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Abstract. Fixed point theory is the center of focus for many mathematicians from last few

decades. A lot of generalizations of the Banach contraction principle have been established.

In this paper, we introduce the concepts of θ-contraction and θ-ϕ-contraction in quasi-metric

spaces to study the existence of the fixed point for them.

1. Introduction

The problem of the existence of the solution of many mathematical models
is equivalent to the existence of a fixed point problem for a certain map. The
study of fixed points, therefore, has a central role in many disciplines of applied
sciences. The most essential and key part of the theory of fixed points is the
existence of the solution of operator equations satisfying certain conditions, for
example, Fredholm integral equations, Voltera integral equations, two point
boundary value problems in differential equations as well as some eigenvalue
problems [2, 6, 7]. A beautiful blend of analysis, topology and geometry has
laid down the foundation of the theory of fixed points.
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The most celebrated result of the theory of metric fixed points is the Banach
contraction principle [1]. Due to its importance, several authors have obtained
many interesting extensions and generalizations [3, 8, 10, 11, 16, 19, 22, 27, 28].

In 1931, for the first time, quasi-metric spaces were introduced by Wilson
[25], in such a way that without the requirement that the (asymmetric) metric
d has to satisfy d(x, y) = d(y, x). As such, any metric space is a quasi-metric
space but the converse is not true.

Quasi-metric spaces have numerous recent applications both in pure and ap-
plied mathematics, for example, in rate-independent models for plasticity [12],
shape-memory alloys [13], models for material failure [17] and the questions
of existence and uniqueness of Hamilton-Jacobi equations [14].

Various fixed point results were established on such spaces, see [4, 15, 20, 21,
23, 24, 26] and references therein. In quasi-metric spaces some notions such as
convergence, compactness and completeness are different from these in metric
space case. Collins and Zimer [5] discussed these notions in a quasi-metric
space.

Recently, Samet et al. [9] introduced a new concept of θ-contraction and
established some fixed point results for such mappings in complete generalized
metric spaces and generalize the results of Banach in such spaces.

Very recently, Zheng et al. [29] introduced a new concept of θ-φ-contraction
and established some fixed point results for such mappings in complete metric
spaces and generalized the results of Brower and Kannan.

In this paper, aspired by the notion of Samet et al. [9] and the notion
introduced by Zheng et al. [29], we present a new notion of generalized θ-
contraction and θ-φ-contraction and establish various fixed point theorems for
such mappings in complete quasi-metric spaces. The results presented in the
paper improve and extend the corresponding results of Kannan [10] and Reich
[16].

2. Preliminaries

Definition 2.1. ([18]) Let X be a nonempty set and d : X ×X → R+ be a
function such that for all x, y, z ∈ X,

(i) d(x, y) = d(y, x) = 0 if and only if x = y;
(ii) d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality).

Then (X, d) is called a quasi-metric space.

Definition 2.2. ([5]) Let (X, d) be a quasi-metric space and {xn}n∈N be a
sequence in X and x ∈ X.
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(i) The sequence {xn}n∈N is forward (resp. backward) convergent to x if

lim
n→+∞

d (x, xn) = 0 (resp. lim
n→+∞

d (xn, x) = 0).

(ii) The sequence {xn}n∈N is forward-Cauchy if for every ε > 0 there
exists a positive integer N = N(ε) such that d (xn, xm) < ε for all
m ≥ n ≥ N .

(iii) The sequence {xn}n∈N is backward-Cauchy if for every ε > 0 there
exists a positive integer N = N(ε) such that d (xm, xn) < ε for all
m ≥ n ≥ N .

Lemma 2.3. ([5]) Let (X, d) be a quasi-metric space and {xn}n be a sequence
in X. If {xn}n∈N is forward convergent to x ∈ X and is backward convergent
to y ∈ X, then x = y.

Definition 2.4. ([5]) Let (X, d) be a quasi-metric space. Then X is said to be
forward (resp. backward) complete if every forward-(resp. backward-) Cauchy
sequence {xn}n in X is forward (resp. backward) convergent to x ∈ X.

Definition 2.5. ([5]) Let (X, d) be a quasi-metric space. Then X is said to
be complete if X is forward and backward complete.

The following definition was given by Samet et al. in [9].

Definition 2.6. ([9]) Let ΘC be the family of all functions θ : ]0,+∞[ →
]1,+∞[ such that

(θ1) θ is increasing, that is, for all x, y ∈ R+ such that x < y, θ (x) < θ (y);
(θ2) for each sequence {xn} in ]0,+∞[,

lim
n→∞

xn = 0 if and only if lim
n→∞

θ (xn) = 1;

(θ3) θ is continuous.

Definition 2.7. ([9]) Let ΘG be the family of all functions θ : ]0,+∞[ →
]1,+∞[ such that

(θ1) θ is increasing, that is, for all x, y ∈ R+ such that x < y, θ (x) < θ (y);
(θ2) for each sequence {xn} in ]0,+∞[,

lim
n→∞

xn = 0 if and only if lim
n→∞

θ (xn) = 1;

(θ3) there exist r ∈ ]0, 1[ and l > 0 such that limn→∞
θ(t)−1
tr = l;

(θ4) θ is continuous.

In [29], Zheng presented the concept of θ-φ-contraction in metric spaces and
proved the following nice result.

Definition 2.8. ([29]) Let Φ be the family of all functions φ: [1,+∞[ →
[1,+∞[ such that
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(φ1) φ is increasing;
(φ2) for each t ∈ ]1,+∞[, limn→∞ φ

n(t) = 1;
(φ3) φ is continuous.

