−1) = (P5 . . . P2n−1)A,
...
AP2n−1 = P2n−1A,
similarly,
P2(P4 . . . P2n) = (P4 . . . P2n)P2,
P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,
...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,
B(P4 . . . P2n) = (P4 . . . P2n)B,
B(P6 . . . P2n) = (P6 . . . P2n)B,
...
BP2n = P2nB.

Then P1, P2, . . . , P2n, A and B have a unique common fixed point in X.

Proof. Since the pair (A,P1P3 . . . P2n−1) (also (B,P2P4 . . . P2n)) is subsequen-
tially continuous and compatible mappings, therefore there exists a sequence
{xn} in X such that

lim
n→∞

Axn = lim
n→∞

P1P3 . . . P2n−1xn = z,
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for some z ∈ X, and

lim
n→∞

FAP1P3...P2n−1xn,P1P3...P2n−1Axn(t) = FAz,P1P3...P2n−1z(t) = 1,

for all t > 0 then Az = P1P3 . . . P2n−1z, whereas in respect of the pair
(B,P2P4 . . . P2n), there exists a sequence {yn} in X such that

lim
n→∞

Byn = lim
n→∞

P2P4 . . . P2nyn = w,

for some w ∈ X, and

lim
n→∞

FBP2P4...P2nyn,P2P4...P2nByn(t) = FBw,P2P4...P2nw(t) = 1,

for all t > 0 then Bw = P2P4 . . . P2nw. Hence z is a coincidence point
of the pair (A,P1P3 . . . P2n−1) whereas w is a coincidence point of the pair
(B,P2P4 . . . P2n).

Now we assert that z = w. By putting x = xn and y = yn in inequality
(4.1), we have

ϕ

(
FAxn,Byn(t), FP1P3...P2n−1xn,P2P4...P2nyn(t),
FAxn,P1P3...P2n−1xn(t), FByn,P2P4...P2nyn(t)

)
≥ 0.

Taking the limit as n→∞, we get

ϕ (Fz,w(t), Fz,w(t), Fz,z(t), Fw,w(t)) ≥ 0,

and so

ϕ (Fz,w(t), Fz,w(t), 1, 1) ≥ 0,

which contradicts (ϕ-2). Hence z = w. Now we show that Az = z then by
putting x = z and y = yn in inequality (4.1), we get

ϕ

(
FAz,Byn(t), FP1P3...P2n−1z,P2P4...P2nyn(t),
FAz,P1P3...P2n−1z(t), FByn,P2P4...P2nyn(t)

)
≥ 0.

Taking the limit as n→∞, we have

ϕ
(
FAz,z(t), FP1P3...P2n−1z,w(t), FAz,P1P3...P2n−1z(t), Fw,w(t)

)
≥ 0,

and so

ϕ (FAz,z(t), FAz,z(t), FAz,Az(t), Fz,z(t)) ≥ 0,

or, equivalently,

ϕ (FAz,z(t), FAz,z(t), 1, 1) ≥ 0,

which contradicts (ϕ-2). Hence Az = z. Therefore, Az = P1P3 . . . P2n−1z = z.
Now we assert that Bz = z, then by putting x = xn and y = z in inequality
(4.1), we have

ϕ

(
FAxn,Bz(t), FP1P3...P2n−1xn,P2P4...P2nz(t),
FAxn,P1P3...P2n−1xn(t), FBz,P2P4...P2nz(t)

)
≥ 0.
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Taking the limit as n→∞, we get

ϕ (Fz,Bz(t), Fz,P2P4...P2nz(t), Fz,z(t), FBz,P2P4...P2nz(t)) ≥ 0,

and so

ϕ (Fz,Bz(t), Fz,Bz(t), Fz,z(t), FBz,Bz(t)) ≥ 0,

or, equivalently,

ϕ (Fz,Bz(t), Fz,Bz(t), 1, 1) ≥ 0,

which contradicts (ϕ-2). Hence Bz = z. Therefore, Bz = P2P4 . . . P2nz =
z. Now we prove that z is the common fixed point of all the component
mappings. By putting x = P3 . . . P2n−1z, y = z, P

