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1. INTRODUCTION

Fractional integro-differential equation has recently given a natural founda-
tion for mathematical modeling of many real-world events, particularly in the
control, biological, and medical domains [13, 24, 28, 29, 30, 35]. Theoretical
and practical foundations have been built for the study of such situations.
Many disciplines of physics and technological sciences use fractional integro-
differential equations and control issues. Fractional integro-differential equa-
tions [3, 12, 14, 15, 16, 17, 18, 19, 20, 38, 39, 40] are measured as an alternative
model to nonlinear differential equations. The authors [26, 27, 31, 32, 33, 37|
have thoroughly explored the theory of fractional integrals and derivatives.

Agarwal et al. [1] investigated the existence and uniqueness of solutions
for various kinds of starting and BVP of fractional differential equations, as
well as inclusions related the fractional Caputo derivative in finite dimensional
spaces.

In both finite and infinite dimensional spaces, the concept of controllability
is crucial. Many writers have looked at the topic of controllability [2, 4, 5, 6,
8, 9, 22, 25, 38]. In Banach spaces, Balachandran et al. [10, 11] developed
certain fractional integro-differential systems with controllers. The purpose of
this study is to use Gronwall type inequalities to examine the controllability
of fractional integro-differential systems with boundary conditions.

This paper is motivated by the recent works [10, 11, 22, 34, 38] and its
main purpose is to establish sufficient conditions for the controllability of the
mixed-type Volterra-Fredholm integro-differential system with control of the
form:

“D’y(p) = Alp,9(p), (S9)(p), (HY)(p)) + Bu(p), p €Y :=1[0,],(1.1)
Ep(0) + Zy(v) = €,

where 0 < § < 1, the control function u(-) is given in L?(Y,4), a Banach
space of admissible control functions with i, B is a bounded operator, A :
Tx WV xW¥xW¥ — ¥is continuous, V¥ is a Banach space and =, =, € € R with
2+ Z#£0, and S, H are nonlinear operators given by

p 9
(S0)(p) = /O K(p.5)0(<)ds, (Hv)(p) = /O h(p, )9 (s)ds.

with 7§ = max { [ k(p,<)ds : (p,<) € T x T} and
V= max{fo19 h(p,s)ds : (p,s) € T x T}, where k,h € C (T x T,RT).
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2. PRELIMINARIES

Let C(Y, V) denote the Banach space with ||y||oc := sup{|[n(p)|| : p € Y}.
For measurable functions £ : T — R define the norm

€llLrrm = (/ (o ypdp) l<p<oo

Let LP(Y,R) denote the Banach space of all Lebesgue measurable functions
with § and [|]|zp(rr) < 0.

Definition 2.1. The Riemann-Liouville fractional order integral of order § >
0 of a function A is defined as

280 = [ Chd) RNEYY

Definition 2.2. The Riemann-Liouville fractional order derivative of order ¢
of A is defined by

@%+A)@)=Iw;;5)Qi)nlj@—«yh*ﬂA@mg n = —[—d].

Definition 2.3. For a function A given on the interval [Z, =], the Caputo
fractional order derivative of order ¢ of A is defined by

(D£:2) 0= g5 [ b0 a0 0

Now, let us initiate the definition of a solution of the problem (1.1).

Definition 2.4. A function n € CY(Y,¥) is said to be a solution of the
problem (1.1), if y satisfies the equation

DPy(p) = Alp,0(0), (S9)(0), (H9)(p)) + Bulp) ac. on T
and the condition Ey(0) + Zy(v) = €.

Lemma 2.5. (Lemma 3.2, [1]) Let n € C(Y,¥) be a functwn such that

L[ 5—1 4
= —— — A(Q)ds — =——
n@)uﬁé(pc) ($)ds _+_[
if and only if v is a solution of

{CWMMZA@%0<5<Lp€T

—_
—
—_—

— )’ A(q)ds — €

=(0) + Zn(v) = €. (2.1)

We get the following result as a result of Lemma 2.5 which is essential in
what follows.
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Lemma 2.6. Ify € C(Y,¥) is a function such that

) =557 [, (0= A 0(0). (S)(6). (Hi)0) + Bu()lds —
Up—l“(&) ; pP—S S, 9(<s), (O)(<), (119)(< u(s)|ds

— —
— —

—

= 9
X <F(5) /0 (0 — <) LA, 9(s), (S1)(s), (H)(5)) + Bul(s)]ds — QE) ’

for every p € Y if and only if v is a solution of the problem (1.1).