Lemma 2.9. ([29]) If φ ∈ Φ, then φ(1) = 1 and φ(t) < t for all t ∈ ]1 +∞[.

Definition 2.10. ([29]) Let (X, d) be a metric space and T : X → X be a
mapping. T is said to be a θ-φ-contraction if there exist θ ∈ Θ and φ ∈ Φ
such that for any x, y ∈ X,

d (Tx, Ty) > 0⇒ θ [d (Tx, Ty)] ≤ φ [θ (N (x, y))] ,

where

N (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)} .

Theorem 2.11. ([29]) Let (X, d) be a complete metric space and T : X → X
be a θ-φ-contraction. Then T has a unique fixed point.

3. Main results

In the following, we present the concepts of θ-contraction and θ-φ-contraction
in quasi-metric spaces and we prove some fixed point results in such spaces.
Also, we derive some useful corollaries of this result.

Theorem 3.1. Let (X, d) be a quasi-metric space and T : X → X be a
mapping. If there exist θ ∈ ΘG and r ∈ ]0, 1[ such that for all x, y ∈ X

max{d (Tx, Ty) , d (Ty, Tx)} > 0 ⇒ θ [d (Tx, Ty)] ≤ [θ (M (x, y))]r , (3.1)

where

M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)}
and

d (y, x) ≤ d
(
T 2y, x

)
.

Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X. We define a sequence {xn}n∈N
by xn+1 = Txn, for all n ∈ N.

If there exists n0 ∈ N such that d (xn0 , xn0+1) = 0 and d (xn0+1, xn0) = 0,
then xn0 is a fixed point of T . Then we assume that d (xn, xn+1) > 0 or
d (xn+1, xn) > 0.

Step 1. We claim that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn+1, xn) = 0.

Letting x = xn−1 and y = xn in (3.1), we obtain

θ (d (xn, xn+1)) = θ (d (Txn−1, Txn)) ≤ [θ (M (xn, xn−1))]
r ,
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where

M (xn−1, xn) = max{d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1)}
= max{d (xn−1, xn) , d (xn, xn+1)}.

Suppose that d (xn−1, xn) ≤ d (xn, xn+1) for some positive integer n. Then we
have

θ (d (xn, xn+1)) ≤ [θ (d (xn, xn+1))]
r < θ (d (xn, xn+1) ,

which is a contradiction. Hence

θ (d (xn, xn+1)) ≤ [θ (d (xn−1, xn))]r ≤ ... ≤ [θ (d (x0, x1))]
rn . (3.2)

Since r ∈ ]0, 1[, we obtain

θ (d (xn, xn+1)) < θ (d (xn−1, xn)) .

By (θ1), we have

d (xn, xn+1) < d (xn−1, xn) . (3.3)

Letting x = xn and y = xn−1 in (3.1), we obtain

θ (d (xn+1, xn)) = θ (d (Txn, Txn−1)) ≤ [θ (M (xn, xn−1))]
r ,

where

M (xn, xn−1) = max{d (xn, xn−1) , d (xn, xn+1) , d (xn−1, xn)}
= max (d (xn−1, xn) , d (xn, xn−1)} .

Suppose that d (xn, xn−1) ≤ d (xn+1, xn) for some n ∈ N.

Case 1: d (xn, xn−1) ≥ d (xn−1, xn). We get

θ (d (xn, xn−1)) ≤ θ (d (xn+1, xn)) ≤ [θ (d (xn, xn−1))]
r < θ (d (xn, xn−1)) ,

which is a contradiction.

Case 2: d (xn, xn−1) < d (xn−1, xn). We get

θ (d (xn+1, xn)) ≤ [θ (d (xn−1, xn))]r .

Since d (y, x) ≤ d
(
T 2y, x

)
, d (xn−1, xn) ≤ d (xn+1, xn), which implies that

θ (d (xn+1, xn)) ≤ [θ (d (xn−1, xn))]r ≤ [θ (d (xn+1, xn))]r < θ (d (xn+1, xn)) ,

which is a contradiction. Hence

θ (d (xn+1, xn)) ≤ [θ (d (xn, xn−1))]
r ≤ ... ≤ [θ (d (x1, x0))]

rn . (3.4)

Since r ∈ ]0, 1[ and using (θ1), we conclude that

d (xn+1, xn) < d (xn, xn−1) . (3.5)
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From (3.3), the sequence {d (xn, xn+1)}n∈N is monotone nonincreasing. So
there exists α ≥ 0 such that

lim
n→∞

d (xn, xn+1) = α.

Assume that α > 0. By property of θ and using (3.2), we obtain

1 < θ(α) ≤ θ (d (xn, xn+1)) ≤ [θ (d (x0, x1))]
rn . (3.6)

Taking the limit as n→∞ in (3.6) and using (θ2), we get

1 < θ(α) ≤ lim
n→+∞

[θ (d (x0, x1))]
rn .

Therefore,

1 < θ(α) ≤ 1,

which is a contradiction. Thus α = 0 and

lim
n→∞

d (xn,xn+1) = 0.

From (3.5), the sequence {d (xn+1, xn)}n∈N is monotone nonincreasing. So
there exists λ ≥ 0 such that

lim
n→∞

d (xn+1, xn) = λ.

Assume that λ > 0. By property of θ and using (3.4), we obtain

1 < θ(λ) ≤ θ (d (xn+1, xn)) ≤ [θ (d (x1, x0))]
rn . (3.7)

Taking the limit as n→∞ in (3.7) and using (θ2), we get

1 < θ(λ) ≤ lim
n→+∞

[θ (d (x1, x0))]
rn .

