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Abstract. In this paper, we propose a new subgradient extragradient algorithm for finding

a solution of monotone bilevel equilibrium problem in reflexive Banach spaces. The strong

convergence of the algorithm is established under monotone assumptions of the cost bifunc-

tions with Bregman Lipschitz-type continuous condition. Finally, a numerical experiments

is reported to illustrate the efficiency of the proposed algorithm.

1. Introduction

Let X be a reflexive real Banach space and C be a nonempty, closed and
convex subset of X. Throughout this paper, we shall denote the dual space of
X byX∗. The norm and the duality pairing betweenX andX∗ are respectively
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denoted by ‖.‖ and 〈., .〉, and R stands for the set of all real numbers. Let
g:C×C→R be a bifunction satisfying the condition g(x, x)=0 for every x∈C.

The equilibrium problem, shortly EP (C, g), for the bifunction g is stated
as follows:

Find x̂ ∈ C such that g(x̂, y) ≥ 0, ∀y ∈ C.

The solution set of EP (C, g) is denoted by Sol(C, g) ([23, 24]).

In this paper, we consider the equilibrium problem whose constraints are
the solution sets of another equilibrium problem which usually is called bilevel
equilibrium problem, shortly BEPs. That is

Find x∗ ∈ Sol(C, g) such that f(x∗, y) ≥ 0, ∀y ∈ Sol(C, g),

where f : C × C → R ∪ {+∞} such that f(x, x) = 0 for every x ∈ C.
The bilevel equilibrium problems were introduced by Chadli et al. [16] in

2000. This kind of problems is very important and interesting because it is
a generalization class of problems such as optimization problems over equilib-
rium constraints, variational inequality over equilibrium constraints, hierar-
chical minimization problems, and complementarity problems. Furthermore,
the particular case of the bilevel equilibrium can be applied to a real word
model such as the variational inequality over the fixed point set of a firmly
nonexpansive mapping applied to the power control problem of CDMA net-
works which were introduced by Iiduka [20]. For more on the relation of bilevel
equilibrium with particular cases, see [19, 21, 29].

Methods for solving BEPs have been studied extensively by many authors.
In 2010, Moudafi [27] introduced a simple proximal method and proved the
weak convergence to a solution of BEPs. In 2014, Quy [31] introduced an
algorithm by combining the proximal method with the Halpern method for
solving bilevel monotone equilibrium and fixed point problem. For more details
and most recent works on the methods for solving BEPs, we refer the reader
to [9, 17, 36]. The authors considered the method for monotone and pseudo
monotone equilibrium problem. If a bifunction is more generally monotone,
we cannot use the above methods for solving BEPs.

The extragradient method first introduced by Quoc et al. [30] in which only
two strongly auxiliary convex problems onto the feasible set C are performed.
The extragradient method is written as follows:

x0 ∈ C,
yk = arg min{λg(xk, x) + 1

2‖x− xk‖
2 : x ∈ C},

xk+1 = arg min{λg(yk, x) + 1
2‖y − xk‖

2 : y ∈ C}.
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In the special case, if g(x, y) = 〈G(x), y − x〉 where G : C → H is a
cost mapping then the problem EP (C, g) becomes the variational inequality
V I(C,G) ([2]): Finding x∗ ∈ C such that

〈G(x∗), x− x∗〉 ≥ 0, ∀x ∈ C.

Recently, inspired by the extragradient method, Censor et al. [15] pre-
sented an algorithm, which is called the subgradient extragradient method,
for solving V I(C,G) in Hilbert spaces (see, [1, 28]). The Censor’s subgradient
extragradient method is as the following:

x0 ∈ H,
yk = PC

(
xk − λG(xk)

)
,

TK =
{
w ∈ H : 〈xk − λG(xk)− yk, w − yk〉 ≤ 0

}
,

xk+1 = pTk
(
xk − λG(yk)

)
,

(1.1)

where PC is the metric projection from H to C. Under certain assumptions,
the weakly convergence of the sequences {xn} has been established.

Recently, Anh et al. [4] presented the following subgradient extragradient
method for solving monotone BEPs:

x0 ∈ C,
yk = arg min{λkg(xk, y) + 1

2‖y − xk‖
2 : y ∈ C},

zk = arg min{λkg(yk, z) + 1
2‖z − xk‖

2 : z ∈ Tk},
xk+1 = arg min{βkf(zk, t) + 1

2‖t− zk‖
2 : t ∈ C},

(1.2)

where Tk = {v ∈ H : 〈xk − λkwk − yk, v − yk〉 ≤ 0} and wk ∈ ∂2g(xk, yk).
Under certain the conditions, they proved that {xn},{yn} and {zn} converge
strongly to the unique solution point of BEPs.

Inspired by the above works, in this paper, using Bregman distance we
propose a subgradient extragradient algorithm for finding a solution for BEPs
where f is strongly monotone and Bregman Lipschitz-type continuous and g
is pseudomonotone in reflexive Banach space X.

The paper is organized as follows: In Section 2, we recall some definitions
and preliminaries that would be needed in the paper. The third section pro-
poses a new algorithm and analyzes its convergence. In section 4, we will
illustrate some applications for our algorithm. Finally, a numerical example
for validity our main theorem will be exposed.

2. Preliminaries

Let f : X → (−∞,∞] be a proper convex and lower semicontinuous func-
tion. The set of minimizers of f is denoted by Argminf . If Argminf is a
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singleton, its unique element is denoted by arg minx∈X f(x). Also we de-
note by dom f , the domain of f , that is the set {x ∈ X : f(x) < ∞}. Let
x ∈ int domf . Then subdifferential of f at x is the convex set defined by:

∂f(x) = {ξ ∈ X∗ : f(x) + 〈y − x, ξ〉 ≤ f(y), ∀y ∈ X},

and the Fenchel conjugate of f is the convex function

f∗ : X∗ → (−∞,∞], f∗(ξ) = sup{〈x, ξ〉 − f(x) : x ∈ X}.

It is well known that ξ ∈ ∂f(x) is equivalent to

f(x) + f∗(ξ) = 〈x, ξ〉. (2.1)

It is not difficult to check that f∗ is proper convex and lower semicontinuous
function. The function f is said to be cofinite if dom f∗ = X∗.