′
1 = P1P3 . . . P2n−1 and

P
′
2 = P2P4 . . . P2n in inequality (4.1), we get

ϕ

(
FAP3...P2n−1z,Bz(t), FP ′1P3...P2n−1z,P2P4...P2nz

(t),

F
AP3...P2n−1z,P

′
1P3...P2n−1z

(t), FBz,P2P4...P2nz(t)

)
≥ 0,

and so

ϕ

(
FP3...P2n−1z,z(t), FP3...P2n−1z,z(t),
FP3...P2n−1z,P3...P2n−1z(t), Fz,z(t)

)
≥ 0.

It implies,

ϕ
(
FP3...P2n−1z,z(t), FP3...P2n−1z,z(t), 1, 1

)
≥ 0,

which contradicts (ϕ-2). Hence FP3...P2n−1z,z(t) = 1. Thus (P3 . . . P2n−1)z = z.
That is P1z = P1(P3 . . . P2n−1z) = z. Continuing this procedure, we get
Az = P1z = P3z = . . . = P2n−1z = z. In the same manner, taking x =
z, y = P4 . . . P2nz, P

′
1 = P1P3 . . . P2n−1 and P

′
2 = P2P4 . . . P2n in inequality

(4.1), we get z = P4 . . . P2nz. Hence, P2z = z. Continuing this procedure, we
get Bz = P2z = P4z = . . . = P2nz = z. That is z is the common fixed point
of P1, P2, . . . , P2n, A and B.

The uniqueness of common fixed point is an easy consequence of inequality
(4.1). �

Theorem 4.2. Let P1, P2, . . . , P2n, A and B be self mappings of a Menger
space (X,F ,4), where4 is a continuous t-norm. If the pairs (A,P1P3. . .P2n−1)
and (B,P2P4 . . . P2n) are subcompatible and reciprocally continuous, then

(1) the pair (A,P1P3 . . . P2n−1) has a coincidence point,
(2) the pair (B,P2P4 . . . P2n) has a coincidence point,
(3) further, the mappings P1, P2, . . . , P2n, A and B have a unique common

fixed point in X provided the involved mappings satisfy the inequality
(4.1) and condition (4) of Theorem 4.1.
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Proof. Since the pair (A,P1P3 . . . P2n−1) (also (B,P2P4 . . . P2n)) is subcom-
patible and reciprocally continuous, therefore there exists a sequences {xn} in
X such that

lim
n→∞

Axn = lim
n→∞

P1P3 . . . P2n−1xn = z,

for some z ∈ X, and

lim
n→∞

FAP1P3...P2n−1xn,P1P3...P2n−1Axn(t) = lim
n→∞

FAz,P1P3...P2n−1z(t) = 1,

for all t > 0, whereas in respect of the pair (B, T ), there exists a sequence
{yn} in X with

lim
n→∞

Byn = lim
n→∞

P2P4 . . . P2nyn = w,

for some w ∈ X, and

lim
n→∞

FBP2P4...P2nyn,P2P4...P2nByn(t) = lim
n→∞

FBz,P2P4...P2nz(t) = 1,

for all t > 0. Therefore, Az = P1P3 . . . P2n−1z and Bw = P2P4 . . . P2nw i.e. z
is a coincidence point of the pair (A,P1P3 . . . P2n−1) whereas w is a coincidence
point of the pair (B,P2P4 . . . P2n). The rest of the proof can be completed from
the proof of Theorem 4.1. �

Remark 4.3. Notice that the conclusion of Theorem 4.1 remains valid if we
replace compatibility with subcompatibility and subsequential continuity with
reciprocally continuity, besides retaining the rest of the hypothesis (see [14]).

The following theorem is a slight generalization of Theorem 4.1.