Therefore,

1 < θ(α) ≤ 1,

which is a contradiction. Thus λ = 0 and

lim
n→∞

d (xn+1, xn) = 0.

Step 2. We prove that {xn}n∈N is a Cauchy sequence.
Firstly, we are going to show that {xn}n∈N is a forward-Cauchy sequence,

that is, limn,m→∞ d (xn, xn+m) = 0.
From (θ3), there exist k ∈ ]0, 1[ and l > 0 such that

lim
n→∞

θ [d (xn, xn+1)]− 1

d (xn, xn+1)
k

= l.
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Suppose that l <∞. In this case, let A = l
2 . From the definition of the limit,

there exists n0 ∈ N such that∣∣∣∣θ [d (xn, xn+1)]− 1

d (xn, xn+1)
k

− l
∣∣∣∣ ≤ A

for all n ≥ n0. This implies that

θ [d (xn, xn+1)]− 1

d (xn, xn+1)
k

≥ A

for all n ≥ n0. Then

n
[
d (xn, xn+1)

k
]
≤ Bn [θ (d (xn, xn+1))− 1]

for all n ≥ n0, where A = 1
B .

Now, suppose that l = ∞. Let B > 0. From the definition of the limit,
there exists n0 ∈ N such that∣∣∣∣θ [d (xn, xn+1)]− 1

d (xn, xn+1)
k

∣∣∣∣ ≥ B
for all n ≥ n0. This implies that

n
[
d (xn, xn+1)

k
]
≤ An [θ (d (xn, xn+1))− 1]

for all n ≥ n0, where A = 1
B . Thus, in all cases, there exist A > 0 and n0 ∈ N

such that

n
[
d (xn, xn+1)

k
]
≤ An [θ (d (xn, xn+1))− 1]

for all n ≥ n0. By continuing this process, we have

n
[
d (xn, xn+1)

k
]
≤ An

[
(θ (d (x0, x1)))

rn − 1
]

(3.8)

for all n ≥ n0. Letting the limit as n→∞ in (3.8), we obtain

lim
n→∞

n
[
d (xn, xn+1)

k
]

= 0.

Thus there exists n1 ∈ N such that

d (xn, xn+1) ≤
1

n
1
k

(3.9)

for all n ≥ n1.
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Now, by the triangular inequality and using (3.9), for all m > n ≥ n1, we
have

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ...+ d (xm−1, xm)

≤ 1

n
1
k

+
1

(n+ 1)
1
k

+ ...+
1

(m− 1)
1
k

≤
∞∑
i=n

1

i
1
k

.

From the convergence of the series
∑∞

i=n
1

i
1
k

, we deduce that {xn}n∈N is a

forward-Cauchy sequence in (X, d).

Secondly, we are going to show {xn}n∈N is a backward-Cauchy sequence,
that is, limm,n→∞ d (xn+m, xn) = 0.

Let x = xn and y = xn−1 in (3.1). From (θ3), there exist k ∈ ]0, 1[ and
l > 0 such that

lim
n→∞

θ [d (xn+1, xn)]− 1

d (xn+1, xn)k
= l.

Suppose that l <∞. In this case, let H = l
2 . From the definition of the limit,

there exists n0 ∈ N such that∣∣∣∣θ [d (xn+1, xn)]− 1

d (xn+1, xn)k
− l
∣∣∣∣ ≤ H

for all n ≥ n0. This implies that

θ [d (xn+1, xn)]− 1

d (xn+1, xn)k
≥ H

for all n ≥ n0. Then

n
[
d (xn+1, xn)k

]
≤Mn [θ (d (xn+1, xn))− 1]

for all n ≥ n0, where H = 1
M .

Suppose that l = ∞. Let M > 0. From the definition of the limit, there
exists n0 ∈ N such that ∣∣∣∣θ [d (xn+1, xn)]− 1

d (xn+1, xn)k

∣∣∣∣ ≥M
for all n ≥ n0. This implies that

n
[
d (xn+1, xn)k

]
≤ Hn [θ (d (xn+1, xn))− 1]
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for all n ≥ n0, where H = 1
M . Thus, in all cases, there exist H > 0 and n ∈ N

such that

n
[
d (xn+1, xn)k

]
≤ An [θ (d (xn+1, xn))− 1]

for all n ≥ n0. By continuing this process, we have

n
[
d (xn+1, xn)k

]
≤ Hn

[
(θ (d (x1, x0)))

rn − 1
]

(3.10)

for all n ≥ n0. Letting the limit as n→∞ in (3.10), we obtain

lim
n→∞

n
[
d (xn+1, xn)k

]
= 0.

Thus there exists n2 ∈ N such that

d (xn+1, xn) ≤ 1

n
1
k

(3.11)

for all n ≥ n2.
Now, by the triangular inequality and using (3.11), we get

d (xm, xn) ≤ d (xm, xm+1) + d (xm+1, xm+2) + ...+ d (xn−1, xn)

≤ 1

m
1
k

+
1

(m+ 1)
1
k

+ ...+
1

(n− 1)
1
k

≤
∞∑
i=m

1

i
1
k

for all n > m ≥ n1. From the convergence of the series
∑∞

i=m
1

i
1
k

, we deduce

that {xn}n∈N is a backward-Cauchy sequence in (X, d).

Finally, we deduce that {xn}n∈N is a Cauchy sequence in the complete
quasi-metric space (X, d). By completeness of (X, d), there exist z, w ∈ X
such that

lim
n→∞

d (xn, z) = 0, lim
n→∞

d (w, xn) = 0.

