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Abstract. In this article, we are interested in studying the fractional Sadik Transform and a

combination of the method of steps that will be applied together to find accurate solutions or

approximations to homogeneous and non-homogeneous delayed fractional differential equa-

tions with constant-coefficient and possible extension to time-dependent delays. The results

show that the process is correct, exact, and easy to do for solving delayed fractional dif-

ferential equations near the origin. Finally, we provide several examples to illustrate the

applicability of this method.

1. Introduction

The theory of delayed differential equations is important due to its demon-
strated applications in various physical problems of science and engineering.
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Inclusion of delay in the delayed differential equation seems to be opening new
possibilities of applications, especially in the field of engineering, chemistry,
physics, and finance [2, 5, 14, 9, 10, 15, 24]. Fractional calculus transacts with
study the integration and differentiation operators of fractional-order over real
or complex domains and some of their applications are in the area of control
theory of dynamical systems, fluid flow, diffusive transport akin to diffusion,
electrical networks, electrochemistry of corrosion, viscoelasticity, etc.

A major development has occurred in fractional differential equations (FDEs)
in recent years, we refer the reader with references see [1, 3, 4, 7, 10, 18, 19, 25].
On the other hand, the recent development of FDEs with Sadik Transform
(ST) and the theoretical analysis can be seen in [17, 20, 21, 22, 23]. For in-
stance, Shaikh in [20], proposed a new integral transform that known as ST.
This transform is a unification of some famous transforms such as Laplace,
Sumudu, Kamal, Laplace-Carson, and Elzaki transform. Further, the author
proved that above mentioned transforms are particular cases of ST. Shaikh in
[22], obtained transfer function of dynamical system in control theory using
ST. Moreover, the author solved some applications in control theory by ST.
However, exact solutions of delayed fractional differential equations (DFDEs)
are not known for most. Therefore different numerical techniques [13, 16, 26]
have been advanced and used to find approximate solutions, but sometimes
applying complicated calculations and algorithms. The suggested combination
of the method of steps and ST conquer such snags by proceeding simple and
easily applicable ways for solving DFDEs near the origin. ST has the strength
to handle the problems in extreme simplified way.

In this article, we introduce new results of solution to the problem (2.1)-(2.3)
involving Caputo delayed fractional operator with ST. Moreover, we use the
method of steps and ST to analyize our results. To the best of our knowledge,
the Caputo delayed functional differential equations involving ST have not
yet been investigated and developed till the present day. Using presented
methods, we are able to find the unique exact solution to a well posed initial
value problem.

The rest of article is organized as follows. In the next section, we intro-
duce the problem statement. In the third section, we begin by summarizing
the forms Caputo type fractional derivative, and we also present the back-
ground material and important lemmas which are related to our work. In the
sequel. The fourth section contains exact solutions or approximations to ho-
mogeneous and non-homogeneous DFDEs to the problem (2.1)-(2.3) by means
combination of the method of steps and ST. In the last section, we present
some illustrative examples.
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2. Problem statement

In the article, we employ the ST of fractional order and a combination of
the method of steps to solving certain classes of DFDEs of second order in the
form:

µ1D2u(κ) + µ2
CDρ

0+
u(κ) + µ3u(κ− ν) + µ4u(κ) = g(κ), κ > 0, (2.1)

with initial function

u(κ) = φ(κ), κ ∈ [−ν, 0] (2.2)

and initial conditions

u(0) = ℓ1, u′(0) = ℓ2, (2.3)

where g is a continuous function on [0, κ], ν > 0, µ1, µ2, µ3, µ4, ℓ1, ℓ2 are con-
stants, φ(κ) is continuous on [−ν, 0] and CDρ

0+
(1 < ρ < 2) denotes the

Caputo fractional derivative of order ρ. Equation (2.1) covers numerous equa-
tions with applications, e.g. the composite fractional oscillation equation [8],
delayed model of growth in cell populations [12], or the delayed model of
Bagley-Torvik equation [6].

3. Preliminaries

In this section, we introduce some basic definitions of fractional calculus
theory and properties of the ST which are used throughout this manuscript.

Definition 3.1. ([10]) The Caputo derivative of fractional order ρ (n − 1 <
ρ < n ∈ N) is given by

CDρ
0+
u(κ) =

1

Γ(n− ρ)

∫ κ

0
(κ− ν)n−ρ−1u(n)(ν)dν,

where the function u(κ) has absolutely continuous derivatives up to order
(n− 1). In particular, if 0 < ρ < 1, we have

CDρ
0+
u(κ) =

1

Γ(1− ρ)

∫ κ

0
(κ− ν)−ρu′(ν)dν.

Definition 3.2. A function u on 0 ≤ κ < 1 is said to be exponentially bounded
of order ϱ2 ∈ R if it satisfies an inequality of the form

u(κ) ≤ Meϱ2κ,

for some real constant M > 0.