For any convex mapping f : X → (−∞,+∞], we denote by f◦(x, y) the
right-hand derivative of f at x ∈ int domf in the direction y, that is,

f◦(x, y) := lim
t↓0

f(x+ ty)− f(x)

t
. (2.2)

If the limit as t→ 0 in (2.2) exists for each y, then the function f is said to be
Gâteaux differentiable at x. In this case, the gradient of f at x is the linear
function ∇f(x), which is defined by 〈y,∇f(x)〉 := f◦(x, y) for all y ∈ X. The
function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at
each x ∈ int domf. When the limit as t→ 0 in (2.2) is attained uniformly for
any y ∈ X with ‖y‖ = 1, we say that f is Fréchet differentiable at x. Finally,
f is said to be uniformly Fréchet differentiable for x ∈ E and ‖y‖ = 1.

The function f is said to be Legendre if it satisfies the following two condi-
tions:

(L1) int domf 6= ∅ and ∂f is single-valued on its domain,
(L2) int domf∗ 6= ∅ and ∂f∗ is single-valued on its domain.

Because the space X is assumed to be reflexive, we always have (∂f)−1=∂f∗

(see[10], p. 83). This fact, when combined with the conditions (L1) and (L2),
implies the following equalities:

∇f = (∇f∗)−1,

ran ∇f = dom ∇f∗ = int dom f∗,

ran ∇f∗ = dom ∇f = int dom f.

Also, the conditions (L1) and (L2), in conjunction with Theorem 5.4 of [8],
imply that the functions f and f∗ are strictly convex on the interior of their
respective domains and f is Legendre if and only if f∗ is Legendre. Several
interesting examples of Legendre functions are presented in [6, 8]. Among
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them are the functions 1
p‖ · ‖

p with p ∈ (1,∞), where the Banach space X is

smooth and strictly convex.

In 1967, Bregman [11] introduced the concept of Bregman distance, and
he discovered an elegant and effective technique for the use of the Bregman
distance in the process of designing and analyzing feasibility and optimization
algorithms.

From now on, we assume that f : X → (−∞,+∞] is also Legendre. The
Bregman distance with respect to f , or simply, Bregman distance is the bi-
function Df : domf × int domf → [0,+∞], defined by:

Df (y, x) := f(y)− f(x)− 〈y − x,∇f(x)〉.

It should be noted that Df is not a distance in the usual sense of the term.
Clearly, Df (x, x) = 0, but Df (y, x) = 0 may not imply x = y. In our case,
when f is Legendre this indeed holds (see [8], Theorem 7.3(vi), p. 642). In
general, Df is not symmetric and does not satisfy the triangle inequality.
However, Df satisfies the three point identity

Df (x, y) +Df (y, z)−Df (x, z) = 〈x− y,∇f(z)−∇f(y)〉,

and four point identity

Df (x, y) +Df (w, z)−Df (x, z)−Df (w, y) = 〈x− w,∇f(z)−∇f(y)〉,

for any x,w ∈ domf and y, z ∈ int domf. During the last 30 years, Bregman
distances have been studied by many researchers (see [7, 8, 12, 13, 25] ).

We will use the following lemmas in the proof of our results.

Lemma 2.1. ([32]) If f : X → R is uniformly Fréchet differentiable and
bounded on bounded subsets of X, then ∇f is uniformly continuous on bounded
subsets of X from the strong topology of X to the strong topology of X∗.

Recall that the function f is called sequentially consistent (see [14]) if for
any two sequences {xn} and {yn} in X such that the first one is bounded, if

lim
n→∞

Df (yn, xn) = 0 ⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.2. ([13]) If dom f contains at least two points, then the function f
is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Lemma 2.3. ([33]) Let f : X → R be a Gâteaux differentiable and totally
convex function. If x0 ∈ X and the sequence {Df (xn, x0)} is bounded, then
the sequence {xn} is also bounded.
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Lemma 2.4. ([34]) Let f : X → R be a Legendre function such that ∇f∗
is bounded on bounded subsets of int domf∗. Let x0 ∈ X, if {Df (x0, xn)} is
bounded then the sequence {xn} is bounded too.

Lemma 2.5. ([37]) Let C be a nonempty convex subset of X and f : C → R
be a convex and subdifferentiable function on C. Then f attains its minimum
at x ∈ C if and only if 0 ∈ ∂f(x) + NC(x), where NC(x) is the normal cone
of C at x, that is

NC(x) := {x∗ ∈ X∗ : 〈x− z, x∗〉 ≥ 0, ∀z ∈ C}.

Lemma 2.6. ([18]) If f and g are two convex functions on X such that there
is a point x0 ∈ dom f ∩ dom g where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x), ∀x ∈ X.

A function g : C × C → (−∞,+∞], where C is a closed and convex subset
of X, such that g(x, x) = 0 for all x ∈ C is called a bifunction. Throughout
this paper we consider bifunctions with the following properties:

(A1) g is pseudomonotone on C, that is, for all x, y ∈ C,

g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0.

(A2) g is Bregman-Lipschitz-type continuous on C, that is, there exist two
positive constants c1 and c2 such that

g(x, y) + g(y, z) ≥ g(x, z)− c1Df (y, x)− c2Df (z, y), ∀x, y, z ∈ C,
where f : X → (−∞,+∞] is a Legendre function. The constants c1
and c2 are called Bregman-Lipschitz coefficients with respect to f .

(A3) g is weakly continuous on C×C, that is, if x, y ∈ C and {xn} and {yn}
are two sequences in C converging weakly to x and y, respectively, then
g(xn, yn)→ (x, y).

(A4) g(x, .) is convex, lower semicontinuous and subdifferentiable on C for
every fixed x ∈ C.

(A5) For each x, y, z ∈ C, lim supt↓0 g(tx+ (1− t)y, z) ≤ g(y, z).
(A6) f is η-strongly monotone on C, that is, for all x, y ∈ C,

f(x, y) + f(y, x) 6 −η‖x− y‖2.
(A7) g is monotone on C, that is, if for all x, y ∈ C, g(x, y) + g(y, x) ≤ 0.

It is obvious that any monotone bifunction is a pseudomonotone one, but
not vice versa. A mapping A : C → X∗ is pseudomonotone if and only if the
bifunction g(x, y) = 〈A(x), y − x〉 is pseudomonotone on C (see [38]).

Lemma 2.7. ([40]) If a bifunction g satisfying the conditions A1, A3-A5, then
Sol(C, g) is closed and convex.
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We need the following technical lemmas.

Lemma 2.8. ([26]) Let {an} be a sequence of nonnegative real numbers. Sup-
pose that for any integer m, there exists an integer p such that p ≥ m and
ap ≤ ap+1. Let k0 be an integer such that ak0 ≤ ak0+1 and define, for all
integer k ≥ k0,

τ(k) = max{i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1}.