By Lemma 2.3, we get z = w.

Step 3. We prove that z = Tz, that is, d (Tz, z) = 0 and d (z, Tz) = 0.
Arguing by contradiction, we assume that d (Tz, z) > 0 or d (z, Tz) > 0.
First, assume that d (z, Tz) > 0. By the triangular inequality, we get

d (Txn, T z) ≤ d (Txn, z) + d (z, Tz) (3.12)

and

d (z, Tz) ≤ d (z, Txn) + d (Txn, T z) . (3.13)
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It follows from (3.12) and (3.13) that

lim
n→+∞

d (Txn, T z) = d (z, Tz) .

So there exists n0 ∈ N such that

d (Txn, T z) ≥ d (z, Tz) > 0

for all n ≥ n0. Hence

max{d (Txn, T z) , d (Tz, Txn)} > 0.

Letting x = xn and y = z in (3.1), we obtain

θ (d (Txn, T z)) ≤ [θ (M (xn, z))]
r , (3.14)

where

M (xn, z) = max {d (xn, Txn) , d (z, Tz) , d (xn, z)}

and

lim
n→+∞

M (xn, z) = d (z, Tz) . (3.15)

Taking the limit as n→∞ in (3.14), using (3.15) and the properties of θ, we
obtain

lim
n→+∞

θ (d (Txn, T z)) = θ

(
lim

n→+∞
d (Txn, T z)

)
= θ (d (z, Tz))

≤
[
θ

(
lim

n→+∞
M (xn, z)

)]r
= [θ (d (z, Tz))]r

< θ (d (z, Tz)) ,

which is a contradiction.

If d (Tz, z) > 0, by a similar method, we get a contradiction. Therefore,
d (z, Tz) = d (Tz, z) = 0. Hence z = Tz.

Step 4. Uniqueness.
Suppose that there are two distinct points z, u ∈ X such that Tz = z and

Tu = u. Then d(z, u) = d(Tz, Tu) > 0 or d(u, z) = d(Tu, Tz) > 0.
Letting x = z and y = u in (3.1), we obtain

θ (d(z, u)) ≤ [θ (M(z, u))]r ,

where

M(z, u) = max {d (z, u) , d (z, Tz) , d (u, Tu)} = d(z, u)

which implies that θ (d(z, u)) < θ (d(z, u)). This is a contradiction. Thus
z = u. �
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Example 3.2. Let X = [1,+∞[. Define d : X ×X → [0,+∞[ by

d(x, y) = max{y − x, 0}

for all x, y ∈ X. Then (X, d) is a complete quasi-metric space.
Define a mapping T : X → X by

T (x) =
√
x.

Then T (x) ∈ [1,+∞[. Let θ (t) = e
√
t and r = 1

2 . It is obvious that θ ∈ Θ and
r ∈ ]0, 1[ .

Let x, y ∈ [1,+∞[. Then we have

d(y, x) = max{x− y, 0}, d(T 2y, x) = max{x− y
1
4 , 0}.

So

max{x− y, 0} ≤ max{y − y
1
4 , 0},

which implies that

d(y, x) ≤ d(T 2y, x)

for all x, y ∈ X.
On the other hand,

d(Tx, Ty) = d
(√
x,
√
y
)

= max{√y −
√
x, 0}

and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}
= max

{
max{y − x, 0},max{

√
x− x, 0},max{√y − y, 0}

}
.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0 if and only if y > x. Hence

d(Tx, Ty) =
√
y −
√
x, θ(d(Tx, Ty)) = e

√√
y−
√
x

and

M(x, y) = max
{
y − x,

√
x− x,√y − y

}
= y − x.

Then we have

[θ(d(x, y))]
1
2 =

[
e
√
y−x
] 1

2
= e
√√

y−x.

On the other hand,

θ(d(Tx, Ty))− [θ(d(x, y))]
1
2 = e

√√
y−
√
x − e

√√
y−x.

Since x, y ∈ [1,+∞[, √
y −
√
x ≤
√
y − x.

Since e
√
x is increasing,

e
√√

y−
√
x ≤ e

√√
y−x,
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which implies that

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
1
2

≤ [θ(max {d (x, y) , d (x, Tx) , d (y, Ty)}]
1
2 .

Hence the condition (3.1) is satisfied. Therefore, T has a unique fixed point
z = 1.

If we remove our condition d(y, x) ≤ d(Ty2, x) for all x, y ∈ X, then it may
be that T does not admit a fixed point.

Example 3.3. Let X =
[
1
4 ,

3
5

]
. Define d : X ×X → [0,+∞[ by

d(x, y) = max{y − x, 0}
for all x, y ∈ X. Then (X, d) is a complete quasi-metric space.

Define a mapping T : X → X by

T (x) =

√
x+ 1

4
.

Then T (x) ∈
[
1
4 ,

3
5

]
. Let θ (t) = e

√
t and r = 1

2 . It is obvious that θ ∈ Θ and
r ∈ ]0, 1[ .

Let x, y ∈
[
1
4 ,

3
5

]
. Then we have

d(y, x) = max{x− y, 0}, d(T 2y, x) = max

{
x− 1

4

[√√
y + 1

4
+ 1

]
, 0

}
.

If x > y and y = 1
4 , then

max{x− y, 0} = x− 1

4
> max

{
x− 1

4

[√√
y + 1

4
+ 1

]
, 0

}
,

which implies that
d(y, x) > d(T 2y, x).