Definition 2.7. The system (1.1) is said to be controllable on Y if for all
0,91 € ¥, there exists a control u € L?(T, ) such that the solution n(p) of
the problem (1.1) satisfies () = y;.

First, we’ll provide the assumptions that we’ll be using.

(H1) A:TXx ¥ x ¥ x ¥ — ¥ is measurable on Y.
(H2) W : L?(Y,4) — ¥, defined by

Wu=—— /019(19 — )’ Bu(¢)ds,

induces an invertible operator W defined on L?(Y,l)/kerW and there
exist K > 0 such that HBW‘IH < K.
(H3) A: T x ¥ x ¥ x V¥ — ¥is continuous and there exists a constant

B1 € (0,0) and real-valued functions &;(p),&2(p),&3(p) € L%(T,\Il)
such that
1A(p; x(p), (S¥)(p), (HE)(p)) — Alp,v(p), (S1)(p), (Hy)(p))|l
< &(p)llr = vl + &) ISx — Syll + & (p) | Hr — Hy|l,

for each p € T and all ¢,y € V.
(H4) There exist a constant 35 € (0,0) and real-valued function o(p) €
1

L?2 (Y, W) such that
1A(p, v, Sy, Hy)|| < o(p),

for each p € T and all y € .
H5) There exists a constant A € [0,1— 1) for some 1 < p < —— and N > 0
p 1-6
such that

18 (p, u, S, Hu)|| < N (1 4+ glJul* + 24 ul*)
for each p € T and all u € V.

Lemma 2.8. ([23]) Let y € C(Y,¥) satisfy the following inequality
p
0

mwwsa+5£7p—o“wwowk+G/Xﬁ—o*wwﬁwﬁ, (2.2)
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where § € (0,1),\ € {0,1 — %), for some 1 < p< TLS’ and =,=,& > 0. Then
there exists a constant M* > 0 such that ||[n(p)| < M*.

Let us assume that M = + 8y + AP a1 , HP = 1 .
&1 + 1582 7053”L51 ) ||P||Lﬁl2 )

3. CONTROLLABILITY RESULT

Theorem 3.1. If the assumptions (H1)-(H5) are fulfilled and if

My>—h K9’ =
I'(5) (1t;§;>

then the problem (1.1) is controllable on Y.
Proof. Using the assumption (H2), for an arbitrary function u(p) define the

control
u(p) =W {§ = ;En(o)
I (3.2)
_F(5)/o (@ = <)" " A5, (), (S9) (<), (Ht))(g))dg} (p).
Let

WO~ HP < il E
> 1+ 1+
- _g, \ P2 F(6+1)> < E+E>
o8
re (5=3)
¢ =) =+ F ¢
+(=(1+ + )] ( 1+ .
<:( E+E) It )H( z >)r(5+1) =45
It suffices to display that when employing the above, the map G on
B, :={ne C(Y,¥) : ||y|| <r} is defined as follows

—

(Gn)(p)
1 t B )
-5 /0 (0= 9 1B 00, (S0, () + Bulelds ~ 5 g
= 0
X <F?5)/0 (9 — §)5—1[A(§, (<), (S9)(s), (HY)(s)) + Bu(s)]ds — Qf) 7

for every p € T. As a result, the existence of a solution to the problem (1.1)
equates to the mapping GG having a fixed point on B,.. We shall employ the
Banach contraction principle to prove that G has a fixed point. Obviously,
Gy(¥) = vy, this signifies that the control u directs the solution to the problem
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(1.1) from the starting state Hp to n; in time ) provided we are able to get a
fixed point of the mapping G.