Then, 0 ≤ ak ≤ aτ(k)+1 for all k ≥ k0. Furthermore, the sequence {τ(k)}k≥k0
is nondecreasing and tends to +∞ as k→∞.

Lemma 2.9. ([5]) Let X and Y be two sets, G be a compact set-valued map
from Y to X, and W be a real valued function defined on X×Y .The marginal
function M is defined by

M(y) =
{
x∗ ∈ G(y) : W (x∗, y) = sup{W (x, y) : x ∈ G(y)}

}
.

If W and G are continuous, then M is upper semicontinuous.

Let us assume that H : X → (−∞,+∞] is also Legendre and two bifunc-
tions f : C×C → R∪{+∞} and g : C×C → R∪{+∞} satisfy the following
conditions:

Assumptions on g:

(g1) Sol(C, g) is nonempty.
(g2) g is monotone and Bregman Lipschitz-type continuous with constants

c1, c2 and g is weakly continuous.

Assumptions on f :

(f1) f is weakly continuous and Bregman η-strongly monotone on C, i.e.,

for all x, y ∈ C, f(x, y)+f(y, x)6−η
(
DH(y, x) +DH(x, y)

)
.

(f2) There exists the mappings fi : C×C → X and f̂i : C → X for each i ∈
{1, · · · ,m} such that fi(x, y) + fi(y, x) = 0, ‖fi(x, y)‖26Li

2
DH(y, x)

and ‖∇f̂i(x)−∇f̂i(y)‖26L̂i
2
DH(y, x) for all x, y∈C, also

f(x, y)+f(y, z) > f(x, z)+

m∑
i=1

〈
fi(x, y),∇f̂i(y)−∇f̂i(z)

〉
, ∀x, y, z∈C.

(f3) For any sequence {yk} ⊂ C such that xk → d, we have

lim sup
k→∞

|f(d, yk)|√
DH(yk, d)

<+∞.
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Remark 2.10. Suppose that the bifunction f satisfies the condition (f2).
Then

f(x, y) + f(y, z) >f(x, z) +
m∑
i=1

〈
fi(x, y),∇f̂i(y)−∇f̂i(z)

〉
>f(x, z)−

m∑
i=1

∣∣〈fi(x, y),∇f̂i(y)−∇f̂i(z)
〉∣∣

>f(x, z)−
m∑
i=1

∥∥fi(x, y)
∥∥∥∥∇f̂i(y)−∇f̂i(z)

∥∥
>f(x, z)−

m∑
i=1

LiL̂i
√
DH(z, y)

√
DH(y, x)

>f(x, z)− 1

2

m∑
i=1

LiL̂iDH(z, y)− 1

2

m∑
i=1

LiL̂iDH(y, x)

=f(x, z)− c1DH(z, y)− c2DH(y, x).

Thus, f is Bregman Lipschitz-type continuous with constants c1=c2=
1

2

m∑
i=1

LiL̂i.

3. Main results

In this section, assume that Assumptions on f and g hold. We first estab-
lish some lemmas and then propose a subgradient extragradient algorithm for
finding a solution of BEPs. We also assume that the bifunction f is η-strongly
monotone and Bregman Lipschitz-type continuous and g is pseudomonotone.

Algorithm A:

Initialization: Choose x0 ∈ C, the tolerance ε > 0, s :=
m∑
i=1

LiL̂i and the

sequences {λk} and {βk} such that

{λk} ⊂ (a, b) ⊂ (0,min{ 1

c1
,

1

c2
}), lim

k→∞
λk = λ,

βk ↘ 0, 1− βkη + β2ks
2 < 1,

∞∑
k=1

βk = +∞,

0 < τ < min{η, s}, 0 < βk < min

{
1

τ
,
2η − 2τ

s2 − τ2
,
2η

s2

}
.

(3.1)

Set k = 0 and go to Step 1.

Step 1. Compute (k = 0, 1, ...)
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yk = arg min
{
λkg(xk, y) +DH(y, xk) : y ∈ C

}
,

zk = arg min
{
λkg(yk, z) +DH(z, xk) : z ∈ Tk

}
,

xk+1 = arg min
{
βkf(zk, t) +DH(t, zk) : t ∈ C

}
,

where Tk={v∈X | 〈v−yk,∇H(xk)−λkwk−∇H(yk)〉60} and wk ∈ ∂2g(xk, yk).

Step 2. If max
{
DH(yk, xk+1), DH(yk, xk)

}
6 ε then stop.

Step 3. Otherwise, set k := k + 1 and go back to Step 1.

To prove the convergence of Algorithm A, we need the following lemmas.

Lemma 3.1. ([3, Lemma 1]) If xk = yk then xk ∈ Sol(C, g).

Lemma 3.2. Let x ∈ Sol(C, g). Then

DH(x, zk) 6 DH(x, xk)− (1− λkc1)DH(yk, xk)− (1− λkc2)DH(zk, yk).

Proof. Since yk = arg min{λkg(xk, y) + DH(y, xk) : y ∈ C}, by Lemmas 2.5
and 2.6, we have

0 ∈ λk∂2g(xk, yk) +∇1DH(yk, xk) +NC(yk).

Hence, there exists wk ∈ ∂2g(xk, yk) such that

∇H(xk)− λkwk −∇H(yk) ∈ NC(yk).

Then, by the definition of NC(yk), we get〈
x− yk,∇H(xk)− λkwk −∇H(yk)

〉
6 0, ∀x ∈ C. (3.2)

Using the definition of wk ∈ ∂2g(xk, yk), we obtain

λk
(
g(xk, x)− g(xk, yk)

)
>
〈
x− yk, λkwk

〉
. (3.3)

Adding (3.2) and (3.3), we get

λk
(
g(xk, x)− g(xk, yk)

)
+
〈
x− yk,∇H(yk)−∇H(xk)

〉
> 0, ∀x ∈ C. (3.4)

Since zk ∈ Tk, from the definition of Tk, we have〈
zk − yk,∇H(xk)− λkwk −∇H(yk)

〉
6 0.

Therefore 〈
zk − yk,∇H(xk)−∇H(yk)

〉
6
〈
zk − yk, λkwk

〉
. (3.5)

Replacing zk = x into (3.3), we get

λk
(
g(xk, zk)− g(xk, yk)

)
>
〈
zk − yk, λkwk

〉
,
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from (3.5), we obtain

λk
(
g(xk, zk)− g(xk, yk)

)
>
〈
zk − yk,∇H(xk)−∇H(yk)

〉
. (3.6)

Similarly, since zk = arg min{λkg(yk, z) +DH(z, xk) : z ∈ Tk}, there exists
qk ∈ ∂2g(yk, zk) and hk∈NTk(zk) such that

0 = λkqk +∇H(zk)−∇H(yk) + hk,

and hence〈
y − zk,∇H(xk)−∇H(zk)〉 =

〈
y − zk, hk + λkqk

〉
=
〈
y − zk, hk

〉
+
〈
y − zk, λkqk

〉
6
〈
y − zk, λkqk

〉
, ∀y ∈ Tk.