On the other hand,

d(Tx, Ty) = d

(√
x+ 1

4
,

√
y + 1

4

)
= max

{√
y −
√
x

4
, 0

}
and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max

{
max{y − x, 0},max{

√
x+ 1

4
− x, 0},max{

√
y + 1

4
− y, 0}

}
.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0 if and only if y > x. Hence

d(Tx, Ty) =

√
y −
√
x

4
, θ(d(Tx, Ty)) = e

√√
y−
√
x

2
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and

M(x, y) = max

{
y − x,

√
x+ 1

4
− x,

√
y + 1

4
− y
}

≥ y − x.
Then we have

[θ(d(x, y))] = e
√√

y−x.

On the other hand,

θ(d(Tx, Ty))−
√

[θ(d(x, y))] = e

√√
y−
√
x

2 − e
√√

y−x.

Since x, y ∈
[
1
4 ,

3
5

]
and the function et is increasing,

e

√√
y−
√
x

2 ≤ e
√√

y−x,

which implies that

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
1
2

≤ [θ(max {d (x, y) , d (x, Tx) , d (y, Ty)} , d (y, Tx))]
1
2 .

Hence T has no fixed point.

Theorem 3.4. Let (X, d) be a quasi-metric space and T : X → X be a
mapping. If there exist φ ∈ φ and θ ∈ Θ such that for all x, y ∈ X,

max{d (Tx, Ty) , d (Ty, Tx)} > 0 ⇒ θ [d (Tx, Ty)] ≤ φ [θ (M (x, y))] , (3.16)

where
M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)}

and
d (y, x) ≤ d

(
T 2y, x

)
.

Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X. Then we define a sequence
{xn}n∈N by xn+1 = Txn for all n ∈ N. If there exists n0 ∈ N such that
d (xn0 , xn0+1) = 0 and d (xn0+1, xn0) = 0, then xn0 is a fixed point of T . Then
we assume that d (xn, xn+1) > 0 or d (xn+1, xn) > 0. So,

max{d (xn, xn+1) , d (xn+1, xn)} > 0.

Step 1. We claim that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn+1, xn) = 0.

Letting x = xn−1 and y = xn in (3.16), we obtain

θ (d (xn, xn+1)) = θ (d (Txn−1, Txn)) ≤ φ [θ (M (xn−1, xn))] ,
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where

M (xn−1, xn) = max{d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1)}
= max{d (xn−1, xn) , d (xn, xn+1)}.

Suppose that d (xn−1, xn) ≤ d (xn, xn+1) for some positive integer n. Then we
have

θ (d (xn, xn+1)) ≤ φ [θ (d (xn, xn+1))] .

By Lemma 2.9, we obtain

θ (d (xn, xn+1)) < θ (d (xn, xn+1)) ,

which is a contradiction. So

θ (d (xn, xn+1)) ≤ φ [θ (d (xn−1, xn))] ≤ ... ≤ φn [θ (d (x0, x1))] . (3.17)

By Lemma 2.9, we obtain

θ (d (xn, xn+1)) < θ (d (xn−1, xn)) .

By (θ1), we have

d (xn, xn+1) < d (xn−1, xn) . (3.18)

Letting x = xn and y = xn−1 in (3.16), we obtain

θ (d (xn+1, xn)) = θ (d (Txn, Txn−1)) ≤ φ [θ (M (xn, xn−1))] ,

where

M (xn, xn−1) = max{d (xn, xn−1) , d (xn, xn+1) , d (xn−1, xn)}
= max{d (xn−1, xn) , d (xn, xn−1)}.

Suppose that d (xn, xn−1) ≤ d (xn+1, xn) for some n ∈ N.

Case 1: d (xn, xn−1) ≥ d (xn−1, xn). We get

θ (d (xn, xn−1)) ≤ θ (d (xn+1, xn)) ≤ φ [θ (d (xn, xn−1))] < θ (d (xn, xn−1)) ,

which is a contradiction.

Case 2: d (xn, xn−1) < d (xn−1, xn). We get

θ (d (xn+1, xn)) ≤ φ [θ (d (xn−1, xn))] .

Since d (y, x) ≤ d
(
T 2y, x

)
, d (xn−1, xn) ≤ d (xn+1, xn) , which implies that

θ (d (xn+1, xn)) ≤ φ [θ (d (xn−1, xn))] ≤ φ [θ (d (xn+1, xn))] < θ (d (xn+1, xn)) .

This is a contradiction. Hence

θ (d (xn+1, xn)) ≤ φ [θ (d (xn, xn−1))] ≤ ... ≤ φn [θ (d (x1, x0))] . (3.19)

By Lemma 2.9 and using (θ1), we conclude that

d (xn+1, xn) < d (xn, xn−1) . (3.20)
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From (3.18), the sequence {d (xn, xn+1)}n∈N is monotone nonincreasing. So
there exists α ≥ 0 such that

lim
n→∞

d (xn, xn+1) = α.

Taking the limit as n→∞ in (3.17), using (φ2) and (θ3), we obtain

1 ≤ lim
n→+∞

θ (d (xn, xn+1)) ≤ lim
n→+∞

φn [θ (d (xn−1, xn))] .

Thus limn→+∞ θ (d (xn, xn+1)) = 1. By (θ2),

lim
n→∞

d (xn,xn+1) = 0. (3.21)

From (3.18), the sequence {d (xn+1, xn)}n∈N is monotone nonincreasing. So
there exists λ ≥ 0 such that

lim
n→∞

d (xn, xn+1) = λ.