Definition 3.3. ([20]) (Sadik transform) Assume that u is piecewise continu-
ous on the interval [0, A] which is exponentially bounded function of order a,
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for any real constant a, and some positive constants K and M . Then the ST
of u(κ) is defined by

U(v, σ1, σ2) = S[u(κ)] = 1

vσ2

∫ ∞

0
e−κvσ1u(κ)dκ,

where v is complex variable, σ1 is any non zero real number, and σ2 is any
real number.

Definition 3.4. ([14]) (Mittag-Leffer function) Let ϱ1, ϱ2 ∈ C, Re(ϱ1) > 0,
Re(ϱ2) > 0. Then the Mittag-Leffer function of one variable is given

Eϱ1(κ) =
∞∑

λ1=0

κλ1

Γ(ϱ1λ1 + 1)
.

The Mittag-Leffer function of two variables is given by

Eϱ1,ϱ2(κ) =
∞∑

λ1=0

κλ1

Γ(ϱ1λ1 + ϱ2)
.

Property 3.5. ([20]) Let U(v, σ1, σ2) be a ST of u(κ), that is, S[u(κ)] =
U(v, σ1, σ2). Then

(1) If u(κ) = 1, then S[1] = 1
vσ1+σ2

.

(2) If u(κ) = κn, then S[κn] = n!
vnσ1+(σ1+σ2)

.

Lemma 3.6. ([17]) Let n−1 < γ < n, (n = [γ] + 1) and u(κ), u′(κ),u′′(κ), . . . ,

u(n−1)(κ) be continuous on [0,∞) and of exponential order, while CDγ
0+
u(κ)

is piecewise continuous on [0,∞). Then ST of Caputo fractional derivative of
order γ of function u is given by

S[CDρ
0+
u(κ)] = vρσ1U(v, σ1, σ2)−

n−1∑
λ1=0

v(ρ−n+λ1)σ1−σ2u(n−1−λ1)(0+),

in particular for n = 2,

S[CDρ
0+
u(κ)] = vρσ1U(v, σ1, σ2)− v(ρ−2)σ1−σ2u(1)(0+)− v(ρ−1)σ1−σ2u(0+).

Lemma 3.7. ([17]) Let u(κ) = κϱ1m+ϱ2−1E
(m)
ϱ1,ϱ2(±aκϱ1). Then the ST of u(κ)

is given by

1

vσ2

∫ ∞

0
e−vσ1κκϱ1m+ϱ2−1E(m)

ϱ1,ϱ2(±aκϱ1)dκ =
m!vσ1ϱ1−(σ1ϱ2+σ2)

(vσ1ϱ1 ∓ a)m+1
,

where σ1, σ2 ∈ C,Re(ϱ1) > 0, Re(ϱ2) > 0, Re(v) > |a|
1

Re(σ1ϱ1) and E
(m)
ϱ1,ϱ2(κ) =

dm

dκmEϱ1,ϱ2(κ).
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4. Main results

In this partition, we present the exact solutions or approximations to ho-
mogeneous and non-homogeneous Caputo DFDEs to the problem (2.1)-(2.3)
involving ST. To prove that, we need the following auxiliary theorems.

Theorem 4.1. For ρ, γ > 0, ϱ1 ∈ R and vσ1ρ > |ϱ1|, the following inverse ST
formula holds:

S−1

[
vσ1(ρ−γ)

vσ1ρ − ϱ1

]
= κσ1γ−1Eσ1ρ,σ1γ(−ϱ1κ

σ1ρ).

Proof.

S−1

[
vσ1(ρ−γ)

vσ1ρ − ϱ1

]
= S−1

[
1

vσ1γ(1 + ϱ1
vσ1ρ )

]

= S−1

[
1

vσ1γ

∞∑
n=0

(
−ϱ1
vσ1ρ

)n
]

= S−1

[ ∞∑
n=0

(−ϱ1)
nΓ(n(σ1ρ) + σ1γ)

Γ(n(σ1ρ) + σ1γ)vn(σ1ρ)+σ1γ

]
,

by using Property 3.5 (2), we get

S−1

[
vσ1(ρ−γ)

vσ1ρ − ϱ1

]
=

∞∑
n=0

(−ϱ1)
n

Γ(n(σ1ρ) + σ1γ)
S−1

(
Γ(n(σ1ρ) + σ1γ)

vn(σ1ρ)+σ1γ

)

=

∞∑
n=0

(−ϱ1)
n

Γ(n(σ1ρ) + σ1γ)
κn(σ1ρ)+σ1γ−1

= κσ1γ−1
∞∑
n=0

(−ϱ1κ
σ1ρ)n

Γ(n(σ1ρ) + σ1γ)

= κσ1γ−1Eσ1ρ,σ1γ(−ϱ1κ
σ1ρ).