It is easy to show that C ⊆ Tk. Substituting y = x ∈ C ⊆ Tk into two last
inequalities and adding them, we get

λk
(
g(yk, x)− g(yk, zk)

)
>
〈
x− zk,∇H(xk)−∇H(zk)

〉
.

Note that g is monotone, x ∈ Sol(C, g) and yk ∈ C, we have g(yk, x) 6 0 and

−λkg(yk, zk) >
〈
x− zk,∇H(xk)−∇H(zk)

〉
.

Since g is Bregman Lipschitz-type continues, we have

g(xk, yk) + g(yk, zk) > g(xk, zk)− c1DH(yk, xk)− c2DH(zk, yk),

from (3.6), we get〈
zk−x,∇H(xk)−∇H(zk)

〉
>λkg(yk, zk)

>λk
(
g(xk, zk)−g(xk, yk)

)
− λkc1DH(yk, xk)

− λkc2DH(zk, yk)

>
〈
zk − yk,∇H(xk)−∇H(yk)

〉
− λkc1DH(yk, xk)− λkc2DH(zk, yk).

Applying the three point identity, we get the desired result. �

Lemma 3.3. For each x ∈ C, we have

DH(x, xk+1)6DH(x, zk)−DH(xk+1, zk)+βk
(
f(zk, x)−f(zk, xk+1)

)
.

Proof. Since xk+1 = arg min{βkf(zk, t) +DH(t, zk) : t ∈ C}, by a similar way
as in the proof of Lemma 3.2, there exists vk ∈ ∂2f(zk, xk+1) such that

0 ∈ βkvk +∇H(xk+1)−∇H(zk) +NC(xk+1).

Using the definitions of the normal cone NC and the subgradiant vk, we get

βk
(
f(zk, x)−f(zk, xk+1)

)
+
〈
x−xk+1,∇H(xk+1)−∇H(zk)

〉
>0, ∀x∈C. (3.7)
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Using the three point indentity, we get the desired result. �

Lemma 3.4. Let x∗ be a solution of the problem BEPs. Then

DH(y∗k+1, xk+1) 6 δkDH(x∗, zk) 6 (1− τβk)DH(x∗, zk),

where

y∗k+1 = arg min{βkf(x∗, v) +DH(ν, x∗) : v ∈ C}
and

δk = 1− βkη + β2ks
2.

Proof. Since y∗k+1 = arg min
{
βkf(x∗, v) + DH(v, x∗) : v ∈ C

}
, by a similar

way as in the proof of (3.4), we get

βk
(
f(x∗, x)− f(x∗, y∗k+1)

)
+ 〈x− y∗k+1,∇H(y∗k+1)−∇H(x∗)〉 > 0, ∀x ∈ C.

(3.8)

Replacing x with y∗k+1 ∈ C in (3.7) and x with xk+1 ∈ C in (3.8), we have

βk
(
f(zk, y

∗
k+1)− f(zk, xk+1)

)
+ 〈y∗k+1 − xk+1,∇H(xk+1)−∇H(zk)〉 > 0,

βk
(
f(x∗, xk+1)− f(x∗, y∗k+1)

)
+ 〈xk+1 − y∗k+1,∇H(y∗k+1)−∇H(x∗)〉 > 0.

Therefore, we obtain

βk

(
f(zk, y

∗
k+1)−f(zk, xk+1)+f(x∗, xk+1)−f(x∗, y∗k+1)

)
+〈y∗k+1−xk+1,∇H(xk+1)−∇H(zk)〉
+〈xk+1−y∗k+1,∇H(y∗k+1)−∇H(x∗)〉 > 0.

Using the three point identity, we have

βk

(
f(zk, y

∗
k+1)−f(zk, xk+1)+f(x∗, xk+1)−f(x∗, y∗k+1)

)
+DH(y∗k+1, zk)−DH(y∗k+1, xk+1)−DH(xk+1, zk)

+DH(xk+1, x
∗)−DH(y∗k+1, x

∗)−DH(xk+1, y
∗
k+1) > 0. (3.9)

Using Assumption (f2) we get

f(zk, y
∗
k+1)− f(x∗, y∗k+1) 6 f(zk, x

∗)−
m∑
i=1

〈
fi(zk, x

∗),∇f̂i(x∗)−∇f̂i(y∗k+1)
〉

and

f(x∗, xk+1)− f(zk, xk+1) 6 f(x∗, zk)−
m∑
i=1

〈
fi(x

∗, zk),∇f̂i(zk)−∇f̂i(xk+1)
〉
.

(3.10)

Under Assumptions (f1) and (f2), we have
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f(zk,y
∗
k+1)−f(x∗, y∗k+1)+f(x∗, xk+1)−f(zk, xk+1)

6−η
(
DH(x∗, zk)+DH(zk, x

∗)
)

+

m∑
i=1

〈
fi(zk, x

∗),∇f̂i(zk)−∇f̂i(xk+1)−∇f̂i(x∗)+∇f̂i(y∗k+1)
〉

6−η
(
DH(x∗, zk)+DH(zk, x

∗)
)

+

m∑
i=1

∥∥fi(zk, x∗)∥∥∥∥∇f̂i(zk)−∇f̂i(xk+1)−∇f̂i(x∗)+∇f̂i(y∗k+1)
∥∥

6−η
(
DH(x∗, zk)+DH(zk, x

∗)
)

+
m∑
i=1

∥∥fi(zk, x∗)‖(∥∥∇f̂i(zk)−∇f̂i(xk+1)
∥∥+
∥∥∇f̂i(y∗k+1)−∇f̂i(x∗)

∥∥)
6−η

(
DH(x∗, zk)+DH(zk, x

∗)
)

+s
√
DH(x∗, zk)

(√
DH(xk+1, zk)+

√
DH(x∗, y∗k+1)

)
. (3.11)

Combining (3.9) and (3.11), we get

06−βkη
(
DH(x∗, zk)+DH(zk, x

∗)
)

+sβk
√
DH(x∗, zk)

(√
DH(xk+1, zk)+

√
DH(x∗, y∗k+1)

)
+DH(y∗k+1, zk)−DH(y∗k+1, xk+1)−DH(xk+1, zk)

