Nonlinear Functional Analysis and Applications Vol. 18, No. 2 (2013), pp. 219-225

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2013 Kyungnam University Press

A FIXED POINT THEOREM FOR CARISTI-MAPPINGS ON ORDERED T-METRIC SPACES

Nabi Shobe¹ and Alireza Mohammadpour²

¹Department of Mathematics Babol Branch, Islamic Azad University, Babol, Iran e-mail: nabi_shobe@yahoo.com

²Department of Mathematics Babol Branch, Islamic Azad University, Babol, Iran e-mail: mohammadpour_ar@yahoo.com

Abstract. In this paper, we give a fixed point theorem for Caristi-mapping on ordered T-metric spaces.

1. INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in fixed point theory. After this classical result, many authors have extended, generalized and improved this theorem in different ways. For example, ultra metric spaces [4], fuzzy metric spaces [1] and uniform spaces [3]. Recently in [2], the authors have introduced the concept of T - metric spaces and utilized it to prove a common fixed point theorem for single valued oprators in terms of a ω -T-distance. This paper is begun by some definitions and lemmas from [2].

2. Preliminaries

In what follows, \mathbb{N} is the set of all natural numbers and \mathbb{R}^+ is the set of all nonnegative real numbers.

A binary operation is a mapping $\diamond : [0, \infty) \times [0, \infty) \longrightarrow [0, \infty)$ which satisfy the following conditions:

⁰Received November 6, 2012. Revised January 25, 2013.

 $^{^02000}$ Mathematics Subject Classification: 54H25, 47H10.

⁰Keywords: T-metric, fixed point, Caristi-mappings.

- (i) \diamond is associative and commutative,
- (ii) \diamond is continuous,
- (iii) $a \diamond 0 = a$ for all $a \in [0, \infty)$,
- (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in [0, \infty)$.
- Let $a, b \in [0, \infty)$. Five typical examples of \diamond are:
- (a) $a \diamond_1 b = \max\{a, b\},$ (b) $a \diamond_2 b = \sqrt{a^2 + b^2},$ (c) $a \diamond_3 b = a + b,$
- (d) $a \diamond_4 b = ab + a + b$,
- (e) $a \diamond_5 b = (\sqrt{a} + \sqrt{b})^2$.

For $a, b \in \mathbb{R}^+$, straight forward calculations lead to the following relations among normed binary operations giving above

$$a \diamond_1 b \leq a \diamond_2 b \leq a \diamond_3 b \leq a \diamond_4 b$$

and

$$a \diamond_3 b \le a \diamond_5 b.$$

Lemma 2.1. ([2]) Let $f : [0, \infty) \longrightarrow [0, \infty)$ be a continuous, onto, and increasing map. If define $a \diamond b = f^{-1}(f(a) + f(b))$ for each $a, b \in [0, \infty)$, then \diamond is a binary operation.

Example 2.2. ([2]) $f : [0, \infty) \longrightarrow [0, \infty)$ defined by $f(x) = e^x - 1$. Then f is a continuous, onto and increasing map and $a \diamond b = Ln(e^a + e^b - 1)$ for $a, b \in [0, \infty)$ is a binary operation.

We have the following simple lemma.

Lemma 2.3. ([2]) (i) If $r, r' \ge 0$, then $r \le r \diamond r'$. (ii) If $\delta \in (0, r)$, there exist $\delta' \in (0, r)$ such that $\delta' \diamond \delta < r$. (iii) For every $\varepsilon > 0$, there exists $\delta > 0$ such that $\delta \diamond \delta < \varepsilon$.

Definition 2.4. ([2]) Let X be a nonempty set. A T – metric on X is a function $T: X^2 \longrightarrow \mathbb{R}$ that satisfies the following conditions: for $x, y, z \in X$

- (i) $T(x,y) \ge 0$ and T(x,y) = 0 if and only if x = y,
- (ii) T(x,y) = T(y,x),
- (iii) $T(x,y) \le T(x,z) \diamond T(z,y)$.

The $3 - tuple(X, T, \diamond)$ is called a T - metric space.

Example 2.5. ([2]) (i) Every ordinary metric d is a T – metric with $a \diamond b = a + b$.

