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Abstract. In this paper, we give a fixed point theorem for Caristi-mapping on ordered

T-metric spaces.

1. INTRODUCTION

It is well known that the Banach contraction principle is a fundamental
result in fixed point theory. After this classical result, many authors have
extended, generalized and improved this theorem in different ways. For ex-
ample, ultra metric spaces [4], fuzzy metric spaces [1] and uniform spaces [3].
Recently in [2], the authors have introduced the concept of T'— metric spaces
and utilized it to prove a common fixed point theorem for single valued opra-
tors in terms of a w-T-distance. This paper is begun by some definitions and
lemmas from [2].

2. PRELIMINARIES

In what follows, N is the set of all natural numbers and R* is the set of all
nonnegative real numbers.

A binary operation is a mapping ¢ : [0, 00) X [0, 00) — [0, 00) which satisfy
the following conditions:
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i) ¢ is associative and commutative,
) © is continuous,
(ili) a© 0 =a for all a € [0, o),
iv) aob < cod whenever a < ¢ and b < d, for each a,b,c,d € [0, 00).
t a,b € [0,00). Five typical examples of © are:
a) a oy b =max{a,b},
b) aoab=+a®+b?,
c) aozb=a+b,
d) ao4b=ab+a+Db,
e) aosb=(Va+vb).

For a,b € R, straight forward calculations lead to the following relations
among normed binary operations giving above

aorb<aosb<acozb<acoyb

and
a<ozb<aosb.

Lemma 2.1. ([2]) Let f : [0,00) — [0,00) be a continuous, onto, and in-
creasing map. If define aob= f~(f(a)+ f(b)) for each a,b € [0,00), then ¢
1 a binary operation.

Example 2.2. ([2]) f:[0,00) — [0,00) defined by f(x) = e* — 1. Then f
is a continuous, onto and increasing map and a b = Ln(e® + e® — 1) for
a,b € [0,00) is a binary operation.

We have the following simple lemma.

Lemma 2.3. ([2]) (i) Ifr,r’ >0, thenr <ror'.
(i) If 6 € (0,7), there exist &' € (0,r) such that ¢ od < r.
(iii) For every e > 0, there exists 0 > 0 such that 6 ¢ J < e.

Definition 2.4. ([2]) Let X be a nonempty set. A T — metric on X is a
function T': X2 — R that satisfies the following conditions: for z,y,z € X
(i) T(z,y) > 0 and T'(x,y) = 0 if and only if z =y,
(i) T(z,y) = T(y, ),
(iii) T(x,y) < T(x,z) o T(z,vy).

The 3 — tuple (X, T, ) is called a T'— metric space.

Example 2.5. ([2]) (i) Every ordinary metric d is a T — metric with a b =
a—+b.
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(ii)) Let X =R and T(x,y) = +/|z —y| for every x,y € R. if we take aob =
Va2 + b?, then the function T is a T — metric on X.

(iii) Let X = R and T(x,y) = (v — y)? for x,y € R. If we take aob =
(va +V/b)?, then the function T is a T — metric on X.

Remark 2.6. ([2]) For fixed point 0 < a < % if there exist 3,7 such that

0§a§6+7<g,

then
tana < tan 8 4+ tany + tan 3 - tan .

Example 2.7. ([2]) Let X = [0,1] and T(z,y) = tan(%|x—y|) for every
xz,y € X. If we take aob = a+ b+ ab, then by Remark 2.6 we have

T(x,y) <T(x,2)0T(z,vy).

Therefore the function T is a T — metric on X.

Definition 2.8. ([2]) Let (X, T,¢) be a T'— metric space, r > 0 and A C X.
(1) The set Br(xz,r) = {y € X : T(z,y) < r} is called a ball, centered at z
and radius 7.

(2) If for every x € A there exists r > 0 such that Br(z,r) C A, then the set
A is called open subset of X.

(3) A sequence {x,} in X converges to x if T'(zy,,x) — 0 as n — oo and

write h_r)n T, = x. That is for each € > 0 there exists ng € N such that
n o

T(xn, ) < € for all n > ng, then {z,,} converges to .