First we show that G maps C (T, B,) into itself.
Step 1. For each y € B,, by (H3) and Holder inequality, we get

1 P
@O < 5 /0 (v

—_
=
—

—_

_l’_

0

()
96082 [yp

(9 — T)§_lp(7)dT> ds +

(/Op(p—<)
(/079(19—7)

()
K= v _
= 5w ), 0 [

(/ Yo - ¢>1”62df)1_52 (/ " (o()

_ K [? _
P+ s [ =o'

—_
—
—

1Y B
O+ 755 /0 (@) 1p<T>dT) "

—_ —_
(= =
— —

—
—_—

g, I(0)]

—

—_
— —
— —

16‘_512d<> o ( /0 p(p(c))ﬁgck) *

=4 =
[ (O)l
B2
d7'> ] dg

ar) o (/ (o()
) (et

¢
=+

1
Ba

~—

([0

¢
—+

—

)

() (—

Then, G maps from C (7,

i) (0
)+ ool (1+

B,) to C (Y, B,).

TG +1)

—
—
—

K90 N
(6+1)

¢
= r =+ =
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Step 2. On B,, G is a contraction mapping. By using (H2) and Holder
inequality, for ¢, € B, and any p € T, we obtain

- Al n(6), ($9) (<), () ()]s

G150 /079('19 =)’ HIAG 2(<), (S¥)(), (H)())
- A6 0(6), (S0)(6), (Hy) ) ds

i | 0= (B kO -0

%)
+ 15 L 0= TP IAG ), (90 ()

— A(r,9(r), (Sy)(). (Hn><v>>udf)d<

—_
—

9 =4 =
farerg ] 09 (S5 O -y

1 1919 =1 A S H
+F(5)/0< — 1) A £, (SO, (HY)(7)

A o(r), (S9) (). (Hn)<T))HdT> s

< It @?H Op@ — 9 |&1(6) +7562(6) + b Ea(s) | ds

= . 9
= HI:)gla) /0 (9= ) [&1(6) +562() +8&s(c)| de

F;( [0t (FE5 10 -0l

HEIL 02571 1) +gets) + (o] ar )

0

K= Y s (EtE B
+(E+5)r(5)/0('l9 <) ( = Ile(0) — (0)]

1

9
+W /0 (0 —7)0~1 [&(g) +7562(s) + ’ygfg(g)] d7> de
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: w (/op(p - <>15B11d<>1_61

X (/Op [51(§) + v5€2(s) +76L§3(§)}Bpldg)

B1

x AT&@+%@@+%&@FWQm

K p 4 (=2+ =
1 | 0= 9 (FEE 10 v

+ ”CF(_(;)’H </019(19 - T)feim)l_ﬁl

x < /0 i [61(7) + 73¢a(r) + s (r)] a d7-> 61) de

=
K=
=

0 =4 =
el KU e NURO]

([ i)

X (/019 [51(7) +70&2(7) +7§€3(7)}511 d7>61> ds

My —P <1 = > ( K9° )” H
< = = 1 r—y
1-8 = =
T(6) (5_51) 1 =45 r@+1)

1-p1

4 =4 =
o (14557 ) 10 - 0]

< As g o(p)lle — |-

Because A and G are continuous and by (2.2), 0 < A5, 9(p) < 1, thus G is a
contraction map. Hence there exists a unique fixed point y € C' (T, B,) such
that Gn(p) = 9(p). Any fixed point of G is a solution of (1.1) which fulfills
9(9¥) = y1. Then the system (1.1) is controllable on Y. O

T

4. APPLICATIONS

We provide some examples in this part to elucidate the use of our key
findings.
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Example 4.1. Consider the BVP as follows:

. B e~ [y(p)| Petr= |y(p)|
D°y(p) = 1+ e?)(L+ (o)) /0 16 1+ (o)
et y(p) _
“J, Arma T <=0
9(0) + 9(1) =0, -y

where ¢ > 0 is a constant, 6 € (0,1). Let 91,92 € [0,00) and p € T. Then we
have

—lp
|A(p,x(p), (ST)(p), (HE)(p)) — Alp,n(p), (S0)(p), (Hy)(p))| < 9(;6 [t — 1|
and
e~ tr
|A(p,9, Sy, Hy)| < 16
For p € Y.61(p) = €alp) = &olp) = g let. M = o557 o o

MS—Br K90 =)
Aspi0(p) = 5\ 1P (1 * 5r(5)> (1 * E+E> <b
re) (5

Then all the hypothesises in Theorem 3.1 are fulfilled, our conclusions can be
utilized to the system (4.1).