(ii) Let $X = \mathbb{R}$ and $T(x, y) = \sqrt{|x - y|}$ for every $x, y \in \mathbb{R}$. if we take $a \diamond b = \sqrt{a^2 + b^2}$, then the function T is a T - metric on X. (iii) Let $X = \mathbb{R}$ and $T(x, y) = (x - y)^2$ for $x, y \in \mathbb{R}$. If we take $a \diamond b = (\sqrt{a} + \sqrt{b})^2$, then the function T is a T - metric on X.

Remark 2.6. ([2]) For fixed point $0 \le \alpha \le \frac{\pi}{4}$ if there exist β, γ such that $0 \le \alpha \le \beta + \gamma < \frac{\pi}{2}$,

then

$$\tan \alpha \le \tan \beta + \tan \gamma + \tan \beta \cdot \tan \gamma$$

Example 2.7. ([2]) Let X = [0,1] and $T(x,y) = \tan(\frac{\pi}{4}|x-y|)$ for every $x, y \in X$. If we take $a \diamond b = a + b + ab$, then by Remark 2.6 we have

 $T(x,y) \le T(x,z) \diamond T(z,y).$

Therefore the function T is a T – metric on X.

Definition 2.8. ([2]) Let (X, T, \diamond) be a T – metric space, r > 0 and $A \subset X$. (1) The set $B_T(x, r) = \{y \in X : T(x, y) < r\}$ is called a ball, centered at x and radius r.

(2) If for every $x \in A$ there exists r > 0 such that $B_T(x,r) \subset A$, then the set A is called open subset of X.

(3) A sequence $\{x_n\}$ in X converges to x if $T(x_n, x) \to 0$ as $n \to \infty$ and write $\lim_{n \to \infty} x_n = x$. That is for each $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $T(x_n, x) < \varepsilon$ for all $n \ge n_0$, then $\{x_n\}$ converges to x.

(4) A sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $T(x_n, x_m) < \varepsilon$ for all $n, m \ge n_0$.

(5) The T - metric space (X, T, \diamond) is said to be complete if every Cauchy sequence in X is convergent in X.

Let τ be the set of all open subsets of X, then τ is a topology on X (induced by the T - metric T).

Lemma 2.9. ([2]) Let (X, T, \diamond) be a T - metric space. If r > 0, then the ball $B_T(x, r)$ is an open set.

Lemma 2.10. ([2]) Let (X, T, \diamond) be a T-metric space. If a sequence $\{x_n\}$ in X converges to x, then x is unique.

Lemma 2.11. ([2]) Let (X, T, \diamond) be a *T*-metric space. Then every convergent sequence $\{x_n\}$ in X is a Cauchy sequence.

Definition 2.12. ([2]) Let (X, T, \diamond) be a T – metric space. T is said to be continuous if $\lim_{n \to \infty} T(x_n, y_n) = T(x, y)$, whenever

$$\lim_{n \to \infty} T(x_n, x) = \lim_{n \to \infty} T(y_n, y) = 0.$$

Lemma 2.13. ([2]) Let (X, T, \diamond) be a T – metric space. Then T is a continuous function.

3. MAIN RESULTS

In this section, we establish a common fixed point theorem in ordered T - metric space.

Definition 3.1. Let (X, T, \diamond) be a T – *metric* space and ϕ be a mapping from X to \mathbb{R} .

(i) Let $S: X \longrightarrow X$ be an arbitrary self-mapping on X such that

$$T(x, Sx) \le \phi(x) - \phi(Sx)$$
 for all $x \in X$,

where S is called a Caristi map on (X, T, \diamond) . (ii) Let $S, R: X \longrightarrow X$ be two self-mappings on X such that

$$T(Sx, Rx) \le \phi(Sx) - \phi(Rx)$$
 for all $x \in X$,

where R is called a S-Caristi map on (X, T, \diamond) . (iii) Define the relation \preceq on X (induced by ϕ) as follows:

$$x \preceq y \iff T(x, y) \le \phi(x) - \phi(y).$$

In the sequel, the operation $\diamond : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ satisfies the property:

 $a\diamond b\leq a+b.$

Lemma 3.2. Let (X, T, \diamond) be a T – metric space and ϕ be a mapping from X to \mathbb{R} . The \leq induced by ϕ is a (partial) order on X.