+DH(xk+1, x
∗)−DH(y∗k+1, x

∗)−DH(xk+1, y
∗
k+1),

then

DH(y∗k+1, xk+1)6−βkη
(
DH(x∗, zk)+DH(zk, x

∗)
)

+sβk

(√
DH(xk+1, zk)

√
DH(x∗, zk)

)
+sβk

(√
DH(x∗, y∗k+1)

√
DH(x∗, zk)

)
+DH(y∗k+1, zk)−DH(xk+1, zk)+DH(xk+1, x

∗)

−DH(y∗k+1, x
∗)−DH(xk+1, y

∗
k+1)
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6−βkη
(
DH(x∗, zk)+DH(zk, x

∗)
)

−
(
sβk
√
DH(x∗, zk)−

1

2

√
DH(xk+1, zk)

)2
+s2β2kDH(x∗, zk)+

1

4
DH(xk+1, zk)

−
(√

DH(x∗, zk)−
1

2
sβk

√
DH(x∗, y∗k+1)

)2
+DH(x∗, zk)+

1

4
s2β2kDH(x∗, y∗k+1)+DH(y∗k+1, zk)

−DH(xk+1, zk)+DH(xk+1, x
∗)−DH(y∗k+1, x

∗)

−DH(xk+1, y
∗
k+1).

Therefore, we have

DH(y∗k+1, xk+1)6
(

1−ηβk+s2β2k
)
DH(x∗, zk)+

1

4
s2β2kDH(x∗, y∗k+1)

+DH(y∗k+1, zk)+DH(xk+1, x
∗). (3.12)

The rest of the proof will be divided into two parts:

Case A: Suppose that DH(y∗k+1, xk+1)6
(
1−ηβk+s2β2k

)
DH(x∗, zk). Then the

proof is clear.

Case B: Suppose that DH(y∗k+1, xk+1) >
(
1− ηβk + s2β2k

)
DH(x∗, zk).

Applying Lemma 2.9 for the following data:

X := C, Y := R, G(x) := C, ∀x ∈ C
yk := βk, W (x, y) = −yf(x∗, x)−DH(x∗, x),

we get that

M(βk) =

{
x̂∈G(βk)

∣∣W (x̂, βk)= sup
{
−βkf(x∗, x)−DH(x∗, x) : x∈G(βk)

}}
= arg max{W (x, βk) : x ∈ C}
= arg min

{
βkf(x∗, x) +DH(x∗, x)

}
= y∗k+1.

Hence
lim sup
k→∞

y∗k+1 = lim sup
k→∞

M(βk) ⊆ clM(0) = cl(x∗),

this implies that
lim sup
k→∞

y∗k+1 = x∗. (3.13)

So
lim sup
k→∞

DH(y∗k+1, xk+1) > lim sup
k→∞

(
1− ηβk + s2β2k

)
DH(x∗, zk),
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then from (3.1) we obtain

lim sup
k→∞

DH(x∗, xk+1) ≥ lim sup
k→∞

DH(x∗, zk).

And this is a contradiction with Lemma 3.3. �

Lemma 3.5. The sequences {xk}, {yk} and {zk} are bounded.

Proof. By a similar way as in the proof of Lemma 3.4, lim sup
k→∞

y∗k+1 = x∗. Since

f is continuous on C, so

lim
k→∞

f(x∗, y∗k+1) = lim sup
k→∞

f(x∗, y∗k+1) = f(x∗, x∗) = 0.

By the Assumption (f3), there exists a constant M(x∗) > 0 such that∣∣f(x∗, y∗k+1)
∣∣ 6M(x∗)

√
DH(x∗, y∗k+1), ∀k > 0. (3.14)

Substituting x = x∗ into (3.8) and note that f(x∗, x∗) = 0, we obtain

βk
(
f(x∗, x∗)− f(x∗, y∗k+1)

)
+
〈
x∗ − y∗k+1,∇H(y∗k+1)−∇H(x∗)

〉
> 0,

therefore

−βkf(x∗, y∗k+1) >
〈
x∗ − y∗k+1,∇H(x∗)−∇H(y∗k+1)

〉
= DH(x∗, y∗k+1) +DH(y∗k+1, x

∗)

> DH(x∗, y∗k+1),

using (3.14), we get

DH(x∗, y∗k+1) 6 −βkf(x∗, y∗k+1) 6 βkM(x∗)
√
DH(x∗, y∗k+1), ∀k > 0,

then √
DH(x∗, y∗k+1) 6 βkM(x∗). (3.15)

Using the three point identity, we have

DH(x∗, y∗k+1)+DH(y∗k+1, xk+1)+
〈
y∗k+1−x∗,∇H(xk+1)−∇H(y∗k+1)

〉
=DH(x∗, xk+1),

from (3.15) and Lemma 3.4, we obtain

DH(x∗, xk+1) 6 β
2
kM

2
(x∗)+δkDH(x∗, xk)+

〈
y∗k+1−x∗,∇H(xk+1)−∇H(y∗k+1)

〉
.

By using (3.1) and (3.13), we get

lim sup
k→∞

DH(x∗, xk+1) 6 lim sup
k→∞

DH(x∗, xk) 6 ... 6 lim sup
k→∞

DH(x∗, x0) <∞.
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Therefore, the sequence {DH(x∗, xk)} is bounded and by Lemma 2.4, the
sequence {xk} is bounded too. From Lemma 3.3, it follows that DH(x∗, zk) 6
DH(x∗, xk) <∞, so {zk} is also bounded. Since

D(yk, xk) 6
1

1− λkck
(
D(x, xk)−D(x, zk)

)
,

so {yk} is bounded. �

Lemma 3.6. Let {xki} be a subsequence of {xk} and converges weakly to x̂
and lim

i→∞
DH(yki , xki) = 0. Then, x̂ ∈ Sol(C, g).

Proof. Since {xk}⊂C and {xki} converges weakly to x̂ and C is closed and
convex, therefore x̂ ∈ C. On the other hand, since lim

i→∞
DH(yki , xki)=0, we

have lim
i→∞
‖yki−xki‖=0, therefore yki ⇀ x̂. In view of (3.4), we have

λki
(
g(xki , x)− g(xki , yki)

)
+
〈
x− yki ,∇H(xki)−∇H(yki)

〉
> 0, ∀x ∈ C.