(4) A sequence {z,} in X is called a Cauchy sequence if for each € > 0, there
exists ng € N such that T'(z,, z,,) < € for all n,m > ng.

(5) The T — metric space (X, T,o) is said to be complete if every Cauchy
sequence in X is convergent in X.

Let 7 be the set of all open subsets of X, then 7 is a topology on X (induced
by the T' — metric T').

Lemma 2.9. ([2]) Let (X,T,¢) be a T — metric space. If r > 0, then the ball

Br(x,r) is an open set.

Lemma 2.10. ([2]) Let (X, T,0) be a T —metric space. If a sequence {x,} in
X converges to x, then x is unique.
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Lemma 2.11. ([2]) Let (X, T,©) be a T—metric space. Then every convergent
sequence {x,} in X is a Cauchy sequence.

Definition 2.12. ([2]) Let (X,T,¢) be a T — metric space. T is said to be
continuous if l£>n T(xp,yn) =T (x,y), whenever
n oo

lim T(zy,z) = h_r)n T (yn,y) = 0.
n o0

n—aoo

Lemma 2.13. ([2]) Let (X,T,o) be a T — metric space. Then T is a contin-
uous function.

3. MAIN RESULTS

In this section, we establish a common fixed point theorem in ordered T" —
metric space.

Definition 3.1. Let (X, T, ¢) be a T'—metric space and ¢ be a mapping from
X to R.
(i) Let S : X — X be an arbitrary self-mapping on X such that

T(xz,Sz) < ¢(x) — ¢(Sx) for all z € X,

where S is called a Caristi map on (X, T,9).
(ii) Let S, R: X — X be two self-mappings on X such that

T(Sz,Rx) < ¢(Sx) — ¢(Rzx) for all z € X,

where R is called a S-Caristi map on (X, T,¢).
(iii) Define the relation < on X ( induced by ¢ ) as follows:

r 2y <= T(z,y) < o(x) — o(y).

In the sequel, the operation ¢ : Rt — R™T satisfies the property:

aob<a-+bd.

Lemma 3.2. Let (X,T,0) be a T —metric space and ¢ be a mapping from X
to R. The < induced by ¢ is a (partial) order on X.

Proof. (i) Obviously z < z.

(ii) It is easy to see that if x < y and y < z then z = y.

(iii) Let x < y then T(z,y) < ¢(x) — ¢(y). Also, if y =< z then T(y,z) <
¢(y) — ¢(z). From Definition 2.4 (iii), we have
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T(x,z) < T(x,y)oT(y,z)
< T(x,y)+T(y,z)
< o(@) = d(y) + o(y) — 8(2)
= o(x) — o(2).
So, T = z. O

Now, let us present our main results.

Theorem 3.3. Let (X, T,0) be a complete T — metric space and ¢ : X — R
be a lower semicontinuous function which is bounded below and < be the order
induced by ¢. Let SR : X — X be two selfmappings such that R is a
S—Caristi map on (X, T). If S(X) be a closed subspace of X, then there exists
z € X such that Sz = Rz.

Proof. For each x € X, define
H(x)={z€ X :8z <z}
and
a(zr) = inf{¢p(Sz) : Sz € H(x)}. (3.1)
Since Sz € H(x), then H(z) # (). From (3.1) we have a(z) < ¢(Sz). Take

x € X. We construct a sequence {x,} in the following way:

r1:= Sx,

1
Stp+1 € H(xy,) such that ¢(Szpy1) < ax,)+—, VneN.
n

It is easy to see that

T(Szp, Stni1) < ¢(Sxpn) — O(Sxpi1) (3.2)
and
a(zy) < d(Stnt1) < azy) + %, for every n € N. (3.3)

Note that (3.2) implies that {¢(Sz,)} is a decreasing sequence of real num-
bers, and it is bounded. Therefore, the sequence {¢(Sz,)} is convergent to
some positive real number, say L. Thus regarding (3.3), we have