Proof. (i) Obviously $x \leq x$. (ii) It is easy to see that if $x \leq y$ and $y \leq x$ then x = y. (iii) Let $x \leq y$ then $T(x,y) \leq \phi(x) - \phi(y)$. Also, if $y \leq z$ then $T(y,z) \leq \phi(y) - \phi(z)$. From Definition 2.4 (iii), we have

$$T(x,z) \leq T(x,y) \diamond T(y,z)$$

$$\leq T(x,y) + T(y,z)$$

$$\leq \phi(x) - \phi(y) + \phi(y) - \phi(z)$$

$$= \phi(x) - \phi(z).$$

So, $x \leq z$.

Now, let us present our main results.

Theorem 3.3. Let (X, T, \diamond) be a complete T – metric space and $\phi : X \longrightarrow \mathbb{R}$ be a lower semicontinuous function which is bounded below and \leq be the order induced by ϕ . Let $S, R : X \longrightarrow X$ be two selfmappings such that R is a S-Caristi map on (X, T). If S(X) be a closed subspace of X, then there exists $z \in X$ such that Sz = Rz.

Proof. For each $x \in X$, define

$$H(x) = \{z \in X : Sx \preceq z\}$$

and

$$\alpha(x) = \inf\{\phi(Sx) : Sx \in H(x)\}.$$
(3.1)

Since $Sx \in H(x)$, then $H(x) \neq \emptyset$. From (3.1) we have $\alpha(x) \leq \phi(Sx)$. Take $x \in X$. We construct a sequence $\{x_n\}$ in the following way:

$$x_1 := Sx,$$

$$Sx_{n+1} \in H(x_n) \text{ such that } \phi(Sx_{n+1}) \le \alpha(x_n) + \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$

It is easy to see that

$$T(Sx_n, Sx_{n+1}) \le \phi(Sx_n) - \phi(Sx_{n+1})$$
 (3.2)

and

$$\alpha(x_n) \le \phi(Sx_{n+1}) \le \alpha(x_n) + \frac{1}{n}, \text{ for every } n \in \mathbb{N}.$$
(3.3)

Note that (3.2) implies that $\{\phi(Sx_n)\}\$ is a decreasing sequence of real numbers, and it is bounded. Therefore, the sequence $\{\phi(Sx_n)\}\$ is convergent to some positive real number, say L. Thus regarding (3.3), we have

$$L = \lim_{n \to \infty} \phi(Sx_n) = \lim_{n \to \infty} \alpha(x_n).$$
(3.4)

From (3.3) and (3.4), for each $k \in \mathbb{N}$, there exists $\mathbb{N}_k \in \mathbb{N}$ such that

$$\phi(Sx_n) \le L + \frac{1}{k}$$
, for all $n \ge \mathbb{N}_k$. (3.5)

223

Regarding the monotonicity of $\{\phi(Sx_n)\}$, for $m \ge n \ge \mathbb{N}_k$, we have

$$L \le \phi(Sx_m) \le \phi(Sx_n) \le L + \frac{1}{k}.$$
(3.6)

Thus, we get that

$$\phi(Sx_n) - \phi(Sx_m) < \frac{1}{k}, \text{ for all } m \ge n \ge \mathbb{N}_k.$$
 (3.7)

On the other hand, taking (3.2) into account, together with the triangle inequality, we observe that

$$T(Sx_{n}, Sx_{m}) \leq T(Sx_{n}, Sx_{n+1}) \diamond T(Sx_{n+1}, Sx_{n+2}) \diamond \cdots \diamond T(Sx_{m-1}, Sx_{m})$$

$$\leq T(Sx_{n}, Sx_{m}) + T(Sx_{n+1}, Sx_{n+2}) + \cdots + T(Sx_{m-1}, Sx_{m})$$

$$\leq \phi(Sx_{n}) - \phi(Sx_{n+1}) + \phi(Sx_{n+1}) - \phi(Sx_{n+2}) + \cdots + \phi(Sx_{m-1}) - \phi(Sx_{m})$$

$$= \phi(Sx_{n}) - \phi(Sx_{m})$$
(3.8)

for all $m \ge n$. That is

$$T(Sx_n, Sx_m) \le \phi(Sx_n) - \phi(Sx_m)$$

and taking (3.7) into account, (3.8) turns into

$$T(Sx_n, Sx_m) \le \phi(Sx_n) - \phi(Sx_m) < \frac{1}{k}, \text{ for all } m \ge n \ge \mathbb{N}_k.$$
(3.9)