Theorem 4.4. Let {Tα}α∈J and {Pi}2ni=1 be two families of self mappings
of a Menger space (X,F ,4), where 4 is a continuous t-norm. Suppose
that there exists a fixed β ∈ J such that the pairs (Tα, P1P3 . . . P2n−1) and
(Tβ, P2P4 . . . P2n) are compatible and subsequentially continuous (alternately
subcompatible and reciprocally continuous), then

(1) the pair (Tα, P1P3 . . . P2n−1) has a coincidence point,
(2) the pair (Tβ, P2P4 . . . P2n) has a coincidence point,
(3) there exists ϕ ∈ Ψ such that

ϕ

(
FTαx,Tβy(t), FP1P3...P2n−1x,P2P4...P2ny(t),
FTαx,P1P3...P2n−1x(t), FTβy,P2P4...P2ny(t)

)
≥ 0, (4.2)

holds for all x, y ∈ X and t > 0,
(4) suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,
...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,
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Tα(P3 . . . P2n−1) = (P3 . . . P2n−1)Tα,
Tα(P5 . . . P2n−1) = (P5 . . . P2n−1)Tα,
...
TαP2n−1 = P2n−1Tα,
similarly,
P2(P4 . . . P2n) = (P4 . . . P2n)P2,
P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,
...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,
Tβ(P4 . . . P2n) = (P4 . . . P2n)Tβ,
Tβ(P6 . . . P2n) = (P6 . . . P2n)Tβ,
...
TβP2n = P2nTβ.

Then all {Pi} and {Tα} have a unique common fixed point in X.

Proof. Let Tα0 be a fixed element in {Tα}α∈J . By Theorem 4.1 with A = Tα0

and B = Tβ it follows that there exists some z ∈ X such that

Tβz = Tα0z = P1P3 . . . P2n−1z = P2P4 . . . P2nz = z.

Let α ∈ J be arbitrary. Then applying inequality (4.2), we obtain

ϕ

(
FTαz,Tβz(t), FP1P3...P2n−1z,P2P4...P2nz(t),
FTαz,P1P3...P2n−1z(t), FTβz,P2P4...P2nz(t)

)
≥ 0,

and so

ϕ (FTαz,z(t), Fz,z(t), FTαz,z(t), Fz,z(t)) ≥ 0,

or, equivalently,

ϕ (FTαz,z(t), 1, FTαz,z(t), 1) ≥ 0,

yielding thereby, FTαz,z(t) > 1, a contradiction. Hence FTαz,z(t) = 1. Thus,
Tαz = z for each α ∈ J . Since inequality (4.2) implies the uniqueness of the
common fixed point, Theorem 4.4 is proved. �

Corollary 4.5. Let A,B, S and T be self mappings of a Menger space (X,F ,
4), where4 is a continuous t-norm. If the pairs (A,S) and (B, T ) are compat-
ible and subsequentially continuous (alternately subcompatible and reciprocally
continuous), then

(1) the pair (A,S) has a coincidence point,
(2) the pair (B, T ) has a coincidence point,
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(3) there exists ϕ ∈ Ψ such that

ϕ (FAx,By(t), FSx,Ty(t), FAx,Sx(t), FBy,Ty(t)) ≥ 0 (4.3)

holds for all x, y ∈ X and t > 0.

Then A,B, S and T have a unique common fixed point in X.

Proof. By setting P1P3 . . . P2n−1 = S and P2P4 . . . P2n = T in Theorem 4.1,
the proof easily follows. �

Alternately, by setting S = T in Corollary 4.5, we can also derive yet
another corollary for three mappings which runs as follows.

Corollary 4.6. Let A,B and S be self mappings of a Menger space (X,F ,4),
where 4 is a continuous t-norm. If the pairs (A,S) and (B,S) are compati-
ble and subsequentially continuous (alternately subcompatible and reciprocally
continuous), then

(1) the pair (A,S) has a coincidence point,
(2) the pair (B,S) has a coincidence point,
(3) there exists ϕ ∈ Ψ such that

ϕ (FAx,By(t), FSx,Sy(t), FAx,Sx(t), FBy,Sy(t)) ≥ 0, (4.4)

holds for all x, y ∈ X and t > 0.