Taking the limit as n→∞ in (3.19), using (φ2) and (θ3), we have

1 ≤ lim
n→+∞

θ (d (xn+1, xn)) ≤ lim
n→+∞

φn [θ (d (xn, xn−1))] .

Thus limn→+∞ θ (d (xn+1, xn)) = 1. By (θ2),

lim
n→∞

d (xn+1, xn) = 0.

Step 2. We prove that {xn}n∈N is a Cauchy sequence.
Firstly, we show that {xn}n∈N is a forward-Cauchy sequence. If otherwise

there exist an ε > 0 and sequences {n(k)}k and {m(k)}k such that, for all
positive integers k, n(k) > m(k) > k,

d
(
xm(k)

, xn(k)

)
< ε

and

d
(
xm(k)

, xn(k)−1

)
< ε.

By the triangular inequality, we obtain

ε ≤ d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xn(k)−1

)
+ d

(
xn(k)−1

, xn(k)

)
< ε+ d

(
xn(k)−1

, xn(k)

)
.

Taking the limit as k →∞, we obtain

lim
k→∞

d
(
xm(k)

, xn(k)

)
= ε. (3.22)
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Now, by the triangular inequality, we have

d
(
xm(k)+1

, xn(k)+1

)
≤ d

(
xm(k)+1

, xm(k)

)
+ d

(
xm(k)

, xn(k)+1

)
≤ d

(
xm(k)+1

, xm(k)

)
+ d

(
xm(k)

, xn(k)

)
+ d

(
xn(k)

, xn(k)+1

)
,

d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xm(k)+1

)
+ d

(
xm(k)+1

, xn(k)

)
≤ d

(
xm(k)

, xm(k)+1

)
+ d

(
xm(k)+1

, xn(k)+1

)
+ d

(
xn(k)+1

, xn(k)

)
.

Taking the limit as k →∞ in the above inequalities, we obtain

lim
k→∞

d
(
xm(k)+1

, xn(k)+1

)
= ε. (3.23)

By (3.23), let B = ε
2 > 0, from the definition of the limit, there exists n0 ∈ N

such that ∣∣∣∣d(xm(k)+1
, xn(k)+1

)
− ε
∣∣∣∣ ≤ B

for all n ≥ n0. This implies that

d
(
xm(k)+1

, xn(k)+1

)
≥ B > 0

for all n ≥ n0. Letting x = xm(k)
and y = xm(k)

in (3.16), we have

θ
(
d
(
xm(k)+1

, xm(k)+1

))
≤ φ

[
θ
(
M
(
xm(k)

, xn(k)

))]
, (3.24)

where

M
(
xm(k)

, xn(k)

)
=max

{
d
(
xm(k)

, xn(k)

)
, d
(
xm(k)

, xm(k)+1

)
, d
(
xn(k)

, xn(k)+1

)}
.

Therefore, by (3.22) and (3.21), we get that

lim
k→+∞

M
(
xm(k)

, xn(k)

)
= ε. (3.25)

Taking the limit as k →∞ in (3.24), using (3.25), (φ3), (θ3) and Lemma 2.9,
we obtain

θ(ε) ≤ φ [θ(ε)] < θ(ε).

This is a contradiction. Consequently, {xn}n∈N is a forward-Cauchy sequence
in (X, d).

Secondly, we prove that {xn}n ∈ N is a backward-Cauchy sequence. If
otherwise there exist an ε > 0 and sequences {n(k)}k and {m(k)}k such that,
for all positive integers k, n(k) > m(k) > k,

d
(
xn(k)

, xm(k)

)
≤ ε
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and

d
(
xn(k)−1

, xm(k)

)
< ε.

By the triangular inequality, we obtain

ε ≤ d
(
xn(k)

, xm(k)

)
≤ d

(
xn(k)

, xn(k)−1

)
+ d

(
xn(k)−1, xm(k)

)
< d

(
xn(k)

, xn(k)−1

)
+ ε.

Taking the limit as k →∞, we obtain

lim
k→∞

d
(
xn(k)

, xm(k)

)
= ε. (3.26)

Now, by the triangular inequality, we have

d
(
xn(k)+1

, xm(k)+1

)
≤ d

(
xn(k)+1

, xn(k)

)
+ d

(
xn(k)

, xm(k)+1

)
≤ d

(
xn(k)+1

, xn(k)

)
+ d

(
xn(k)

, xm(k)

)
+ d

(
xm(k)

, xm(k)+1

)
and

d
(
xn(k)

, xm(k)

)
≤ d

(
xn(k)

, xn(k)+1

)
+ d

(
xn(k)+1

, xm(k)

)
≤ d

(
xn(k)

, xn(k)+1

)
+ d

(
xn(k)+1

, xm(k)+1

)
+d
(
xm(k)+1

, xm(k)

)
.

Taking the limit as k →∞ in the above inequalities, we obtain

lim
k→∞

d
(
xm(k)+1

, xn(k)+1

)
= ε. (3.27)

By (3.27), let A = ε
2 > 0, from the definition of the limit, there exists n1 ∈ N

such that ∣∣∣∣d(xn(k)+1
, xm(k)+1

)
− ε
∣∣∣∣ ≤ A

for all n ≥ n1. This implies that

d
(
xn(k)+1

, xm(k)+1

)
≥ A > 0

for all n ≥ n1. Letting x = xn(k)
and y = xm(k)

in (3.16), we have

θ
(
d
(
xn(k)+1

, xn(k)+1

))
≤ φ

[
θ
(
M
(
xn(k)

, xm(k)

))]
, (3.28)

where

M
(
xn(k)

, xm(k)

)
=max

{
d
(
xn(k)

, xm(k)

)
,d
(
xn(k)

, xn(k)+1

)
,d
(
xm(k)

, xm(k)+1

)}
.