Since the sequence $\{\phi(Sx_n)\}$ is convergent, the right hand side of (3.9) tends to zero. Which means that $\{Sx_n\}$ is a Cauchy sequence in (X, T, \diamond) . Since (X,T,\diamond) is complete, the sequence $\{Sx_n\}$ converges in (X,T,\diamond) , say $\lim_{n \to \infty} |X,T,\diamond|$ $T(Sx_n, x^*) = 0$. Since S(X) is a closed subspace of X, there exists $z \in X$ such that $\lim_{n \to \infty} Rx_n = x^* = Sz$. On the other hand, with the triangle inequality, we observe that

$$T(Sx_n, Rz) \leq T(Sx_n, Sz) \diamond T(Sz, Rz)$$

$$\leq T(Sx_n, Sz) + T(Sz, Rz)$$

$$\leq \phi(Sx_n) - \phi(Sz) + \phi(Sz) - \phi(Rz).$$

That is

$$T(Sx_n, Rz) \le \phi(Sx_n) - \phi(Rz).$$

Hence, $Rz \in H(x_n)$ for all $n \in \mathbb{N}$ which yields that $\alpha(x_n) \leq \phi(Rz)$ for all $n \in \mathbb{N}$. From(3.4), the inequality $L \leq \phi(Rz)$ is obtained. Moreover, by lower semi-continuity of ϕ , we have

$$\phi(Sz) \le \liminf_{n \to \infty} \phi(Sx_n) = L \le \phi(Rz)$$

Sinse R is a S-Caristi map for each $x \in X$, then we have

$$T(Sz, Rz) \le \phi(Sz) - \phi(Rz)$$

Common fixed point theorems in generalized normed spaces

Thus $\phi(Rz) \leq \phi(Sz)$ and we get that $\phi(Sz) = \phi(Rz)$. Hence $T(Sz, Rz) \leq 0$ which implies that Sz = Rz.

Corollary 3.4. Let (X, T, \diamond) be a complete T – metric space and $\phi : X \longrightarrow \mathbb{R}$ be a lower semicontinuous function which is bounded below and \preceq be the order induced by ϕ . Let $R : X \longrightarrow X$ be a Caristi selfmapping. Then R has a unique fixed point in X.

Proof. If we take S = I (Identity map) in Theorem 3.3, we get that Rz = z. For the uniqueness, Suppose z' is another common fixed point of R. We have

$$T(z, z') = T(z, Rz') \le \phi(z) - \phi(Rz') = \phi(z) - \phi(z').$$

Also

$$T(z', z) = T(z', Rz) \le \phi(z') - \phi(Rz) = \phi(z') - \phi(z).$$

Therefore, $2T(z', z) = 0$ which implies that $z = z'$.

Example 3.5. Let X = [0,1] and T be the usual metric d(x,y) = |x-y| for every $x, y \in [0,1]$. Define $\phi : X \longrightarrow \mathbb{R}$ by $\phi(x) = -2x$. Let \leq be usual order on X and define

 $x \le y \iff T(x, y) \le \phi(x) - \phi(y).$

It is easy to see that \leq is a partial order induced by ϕ on X. Let $R(x) = \frac{2x+1}{3}$, then obviously $T(x, Rx) \leq \phi(x) - \phi(Rx)$ and all conditions of Corollary 3.4 are holds, also x = 1 is the unique fixed point of R.

References

- D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3) (2004), 431-439.
- [2] S. Sedghi, N. Shobe, K.P.R. Rao and P.R.J. Rajendra, Extensions of Fixed Point Theorems with Respect to ω-T-Distance, International Journal of Advances in Science and Technology, 6(2) (2011), 100-107.
- [3] D. Turkoglu, Fixed point theorems on uniform spaces, Indian J. Pure Appl. Math., 34(3) (2003), 453-459.
- [4] A.C.M. Van Roovij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.