Then A,B and S have a unique common fixed point in X.

On taking A = B and S = T in Corollary 4.5 then we get the interesting
result.

Corollary 4.7. Let A and S be self mappings of a Menger space (X,F ,4),
where 4 is a continuous t-norm. If the pair (A,S) is compatible and subse-
quentially continuous (alternately subcompatible and reciprocally continuous),
then

(1) the pair (A,S) has a coincidence point,
(2) there exists ϕ ∈ Ψ such that

ϕ (FAx,Ay(t), FSx,Sy(t), FAx,Sx(t), FAy,Sy(t)) ≥ 0, (4.5)

holds for all x, y ∈ X and t > 0.

Then A and S have a unique common fixed point in X.

Remark 4.8. The conclusions of Theorem 4.1, Theorem 4.4, Corollary 4.5,
Corollary 4.6, Corollary 4.7 remain true if the corresponding inequalities are
replaced in such a manner as defined in Example 3.1-3.6.

Example 4.9. Let X = [0,∞) and d be the usual metric on X and for each
t ∈ [0, 1] define
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Fx,y(t) =

{ t
t+|x−y| , if t > 0;

0, if t = 0,

for all x, y ∈ X. Clearly (X,F ,4) be a Menger space. Let A and S be self
mappings on X defined as

A(X) =

{
x
4 , if x ∈ [0, 1];
5x− 4, if x ∈ (1,∞),

S(X) =

{
x
5 , if x ∈ [0, 1];
4x− 3, if x ∈ (1,∞).

Consider a sequence {xn} =
{

1
n

}
n∈N in X. Then

lim
n→∞

A(xn) = lim
n→∞

(
1

4n

)
= 0 = lim

n→∞

(
1

5n

)
= lim

n→∞
S(xn).

Next,

lim
n→∞

AS(xn) = lim
n→∞

A

(
1

5n

)
= lim

n→∞

(
1

20n

)
= 0 = A(0),

lim
n→∞

SA(xn) = lim
n→∞

S

(
1

4n

)
= lim

n→∞

(
1

20n

)
= 0 = S(0),

and
lim
n→∞

FASxn,SAxn(t) = 1,

for all t > 0. Consider another sequence {xn} =
{

1 + 1
n

}
n∈N in X. Then

lim
n→∞

A(xn) = lim
n→∞

(
5 +

5

n
− 4

)
= 1 = lim

n→∞

(
4 +

4

n
− 3

)
= lim

n→∞
S(xn).

Also,

lim
n→∞

AS(xn) = lim
n→∞

A

(
1 +

4

n

)
= lim

n→∞

(
5 +

20

n
− 4

)
= 1 6= A(1),

lim
n→∞

SA(xn) = lim
n→∞

S

(
1 +

5

n

)
= lim

n→∞

(
4 +

20

n
− 3

)
= 1 6= S(1),

but lim
n→∞

FASxn,SAxn(t) = 1. Thus, the pair (A,S) is compatible as well as

subsequentially continuous but not reciprocally continuous. Further, we can
easily verify inequality (4.5) by defining ϕ as in Example 3.1 and choosing
φ(t) =

√
t for all t ∈ (0, 1). Therefore all the conditions of Corollary 4.7 are

satisfied. Here, 0 is a coincidence as well as unique common fixed point of
the pair (A,S). It is noted that this example cannot be covered by those fixed
point theorems which involve compatibility and reciprocal continuity both or
by involving conditions on completeness (or closedness) of underlying space
(or subspaces). Also, in this example neither X is complete nor any subspace
A(X) =

[
0, 14
]
∪ (1,∞) and S(X) =

[
0, 15
]
∪ (1,∞) are closed. It is noted that

this example cannot be covered by those fixed point theorems which involve
compatibility and reciprocal continuity both (e.g. [20, 22, 23, 28]).
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Example 4.10. Let X = R (set of real numbers) and d be the usual metric
on X and for each t ∈ [0, 1] define

Fx,y(t) =

{ t
t+|x−y| , if t > 0;

0, if t = 0,

for all x, y ∈ X. Clearly (X,F ,4) be a Menger space. Let A and S be self
mappings on X defined as

A(X) =

{
x
4 , if x ∈ (−∞, 1);
5x− 4, if x ∈ [1,∞),

S(X) =

{
x+ 3, if x ∈ (−∞, 1);
4x− 3, if x ∈ [1,∞).