Passing to the limit in the last inequality as i→∞ and using lim
k→∞

λk = λ > 0,

boundedness of {zki} and weak continuity of g, we obtain

λg(x̂, x) > 0, ∀x ∈ C,
therefore, we get x̂ ∈ Sol(C, g). �

Theorem 3.7. Assume that Assumptions on f and g hold. The parameters
are satisfied by the conditions (3.1). Then, the sequences {xk}, {yk} and {zk}
generated by Algorithm A converge strongly to the unique solution point x∗ of
the BEPs.

Proof. Assume that ak = DH(x∗, xk). Using Lemmas 3.2, 3.3 and 3.5, we have

DH(x∗, xk+1) 6DH(x∗, zk)−DH(xk+1, zk) + βk
(
f(zk, x

∗)− f(zk, xk+1)
)

6DH(x∗, xk)− (1− λkc1)DH(yk, xk)− (1− λkc2)DH(zk, yk)

−DH(xk+1, zk) + βk
(
f(zk, x

∗)− f(zk, xk+1)
)
r (3.16)

6DH(x∗, xk)− (1− λkc1)DH(yk, xk)− (1− λkc2)DH(zk, yk)

−DH(xk+1, zk) + βkK,

where K = sup
k

{
f(zk, x

∗)− f(zk, xk+1)
}
<∞.

The rest of the proof will be divided into two parts:

Case 1: In this case, we suppose that there exists k0 such that DH(x∗, xk+1) 6
DH(x∗, xk) for all k ≥ k0. Then, from Lemma 2.8, we have lim

k→∞
DH(x∗, xk) =

A <∞. By (3.16), we get

DH(yk, xk) = DH(zk, yk) = DH(xk+1, zk) = 0. (3.17)
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Since {zk} is bounded and X is a reflexive Banach space, so there exists a
subsequence {zki} of {zk} such that zki ⇀ z̄, z̄ ∈ C and

lim inf
k→∞

(
f(x∗, zk) + f(zk, xk+1)

)
= lim inf

i→∞

(
f(x∗, zki) + f(zki , xki+1)

)
.

It implies that xki+1 ⇀ z, xki ⇀ z and yki ⇀ z. Then by Lemma 3.6, we have
z ∈ Sol(C, g) and

lim inf
k→∞

(
f(x∗, zk) + f(zk, xk+1)

)
= f(x∗, z) > 0. (3.18)

Then, by Assumption (f1), f is η-strongly monotone and we have

lim inf
k→∞

(
f(x∗, zk)+f(zk, xk+1)

)
6 lim inf

k→∞
−η
(
DH(x∗, zk)+(DHzk, x

∗)
)

=− ηA. (3.19)

Combining (3.18) and (3.19), we obtain

lim inf
k→∞

(
f(zk, x

∗)− f(zk, xk+1)
)

= lim inf
k→∞

(
f(zk, x

∗) + f(x∗, zk)− f(zk, xk+1)
)

6 lim inf
k→∞

(
f(zk, x

∗) + f(x∗, zk)
)

− lim inf
k→∞

(
f(x∗, zk) + f(zk, xk+1)

)
6− ηA.

Now, we have to show that A = 0. If not, assume that A > 0. There exists k0
such that

f(zk, x
∗)− f(zk, xk+1) 6

−ηA
2

. (3.20)

Applying Lemma 3.3 for x = x∗ and using Lemma 3.2 for all k > k0, we get

DH(x∗, xk+1)6DH(x∗, zk)−DH(xk+1, zk)+βk
(
f(zk, x

∗)−f(zk, xk+1)
)

6 DH(x∗, xk+1)− βkηA. (3.21)

Hence

DH(x∗, xk+1)−DH(x∗, xki)6− ηA
k∑

j=k0

βj , ∀k > k0. (3.22)

Since
∑∞

k=1 βk = +∞, we have lim
k→∞

DH(x∗, xk) = 0. So xk → x∗.

Case 2: Now, we suppose that there does not exist k0 such that

DH(x∗, xk+1) 6 DH(x∗, xk),

for all k>k0. Then, there exists an integer k0 such that

DH(x∗, xk0) 6 DH(x∗, xk0+1).
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Lemma 2.8 introduces a subsequence {DH(x∗, xτ(k))} of {DH(x∗, xk)} which
is defined as

τ(k) = max
{
i ∈ N

∣∣k0 6 i 6 k, DH(x∗, xi) 6 DH(x∗, xi+1)
}
.

Then, τ(k)→∞ and

0 6 DH(x∗, xk) 6 DH(x∗, xτ(k)+1),

so, we get

0 6 DH(x∗, xτ(k)) 6 DH(x∗, xτ(k)+1), ∀k > k0. (3.23)

Now, let M : = lim
k→∞

DH(x∗, xτ(k)). By Lemma 3.5 we have M<∞. From

(3.16) and lim
k→∞

βk=0, we get

lim
k→∞

DH(zτ(k), xτ(k)+1)= lim
k→∞

DH(yτ(k), xτ(k))

= lim
k→∞

DH(zτ(k), yτ(k))

=0. (3.24)

Since {zk} is bounded, so there exists any subsequence which converges weakly
to x. Without loss of generality, we can assume that zτ(k) ⇀ x. Then xτ(k)+1 ⇀
x. Replacing k = τk into (3.16), using the condition (3.1) that 1− λτ(k)c1 > 0
and 1− λτ(k)c2 > 0, we have

βτ(k)
(
f(zτ(k), xτ(k)+1)−f(zτ(k), x

∗)
)
6DH(x∗, xτ(k))−DH(x∗, xτ(k)+1)

−DH(zτ(k), xτ(k)+1)

−(1−λτ(k)c1)DH(yτ(k), xτ(k))

−(1− λτ(k)c2)DH(zτ(k), yτ(k)) 6 0,

hence

f(zτ(k), xτ(k)+1)− f(zτ(k), x
∗) 6 0. (3.25)

Since f is η-strongly monotone on C, we have

η
(
DH(x∗, zτ(k)) +DH(zτ(k), x

∗)
)
6 −f(zτ(k), x

∗)− f(x∗, zτ(k)). (3.26)

Combining (3.25) and (3.26), we get

η
(
DH(x∗, zτ(k)) +DH(zτ(k), x

∗)
)
6 −f(zτ(k), xτ(k)+1)−f(x∗, zτ(k)).
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Considering the limsup in the last inequality as k→∞ and using the Assump-
tion (f1), we get

η lim sup
k→∞

(
DH(x∗, zτ(k))+DH(zτ(k), x

∗)
)
6 lim sup

k→∞

(
−f(zτ(k), xτ(k)+1)

−f(x∗, zτ(k))
)

=− f(x, x)− f(x∗, x)

=− f(x∗, x)

60.