□

Theorem 4.2. For 0 < ρ ≤ 2, γ < 2, µ1, µ2 ∈ R, vσ1(2−ρ) > |µ1|, |vσ1(2−ρ) +
µ1| > |µ2|v−σ1ρ, the following inverse ST formula is valid:

S−1

[
vσ1γ

v2σ1 + µ1vσ1ρ + µ2

]
= κ2σ1−σ1γ−1

∞∑
λ1=0

∞∑
λ2=0

(−µ1)
λ2(−µ2)

λ1
(
λ1+λ2

λ2

)
κσ1[(2−ρ)λ2+2λ1]

Γ((2− ρ)σ1λ2) + (2 + 2λ1 − γ)σ1
.
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Proof.

vσ1γ

v2σ1 + µ1vσ1ρ + µ2

=
vσ1(γ−ρ)

vσ1(2−ρ) + µ1 + µ2v−σ1ρ

=
vσ1(γ−ρ)

vσ1(2−ρ) + µ1

1

1 + µ2v−σ1ρ

vσ1(2−ρ)+µ1

=
vσ1(γ−ρ)

vσ1(2−ρ) + µ1

∞∑
λ1=0

(−µ2)
λ1

(
v−σ1ρ

vσ1(2−ρ) + µ1

)λ1

= vσ1γ
∞∑

λ1=0

(−µ2)
λ1v−σ1(λ1ρ+ρ)

(vσ1(2−ρ) + µ1)λ1+1

= vσ1γ
∞∑

λ1=0

(−µ2)
λ1v−σ1(λ1ρ+ρ)

(vσ1(2−ρ)(λ1+1))(1 + µ1vσ1(ρ−2))λ1+1

= vσ1γ
∞∑

λ1=0

(−µ2)
λ1v−σ1(2λ1+2)

(1 + µ1vσ1(ρ−2))λ1+1

=

∣∣∣∣∣∣ 1

(1 + vσ1)λ1+1
=

∞∑
λ2=0

(
λ1 + λ2

λ2

)
(−vσ1)λ2

∣∣∣∣∣∣
= vσ1γ

∞∑
λ1=0

(−µ2)
λ1v−σ1(2λ1+2)

∞∑
λ2=0

(
λ1 + λ2

λ2

)
(−µ1v

σ1(ρ−2))λ2

= vσ1γ
∞∑

λ1=0

(−µ2)
λ1

∞∑
λ2=0

(
λ1 + λ2

λ2

)
(−µ1)

λ2vσ1[(ρ−2)−2λ1−2+λ2].

Applying the Property 3.5 (2), we deduce

S−1

vσ1γ
∞∑

λ1=0

(−µ2)
λ1

∞∑
λ2=0

(
λ1 + λ2

λ2

)
(−µ1)

λ2vσ1[(ρ−2)−2λ1−2+λ2]


= κ2σ1−σ1γ−1

∞∑
λ1=0

∞∑
λ2=0

(−µ1)
λ2(−µ2)

λ1
(
λ1+λ2

λ2

)
κσ1[(2−ρ)λ2+2λ1]

Γ((2− ρ)σ1λ2) + (2 + 2λ1 − γ)σ1
.

□

Now, we can characterize the proposed algorithm. First, we apply the
method of steps ([15], or [11]) to Cauchy problem (2.1)-(2.3). Then we deduce
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FDE without delay:

µ1D2u(κ) + µ2
CDρ

0+
u(κ) + µ4u(κ) = g(κ)− µ3φ(κ− ν), κ > 0. (4.1)

Applying Lemma 3.6 to equation (4.1), we obtain

U(v, σ1, σ2) =
G(v, σ1, σ2)− µ3Φ(v, σ1, σ2)

A

+
ℓ1(µ1v

σ1−σ2 + µ2v
σ1(ρ−1)−σ2)

A

+
ℓ2(µ1v

−σ2 + µ2v
σ1(ρ−2)−σ2)

A
,

u(κ) =S−1
[G(v, σ1, σ2)− µ3Φ(v, σ1, σ2)

A

+
ℓ1(µ1v

σ1−σ2 + µ2v
σ1(ρ−1)−σ2)

A

+
ℓ2(µ1v

−σ2 + µ2v
σ1(ρ−2)−σ2)

A

]
.

where A = µ1v
2σ1 + µ2v

σ1ρ + µ4.

Practical application will be clarified in different examples.

Example 4.3. Consider delayed equation of Bagley-Torvik type in the type D2u(κ) + CDρ
0+
u(κ) + u(κ− 1) + u(κ) = 1 + 2κ, κ ∈ [0, 1],

u(κ) = φ(κ) = 1 + κ, κ ∈ [−1, 0],
u(0) = u′(0) = 1.