L= nh_r>noo<b(5’xn) = nh_r)nooa(xn). (3.4)
From (3.3) and (3.4), for each k € N, there exists N, € N such that

¢(Szp) < L+ %, for all n > Nj. (3.5)
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Regarding the monotonicity of {¢(Sx,)}, for m > n > Ni, we have

1
L < ¢(Szp) < ¢(Sz,) < L+ T (3.6)
Thus, we get that
1
d(Szpn) — d(Szm) < 7 for all m > n > Nj. (3.7)

On the other hand, taking (3.2) into account, together with the triangle in-
equality, we observe that

T(Szp, Stm) T(Szp, Stni1) o T(STpt1, STpt2) o -0 T(STpm—1,STm)
T(Sxp, Stm) + T (Stpt1, Stnyo) + -+ T(STm—1,STm)
¢(Szn) — ¢(STnt1) + A(STpt1) — ¢(STns2) + -+
+¢(STpm—1) — ¢(Sm)
P(Szn) — (Szm) (3.8)
for all m > n. That is

T(Sxpn, Stm) < ¢(Szp) — (STp)

and taking (3.7) into account, (3.8) turns into

VAN VARVAN

T(Sxp, Stm) < &(Szp) — d(STpm) < %, for all m > n > Ny. (3.9)

Since the sequence {¢(Sxz,)} is convergent, the right hand side of (3.9) tends
to zero. Which means that {Sz,} is a Cauchy sequence in (X,T,¢). Since
(X,T,o) is complete, the sequence {Sx,} converges in (X,T,¢), say li_>m
n—oo
T(Sxy,z*) = 0. Since S(X) is a closed subspace of X, there exists z € X such
that h_r)n Rx, =z* =5z
n o

On the other hand, with the triangle inequality, we observe that
T(Sxy, Rz) T(Sxn,Sz)oT(Sz, Rz)

T(Sxn,Sz)+T(Sz, Rz)

P(Szn) — ¢(S2) + ¢(52) — ¢(Rz).

ININ A

That is

T(Sxyn, Rz) < ¢(Sxzp) — ¢(R2).
Hence, Rz € H(x,) for all n € N which yields that a(z,) < ¢(Rz) for all
n € N. From(3.4), the inequality L < ¢(Rz) is obtained. Moreover, by lower
semi-continuity of ¢, we have

6(52) < liminf@(Sa,) = L < ¢(R:).
Sinse R is a S—Caristi map for each z € X, then we have
T(Sz,Rz) < ¢(Sz) — ¢(Rz).
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Thus ¢(Rz) < ¢(Sz) and we get that ¢(Sz) = ¢(Rz). Hence T'(Sz, Rz) <0
which implies that Sz = Rz. U

Corollary 3.4. Let (X,T,0) be a complete T —metric space and ¢ : X — R
be a lower semicontinuous function which is bounded below and < be the order
induced by ¢. Let R : X — X be a Caristi selfmapping. Then R has a unique
fized point in X.

Proof. If we take S = I ( Identity map) in Theorem 3.3, we get that Rz = z.
For the uniqueness, Suppose 2’ is another common fixed point of R. We have

T(z,2") = T(2, RZ) < ¢(2) — 6(R2') = ¢(2) — ¢(2").
Also
T(<,z) =T(<, Re) < ¢(2') — ¢(Rz) = ¢(2') — ¢(2).
Therefore, 27(2’, z) = 0 which implies that z = 2. O

Example 3.5. Let X = [0,1] and T be the usual metric d(z,y) = |z — y| for
every z,y € [0,1]. Define ¢ : X — R by ¢p(x) = —2x. Let < be usual order
on X and define

x<y<=T(x,y) < o(x)— P(y).
2x+1
It is easy to see that < is a partial order induced by ¢ on X. Let R(x) = %,

then obviously T'(z, Rx) < ¢(x) — ¢(Rz) and all conditions of Corollary 3.4
are holds, also x =1 is the unique fixed point of R.
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