Therefore, lim sup
k→∞

DH(zτ(k), x
∗) = 0 and lim sup

k→∞
DH(x∗, zτ(k)) = 0. Using the

three point identity, we have

DH(x∗, xτ(k)+1)=DH(x∗, zτ(k)) +DH(zτ(k), xτ(k)+1)

−
〈
x∗−zτ(k),∇H(xτ(k)+1)−∇H(zτ(k))

〉
.

Passing the limit in the last inequality as k→∞ and from (3.24), we obtain

lim
k→∞

DH(x∗, xτ(k)+1) = 0.

From (3.23) we have

0 6 DH(x∗, xk) 6 DH(x∗, xτ(k)+1)
k→∞−−−→ 0.

The proof is complete. �

4. Applications

In this section, we first introduce the bilevel variational inequality problems,
and then apply Algorithm A for solving of these problems.

Let C be a nonempty, closed and convex subset of a reflexive Banach space.
The classical variational inequality problems, shortly (V IP ), are

Find z ∈ C such that 〈y − z,Az〉 ≥ 0, ∀y ∈ C,

where A : C→X∗ is a mapping and we denote the set of solutions of these
problems by V IP (A,C). The V IP have been intensively studied and widely
applied to some practical problems arising in economics, optimization prob-
lems, differential equations, transportation, net work and structural analysis,
finance and game theory. The important results and properties of V IP can
find in [22] and the references there in.
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The bilevel variational inequality problems (BV IP ) are formulated as fol-
lows:

Find x∗ ∈ V IP (A,C) such that 〈y − x∗, Bx∗〉 ≥ 0, ∀y ∈ V IP (A,C),

where A,B : C → X∗ and V IP (A,C) is the set of solutions of the following
V IP ,

Find x∗ ∈ C such that 〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ C.

Lemma 4.1. ([40]) Let C be a nonempty closed convex subset of a reflexive
Banach space X, A : C → X∗ be a mapping and f : X → R be a Legendre
function. Then
←−−−
ProjfC(∇f∗[∇f(x)− λA(y)]) = arg min

w∈C

{
λ〈w − y,A(y)〉+Df (w, x)

}
,

for all x ∈ X, y ∈ C and λ ∈ (0,+∞).

Let X be a real Banach space and 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. The

modulus of convexity δX : [0, 2]→ [0, 1] is defined by:

δX(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}
,

X is called uniformly convex if δX(ε) > 0 for any ε ∈ (0, 2], p-uniformly convex
if there is a cp > 0 so that δX(ε) ≥ cpε

p for any ε ∈ (0, 2]. The modulus of
smoothness ρX(τ) : [0,∞)→ [0,∞) is defined by:

ρX(τ) = sup
{‖x+ τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
,

X is called uniformly smooth if lim
τ→0

ρX(τ)

τ
= 0.

For the p-uniformly convex space, the metric and Bregman distance have
the following relation [35]:

τ‖x− y‖p ≤ D 1
p
‖.‖p(x, y) ≤ 〈x− y, JpX(x)− JpX(y)〉, (4.1)

where τ > 0 is fixed number and duality mapping JpX : X → 2X
∗

is defined
by:

JpX(x) = {f ∈ X∗, 〈x, f〉 = ‖x‖p, ‖f‖ = ‖x‖p−1},
for every x ∈ X. We know that X is smooth if and only if JpX is single-
valued mapping of X into X∗. We also know that X is reflexive if and only
if JpX is surjective, and X is strictly convex if and only if JpX is one-to-one.
Therefore, if X is smooth, strictly convex and reflexive Banach space, then
JpX is a single-valued bijection and in this case, JpX = (JqX∗)−1 where JqX∗ is
the duality mapping of X∗.
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For p = 2, the duality mapping JpX , is called the normalized duality and is
denoted by J. The function φ : X2 → R is defined by:

φ(y, x) =‖ y ‖2 −2〈y, Jx〉+ ‖ x ‖2,
for all x, y ∈ X. The generalized projection ΠC from X onto C is defined by:

ΠC(x) = arg min
y∈C

φ(y, x), ∀x ∈ X,

where C is a nonempty, closed and convex subset of X.

Let X be a uniformly smooth and uniformly convex Banach space, and

f=1
2‖.‖

2. So ∇f=J , D 1
2
‖.‖2(x, y)=

1

2
φ(x, y) and

←−−−
Proj

1
2
‖.‖2

C =ΠC . In particu-

lar if X is a Hilbert space, then ∇f = I, D 1
2
‖.‖2(x, y) =

1

2
‖x − y‖2 and

←−−−
Proj

1
2
‖.‖2

C =PC , where PC is the metric projection.

Now, we consider the bilevel equilibrium problem corresponding to the func-
tions g and f defined by:

g(x, y) = 〈y − x,Bx〉, ∀x, y ∈ C,

f(x, y) = 〈y − x,Ax〉, ∀x, y ∈ C,
where A,B : C → X∗ .

Corollary 4.2. Let C be a nonempty closed convex subset of a uniformly
smooth and 2-uniformly convex Banach space X. Assume that Assumptions on
f and g hold and the parameters are satisfied by the conditions (3.1). Then, the
sequences {xk}, {yk} and {zk} generated by the following algorithm converge
strongly to the unique solution point x∗ of the BV IPs.

yk = ΠC

(
J−1(J(xk)− λKB(xk))

)
,

zk = ΠTk

(
J−1(J(xk)− λKB(yk))

)
,

Tk = {v ∈ X|
〈
v − yk, J(xk)− λnB(xk)− J(yk)

〉
6 0},

xk+1 = ΠC

(
J−1(J(zk)− λKA(zk))

)
.

5. Numerical experiment

In this subsection the numerical results will be presented in order to test
our algorithm.

Let X=Rn and C=
{
x=(x1, x2, · · · , xn)∈Rn : −5 ≤ xi ≤ 5, 1 ≤ i ≤ n

}
.

We define the following bifunctions

g :Rn × Rn → R,
g(x, y) = 〈Px+Qy, y − x〉,
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where P and Q are orbitally symmetric positive semidefinite matrices such
that P −Q is positive semidefinite. We define

f :Rn × Rn → R,
f(x, y) = 〈Ax−By, y − x〉,

with A and B being positive definite matrices defined by:

B = NTN + nIn and A = B +MTM + nIn,

where M and N are orbitally n× n matrices and In is the identity matrix.

From [39], we have the following properties

(1) g is pseudomonotone.

(2) g is Lipschitz- type continuous with constants
1

2
‖P −Q‖.

(3) Sol(C, g) 6= ∅.
(4) f is n-strongly monotone.