(4.2)

Applying the method of steps, we get

D2u(κ) + CDρ
0+
u(κ) + u(κ) = 1 + κ, κ ∈ [0, 1]. (4.3)

Using the ST to equation (4.3), we have

(v2σ1 + v
3
2
σ1 + 1)U(v, σ1, σ2)

=
1

vσ1+σ2
+

1

v2σ1+σ2
+ v−σ2 + v

−1
2
σ1−σ2 + vσ1−σ2 + v

1
2
σ1−σ2

=
1

vσ1+σ2
(v2σ1 + v

3
2
σ1 + 1) +

1

v2σ1+σ2
(v2σ1 + v

3
2
σ1 + 1),

which implies

U(v, σ1, σ2) =
1

vσ1+σ2
+

1

v2σ1+σ2
.
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Thus,

u(κ) = S−1 [U(v, σ1, σ2)] = S−1

[
1

vσ1+σ2

]
+ S−1

[
1

v2σ1+σ2

]
= 1 + κ, κ ∈ [−1, 1]. (4.4)

Example 4.4. Consider the following delayed problem
CDρ

0+
u(κ) + u(κ− 2) + u(κ) = κ2 − 4κ+ 5, 1 < ρ ≤ 2,

u(κ) = φ(κ) = 1 + 2κ, κ ∈ [−2, 0],
u(0) = 1, u′(0) = 2.

(4.5)

Applying the method of steps, we have

CDρ
0+
u(κ) + u(κ) = 0, κ ∈ [0, 2]. (4.6)

Using the ST to equation (4.6), we get

vρσ1U(v, σ1, σ2)− v(ρ−2)σ1−σ2u(1)(0+)− v(ρ−1)σ1−σ2u(0+) + U(v, σ1, σ2) = 0,

U(v, σ1, σ2) =
vσ1ρ−(σ1+σ2)

vρσ1 + 1
+ 2

vσ1ρ−(2σ1+σ2)

vρσ1 + 1
.

Applying Theorem 4.1, we deduce exact solution of the equation (4.5) in the
form:

u(κ)=

{
κσ1+σ2−1Eσ1ρ,σ1+σ2(−κσ1ρ)+2κ2σ1+σ2−1Eσ1ρ,2σ1+σ2(−κσ1ρ), κ∈ [0, 2],
1 + 2κ, κ ∈ [−2, 0].

.

(4.7)

Example 4.5. Consider a delayed version of the composite fractional oscilla-
tion equation D2u(κ)− CDρ

0+
u(κ) + 2u(κ− 1)− u(κ) = 2κ2 − 3κ+ 2, (1 < ρ ≤ 2) ,

u(κ) = φ(κ) = κ2, κ ∈ [−1, 0],
u(0) = u′(0) = 0.

(4.8)
Applying the method of steps, we get

D2u(κ)− CDρ
0+
u(κ)− u(κ) = κ, κ ∈ [0, 1]. (4.9)

Using the ST to equation (4.9) and using Theorem 4.2, we have

(v2σ1 − vρσ1 − 1)U(v, σ1, σ2) =
1

v2σ1+σ2
.

That is,

U(v, σ1, σ2) =
v−2σ1−σ2)

v2σ1 − vρσ1 − 1
.



Caputo delayed fractional differential equations by Sadik transform 447

Therefore we have,

u(κ) = S−1

[
v−2σ1−σ2)

v2σ1 − vρσ1 − 1

]
.

Hence, we get

u(κ) =

{
κ4σ1+σ2−1

∑∞
λ1=0

∑∞
λ2=0

(λ1+λ2
λ2

)κσ1[(2−ρ)λ2+2λ1]

Γ((2−ρ)σ1λ2)+(2λ1+4)σ1)
, κ ∈ [0, 1],

κ2, κ ∈ [−1, 0].
(4.10)

Remark 4.6. (i) In the Example 4.3, the problem (4.2) has same solution
(4.4) in case using Laplace transform, Sumudu transform, or ST.

(ii) In the Example 4.4, if σ1 = 1, σ2 = 0, then the relation (4.7) reduces
to

(κ) =

{
Eρ,1(−κρ) + 2κEρ,2(−κρ), κ ∈ [0, 2],
1 + 2κ, κ ∈ [−2, 0],

(4.11)
which is a solution of (4.5) by using Laplace transform.

(iii) In the Example 4.5, if σ1 = 1, σ2 = 0, then the relation (4.10) reduces
to

u(κ) =

{
κ3

∑∞
λ1=0

∑∞
λ2=0

(λ1+λ2
λ2

)κ[(2−ρ)λ2+2λ1]

Γ((2−ρ)λ2)+(2λ1+4)) , κ ∈ [0, 1],

κ2, κ ∈ [−1, 0],

which is a solution of the problem (4.8) by using Laplace transform.

(iv) In general, the ST reduces to Laplace transform if σ1 = 1, σ2 = 0.
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