Therefore by (3.21) and (3.26), we get that

lim
k→+∞

M
(
xn(k)

, xm(k)

)
= ε.
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Taking the limit as k →∞ in (3.28), using (3.27) and Lemma 2.9, we obtain

θ(ε) ≤ φ [θ(ε)] < θ(ε).

This is a contradiction. Consequently, {xn}n∈N is a backward-Cauchy se-
quence in (X, d). Hence, by completeness of (X, d), there exist z, u ∈ X such
that

lim
n→+∞

d (xn, z) = lim
n→+∞

d (u, xn) = 0.

So from Lemma 2.3, we get z = u and hence

lim
n→+∞

d (xn, z) = lim
n→+∞

d (z, xn) = 0.

Step 3. We prove that z = Tz, i.e., d (Tz, z) = 0 and d (z, Tz) = 0.
Arguing by contradiction, we assume that d (Tz, z) > 0 or d (z, Tz) > 0.
First, assume that d (z, Tz) > 0. As in the proof of Theorem 3.1, we have

lim
n→+∞

d (Txn, T z) = d (z, Tz) .

So there exists n0 ∈ N such that

d (Txn, T z) ≥ d (z, Tz) > 0

for all n ≥ n0. Letting x = xn and y = z in (3.16), we obtain

θ (d (Txn, T z)) ≤ φ [θ (M (xn, z))] , (3.29)

where

M (xn, z) = max {d (xn, Txn) , d (z, Tz) , d (xn, z)} .

Since lim
n→+∞

d (xn, xn+1) = lim
n→+∞

d (xn, z) = 0, we obtain

lim
n→+∞

M (xn, z) = d (z, Tz) .

Taking the limit as n → ∞ in (3.29), using the properties of φ and θ, we
obtain

lim
n→+∞

θ (d (Txn, T z)) = θ

(
lim

n→+∞
d (Txn, T z)

)
= θ (d (z, Tz))

≤ φ
[
θ

(
lim

n→+∞
M (xn, z)

)]
= φ [θ (d (z, Tz))]

< θ (d (z, Tz)) .

This is a contradiction.
If d (Tz, z) > 0, by a similar method, we get a contradiction. Therefore,

d (z, Tz) = d (Tz, z) = 0. Hence z = Tz.

Step 4. Uniqueness.
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Suppose that there are two distinct points z, u ∈ X such that Tz = z and
Tu = u. Then d(z, u) = d(Tz, Tu) > 0 or d(u, z) = d(Tu, Tz) > 0.

Letting x = z and y = u in (3.16), we obtain

θ (d(z, u)) ≤ φ [θ (M(z, u))] ,

where

M(z, u) = max {d (z, u) , d (z, Tz) , d (u, Tu)} = d(z, u).

This implies that θ (d(z, u)) < θ (d(z, u)), which is a contradiction. Thus
z = u. �

Corollary 3.5. Let (X, d) be a quasi-metric space and T : X → X be a
mapping. If there exist θ ∈ ΘC and r ∈ ]0, 1[ such that for all x, y ∈ X,

max{d (Tx, Ty) , d (Ty, Tx)} > 0 ⇒ θ [d (Tx, Ty)] ≤ [θ (M (x, y))]r ,

where

M (x, y) = max {d (x, y) , d (x, Tx) , d (y, Ty)}

and

d (y, x) ≤ d
(
T 2y, x

)
.

Then T has a unique fixed point.

Proof. Let φ (t) = tk for all t ∈ [1,+∞[. It is obvious that φ ∈ Φ and we have

max{d (Tx, Ty) , d (Ty, Tx)} > 0⇒ θ [d (Tx, Ty)] ≤ φ [θ (M (x, y))] .

Hence T satisfies the assumption of Theorem 3.4 and there is a unique fixed
point of T. �

Corollary 3.6. Let (X, d) be a complete quasi-metric space. Assume that
there exists α ∈

]
0, 12
[

such that for all x, y ∈ X with

max{d (Tx, Ty) , d (Ty, Tx)} > 0,

we have

d (Tx, Ty) ≤ α [d (Tx, x) + d (y, Ty)] .

Then T has a unique fixed point.

Proof. Let θ(t) = et for all t ∈ ]0,+∞[ and φ (t) = t2α for all t ∈ [1,+∞[.
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It is obvious that θ ∈ Θ and φ ∈ Φ. So

θ (d (Tx, Ty)) = ed (Tx, Ty)

≤ eα (d (Tx, x) + d (y, Ty))

= e
2α

(
d (Tx, x) + d (y, Ty)

2

)

=

e
(
d (Tx, x) + d (y, Ty)

2

)
2α

= φ

[
θ

(
d (Tx, x) + d (y, Ty)

2

)]
≤ φ [θ (max{d (x, y) , d (Tx, x) , d (y, Ty)})] .

Therefore, from Theorem 3.4, T has a unique fixed point. �

Corollary 3.7. Let (X, d) be a complete quasi-metric space. Assume that
there exists λ ∈

]
0, 13
[

such that for all x, y ∈ X with

max{d (Tx, Ty) , d (Ty, Tx)} > 0,

we have
d (Tx, Ty) ≤ α [d (x, y) + d (Tx, x) + d (y, Ty)] .

Then T has a unique fixed point.