In addition, we define the function H : Rn → R as

H(x) =
1

2
‖A1x− b1‖,

where A1 is a orbitally matrix and b1 is a orbitally vector. Therefore, we have

〈y,∇H〉 = lim
t→∞

H(x, ty)−H(x)

t
= 〈A1y,A1x− b1〉,

this mean is ∇H = A2
1x−A1b1.

Finally, we consider the condition (f2) ,

f(x, y) + f(y, z)− f(x, z) =〈Ax−Ay, y − z〉+ 〈By −Bz, y − x〉

=〈f̄1(x, y),∇f̂1(y)−∇f̂1(z)〉

+ 〈f̄2(x, y),∇f̂2(y)−∇f̂2(z)〉,

letting f̄1(x, y) = A(x, y), f̄2(x, y) = y − x, ∇f̂1(y) − ∇f̂1(z) = y − z and

∇f̂2(y)−∇f̂2(z) = B(y − z). Therefore, we have the following relations

‖f̄1(x, y)‖ = ‖A‖‖x− y‖, and L̄1 =
√

2‖A‖,

‖f̄2(x, y)‖ = ‖y − x‖, and L̄2 =
√

2,

‖∇f̂1(y)−∇f̂1(z)‖ = ‖x− y‖, and L̂1 =
√

2,

‖∇f̂2(y)−∇f̂2(z)‖ = ‖B‖‖x− y‖, and L̂2 =
√

2‖B‖.
Then, the our algorithm becomes
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Initialization: Choose x0 ∈ C, the tolerance ε > 0 and the sequences {λk}
and {βk} such that

{λk} =
1

2c1 + 700k
, lim
k→∞

λk = 0,

βk ↘ 0, 1− βkη + β2ks
2 < 1, η = n, s =

2∑
i=1

L̂iL̄i,

0 < τ < min{η, s}, 0 < βk < min

{
1

τ
,
2η − 2τ

s2 − τ2
,
2η

s2

}
.

(5.1)

Set k = 0 and go to Step 1.

Step 1: Compute (k = 0, 1, ...)

yk = arg min{λkg(xk, y) +
1

2
‖y − xk‖2 : y ∈ C},

zk = arg min{λkg(yk, z) +
1

2
‖z − xk‖2 : z ∈ Tk},

xk+1 = arg min{βkf(zk, t) +
1

2
‖t− zk‖2 : t ∈ C},

where Tk =
{
v ∈ X | 〈∇H(xk) − λkwk − ∇H(yk), v − yk〉} 6 0

}
and

wk∈{2Pyk + (P −Q)xk}.
Step 2: If max

{
‖yk − xk+1‖, ‖yk − xk‖

}
6 ε then stop.

Step 3: Otherwise, set k := k + 1 and go back to Step 1.

We will illustrate the numerical results by the following example.

Example 5.1. Suppose that X=R3 and C =
{
x = (x1, x2, x3) ∈ R3

−5 6

xi65, ∀i = 1, 2, 3
}
. We choose the tolerance ε=10−5, the starting point x0 =

(4, 0,−1) and the orbitally vector b =
[
1 0 0

]T
.We also choose the following

matrices

P=

4 0 0
0 4 0
0 0 4

, Q=

1 0 0
0 2 0
0 0 1

, M=

 1 −1 0
0 1 −1
−1 0 1

,

N=

1 2 0
0 2 1
2 0 1

, A=

 1 −1 0
0 1 −1
−1 0 1

.

The numerical results are showed in Table 1 and Table 2. The decreasing
values of ‖xm‖ and also the values of ‖xm − ym−1‖ are shown in the Figure 1
and Figure 2.
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Table 1. Numerical results

step m ym xm+1

0 (2.33333,−8.08441× 10−2,−8.33333× 10−1) (−2.93986, 1.80376× 10−2,−1.42857× 10−1)
1 (−1.80915, 1.08225× 10−2,−1.20879× 10−1) (1.87599,−1.3964× 10−2,−2.85714× 10−2)
2 (1.20599,−8.72747× 10−3,−2.44898× 10−2) (−7.17105× 10−1, 5.90252× 10−3,−9.52380× 10−3)
3 (−4.78070× 10−1, 3.81928× 10−3,−8.25396× 10−3) (6.68996× 10−2,−8.71873× 10−4,−4.55486× 10−3)
4 (4.59935× 10−2,−5.81249× 10−4,−3.98550× 10−3) (1.02730× 10−2,−1.14135× 10−4,−2.73292× 10−3)
5 (7.25155× 10−3,−7.80923× 10−5,−2.41140× 10−3) (3.51114× 10−3,−4.23808× 10−5,−1.89202× 10−3)
6 (2.53582× 10−3,−2.96663× 10−5,−1.68179× 10−3) (1.69705× 10−3,−1.99866× 10−5,−1.43793× 10−3)
7 (1.25046× 10−3,−1.42762× 10−5,−1.28657× 10−3) (9.96384× 10−4,−1.12190× 10−5,−1.16404× 10−3)
8 (7.47293× 10−4,−8.15923× 10−6,−1.04764× 10−3) (6.62020× 10−4,−7.10045× 10−6,−9.84957× 10−4)
9 (5.04396× 10−4,−5.24816× 10−6,−8.91151× 10−4) (4.78560,×10−4 − 4.89727× 10−6,−8.60544× 10−4)
10 (3.69796× 10−4,−3.67295× 10−6,−7.82313× 10−4) (3.67454× 10−4,−3.60493× 10−6,−7.69961× 10−4)
11 (2.87573× 10−4,−2.73975× 10−6,−7.03008× 10−4) (2.95060× 10−4,−2.78598× 10−6,−7.01516× 10−4)

Table 2. Numerical results

step m ‖xm‖ ‖ym−1 − xm‖
0 2.94339 5.31824
1 1.87625 3.68637
2 0.71719 1.92321
3 6.70601× 10−2 5.45002× 10−1

4 1.06309× 10−2 3.57454× 10−2

5 3.98868× 10−3 3.77647× 10−3

6 2.22442× 10−3 8.73553× 10−4

7 1.53229× 10−3 2.82094× 10−4

8 1.18679× 10−3 1.05840× 10−4

9 9.84673× 10−4 4.00550× 10−5

10 8.53156× 10−4 1.25725× 10−5

11 7.61048× 10−4 7.63405× 10−6

2 4 6 8 10 12
m

0.5

1.0

1.5

2.0

2.5

3.0

xm

Figure 1. Plotting of ‖xm‖.
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Figure 2. Plotting of ‖ym − xm+1‖.
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