Consider a sequence {xn} =
{

1 + 1
n

}
n∈N in X. Then

lim
n→∞

A(xn) = lim
n→∞

(
5 +

5

n
− 4

)
= 1 = lim

n→∞

(
4 +

4

n
− 3

)
= lim

n→∞
S(xn).

Also,

lim
n→∞

AS(xn) = lim
n→∞

A

(
1 +

4

n

)
= lim

n→∞

(
5 +

20

n
− 4

)
= 1 = A(1),

lim
n→∞

SA(xn) = lim
n→∞

S

(
1 +

5

n

)
= lim

n→∞

(
4 +

20

n
− 3

)
= 1 = S(1),

and

lim
n→∞

FASxn,SAxn(t) = 1,

for all t > 0. Consider another sequence {xn} =
{

1
n − 4

}
n∈N in X. Then

lim
n→∞

A(xn) = lim
n→∞

(
1

4n
− 1

)
= −1 = lim

n→∞

(
1

n
− 4 + 3

)
= lim

n→∞
S(xn).

Next,

lim
n→∞

AS(xn) = lim
n→∞

A

(
1

n
− 1

)
= lim

n→∞

(
1

4n
− 1

4

)
= −1

4
= A(−1),

lim
n→∞

SA(xn) = lim
n→∞

S

(
1

4n
− 1

)
= lim

n→∞

(
1

4n
− 1 + 3

)
= 2 = S(−1),

and lim
n→∞

FASxn,SAxn(t) 6= 1. Thus, the pair (A,S) is reciprocally continuous

as well as subcompatible but not compatible. Further, we can easily verify
inequality (4.5) by defining ϕ as in Example 3.1 and choosing φ(t) =

√
t for

all t ∈ (0, 1). Therefore all the conditions of Corollary 4.7 are satisfied. Thus
1 is a coincidence as well as unique common fixed point of the pair (A,S). It is
also noted that this example too cannot be covered by those fixed point theorems
which involve compatibility and reciprocal continuity both (e.g. [20, 22, 23, 28]).
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5. Corresponding results in integral analogue

In this section, we present an integral-type fixed point theorem in the fol-
lowing form:

Corollary 5.1. Let A,B, S and T be self mappings of a Menger space (X,F ,
4), where 4 is a continuous t-norm. Assume that there exist a Lebesgue
integrable function φ : R→ R and a function ϕ ∈ Ψ such that∫ ϕ(u,1,u,1)

0
φ(s)ds ≥ 0,

∫ ϕ(u,1,1,u)

0
φ(s)ds ≥ 0,

∫ ϕ(u,u,1,1)

0
φ(s)ds ≥ 0, (5.1)

implies u = 1. Suppose that the pairs (A,S) and (B, T ) are compatible and
subsequentially continuous (alternately subcompatible and reciprocally contin-
uous). If ∫ ϕ(FAx,By(t),FSx,Ty(t),FAx,Sx(t),FBy,Ty(t))

0
φ(s)ds ≥ 0, (5.2)

holds for all x, y ∈ X and t > 0, then the pairs (A,S) and (B, T ) have a
coincidence point each and a unique common fixed point in X.

Proof. The proof easily follows from Corollary 4.5. But due to paucity of the
space, we did not include the entire details of proof. �

Remark 5.2. The results similar to Corollary 5.1 can be outlined in respect
of Theorem 4.1, Theorem 4.2, Corollary 4.6 and Corollary 4.7 (also in view of
Examples 3.1-3.6) which generalize the well known integral-type fixed point
theorems contained in [5].

Acknowledgement. The first author is thankful to Professor Yeol Je Cho
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