Example 4.2. Consider the fractional system proposed by Volterra and Fred-
holm:

DT x(1,m) = Ax(r, ) +lo(n) sin x(7,n) +11 [T e XD dot1y [} e=XMdp
+Bxz(t), 7€V =]0,1], ne s,
X(T)T/) :07 TE [07 1]7 776067

x(0,m) + f5 () (14 [x(o,m)IF) do =0, X'(0,n) = xa(n), 1€ ®,

where BE)TT,‘ denotes Caputo fractional derivative of order r (1.5 <r < 2), j €
L' (V,R*), o is continuous on & and Iyl > 0, & C RY is a bounded domain,
U=3=L*&).

Suppose that 2 to be the Laplace map with Dirichlet conditions as 2% = A
and

w(A) = {g € H}(®),Ag € L*(&)}.

Then, we have w(2) = H(&) N H3(&) - 2A produces C(7) for 7 > 0 in the
view of [7]. Let hs = 5272 and ps(n) = /(2/7) sin(smn), for all 5 € N.
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Suppose that {—hs, s} o ; is an eigensystem of the factor A. Then 0 < hy <
hyp < --- hy — oo when § — 00, {ps}oo; forms an orthonormal foundation of
3. Moreover

Ay =— D hs (X, s) s, X € (),

s=1

where (-, -) indicate the inner product in 3. Accordingly, C'(7) is defined by

C(r)x =) cos ( ﬁ57> (X, 1) p1s, X € 3,
s=1

which is connected with the sine family {S(7),7 > 0} in 3 defined by
S(r)x = i L sin (\/ hﬂ) (X ps) s, X €3
— Vhs

and ||C(7)||1.3) < 1 for any 7 > 0. Since r = 3, we know that 7 = 2, and
then [|Ce(7)][,, (5) < 1 for any 7 > 0.
The control operator B : il — 3 is defined by

o
Bx = Zahs (Z, ps) ps, @ > 0.
s=1
In the above

T

_Jxs, s=1,2,...,N,
)]0, s=N+1,N+2,...

for N in N. Indicate W : L?(V,4) — 3 as follows:

Wy = [ (1= 0Ty (- o) Balo)de

1

1

Thus, |z| = (Zjil (z, N5)2>§ for x € 4, we have

1
0o 2
|Bz| = (Z a?h? (:Z",uﬁ)2> < aNhy|z|,
s=1

which implies that there exists P; > 0 such that

1Bl 2.3 < Pr-
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Assume z(o,m) = x(n) € YU, x indicate x5 if s = 1,2,...,N or 0 if s =
N +1,---. Thus, we have

m:/ 1 -0 /553 (©)5 (1 - o)¥€) Bxdedo

_a/ / §S3 i ﬁssm( hs(1— Q)i§>> (X, 1) pedédo
N 00

=aZ/ §(€) (1~ cos (V/Ae€) ) de (%, o) e
s=1 0

= ai <1 - E%J(_hs)) (X Hs ) s -
s=1

In [21], let v = E%J (—%). Then, for all s € N, we possess —1 <
Es | (—hs) < v < 1 which implies
2,

0<1l-v<1-FEs,(—hs) <2
27

Thus, we assort W is surjective ever after, for each x = > 22, (x, tts) 115 € 3,
we clarify W=1: 3 — L%(V,4)/ ker W by

_ e () fs
W) ) = 2 X5, o

s=1

for x € 3 in such a way

(W) (- ! I

M< ——
< a(l—wv
We educate that W1y is independent of 7 € V. Furthermore, we get
1

1
HW ’LC3L (V,4)/ Ker W) < a(l —v)
as long as
x(T)(n) = x(7,n),
C 2 a%
DEx(m)(n) = —x(7,m),
or2

T 1 T
g <T,x,/0 h(7, 0, X)dg,/o k(r, Q,x)d9> = lo(+) sin x (7, -)+/0 h(7, 0, x)do

1
+/ k(r, 0, x)do,
0
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h(r, 0,x) = lie ™X@) k(1. 0,x) = lye~X(&) and ¥ is defined by
U(x)(n) = [y i(e)In (1 + [x(o, 77)|%) dp, then it is compact. Therefore, every

requirement of Theorem 3.1 is satisfied. Hence, the problem 4.2 is controllable
on [0,1].
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