Proof. Let θ(t) = et for all t ∈ ]0,+∞[ and φ (t) = t3λ for all t ∈ [1,+∞[. It
is obvious that θ ∈ Θ and φ ∈ Φ. So

θ (d (Tx, Ty)) = ed (Tx, Ty)

≤ e
3λ

(d (x, y) + d (Tx, x) + d (y, Ty))

3

=

e(d (x, y) + d (Tx, x) + d (y, Ty))

3

3λ

= φ

[
θ

(
(d (x, y) + d (Tx, x) + d (y, Ty))

3

)]
≤ φ [θ (max{d (x, y) , d (Tx, x) , d (y, Ty)})] .

Therefore, from Theorem 3.4, T has a unique fixed point. �

Example 3.8. Let X = [1,+∞[. Define d : X ×X → [0,+∞[ by

d(x, y) = max{y − x, 0}
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for all x, y ∈ X. Then (X, d) is a complete quasi-metric space.
Define a mapping T : X → X by

T (x) =

√
x+ 1

2
.

Then T (x) ∈ [1,+∞[. Let θ (t) =
√
t + 1 and φ (t) = t+1

2 . It is obvious that
θ ∈ Θ and φ ∈ Φ.

Let x, y ∈ [1,+∞[. Then we have

d(y, x) = max{x− y, 0}, d(T 2y, x) = max

{
x−

√√
y + 1

8
− 1

2
, 0

}
.

So

max{x− y, 0} ≤ max

{
x−

√√
y + 1

8
− 1

2
, 0

}
,

which implies that
d(y, x) ≤ d(T 2y, x)

for all x, y ∈ X. On the other hand,

d(Tx, Ty) = d

(√
x+ 1

2
,

√
y + 1

2

)
= max

{√
y −
√
x

2
, 0

}
and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max

{
max{y − x, 0},max{

√
x+ 1

2
− x, 0},max{

√
y + 1

2
− y, 0}

}
.

First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0 if and only if y > x. Hence

d(Tx, Ty) =

√
y −
√
x

2
, θ(d(Tx, Ty) =

√√
y −
√
x

2
+ 1

and

M(x, y) = y − x.
Then we have

φ [θ(d(x, y))] =

√
y − x
2

+ 1.

On the other hand,

θ(d(Tx, Ty))− φ [θ(d(x, y))] =

√√
y −
√
x

2
+ 1−

√
y − x
2

+ 1

=

√√
y −
√
x

2
−
√
y − x
2

.
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Since x, y ∈ [1,+∞[, √√
y −
√
x

2
−
√
y − x
2

≤ 0.

This implies that

θ(d(Tx, Ty)) ≤ φ [θ(d(x, y))]

≤ φ [θ(max {d (x, y) , d (x, Tx) , d (y, Ty)} , d (y, Tx))] .

Hence the condition (3.16) is satisfied. Therefore, T has a unique fixed point
z = 1.

If we remove our condition d(y, x) ≤ d(Ty2, x) for all x, y ∈ X, then it
may be that T does not admit a fixed point.

Example 3.9. Let X =
[
1
4 ,

1
2

]
. Define d : X ×X → [0,+∞[ by

d(x, y) = max{y − x, 0}
for all x, y ∈ X. Then (X, d) is a complete quasi-metric space.

Define a mapping T : X → X by

T (x) =

√
x+ 4

16
.

Then T (x) ∈
[
1
4 ,

1
2

]
. Let θ (t) =

√
t + 1 and φ (t) = t+1

2 . It is obvious that
θ ∈ Θ and φ ∈ Φ.

Let x, y ∈
[
1
4 ,

1
2

]
. Then we have

d(y, x) = max{x− y, 0} and d(T 2y, x) = max

{
x− 1

16

[√√
y + 4

16
+ 4

]
, 0

}
.

If x > y and y = 1
4 , then

max{x− y, 0} = x− 1

4
> max

{
x− 1

16

[√√
y + 4

16
+ 4

]
, 0

}
.

This implies that
d(y, x) > d(T 2y, x).

On the other hand,

d(Tx, Ty) = d

(√
x+ 4

16
,

√
y + 4

16

)
= max

{√
y −
√
x

16
, 0

}
and

M(x, y) = max{d (x, y) , d (x, Tx) , d (y, Ty)}

= max

{
max{y − x, 0},max{

√
x+ 4

16
− x, 0},max{

√
y + 4

16
− y, 0}

}
.
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First observe that max{d(Tx, Ty), d(Ty, Tx)} > 0 if and only if y > x. Hence

d(Tx, Ty) =

√
y −
√
x

16
, θ(d(Tx, Ty)) =

√√
y −
√
x

16
+ 1

and

M(x, y) = max

{
y − x,

√
x+ 4

16
− x,

√
y + 4

16
− y
}

≥ y − x.
Then we have

φ [θ(d(x, y))] =

√
y − x
2

+ 1.

On the other hand,

θ(d(Tx, Ty))− φ [θ(d(x, y))] =

√√
y −
√
x

16
+ 1−

√
y − x
16

− 1

=

√√
y −
√
x

16
−
√
y − x
2

.

Since x, y ∈
[
1
4 ,

1
2

]
, √√

y −
√
x

16
−
√
y − x
2

≤ 0.

This implies that

θ(d(Tx, Ty)) ≤ φ [θ(d(x, y))]

≤ φ [θ(max {d (x, y) , d (x, Tx) , d (y, Ty)} , d (y, Tx))] .

Hence T has no fixed point.

4. Conclusion

In this paper, we introduced the concept of θ-contraction and θ-ϕ-contraction
in quasi-metric spaces to study the existence of the fixed point for them. We
plan to study some contractions in other metric spaces.
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