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Abstract. Numerous problems in science and engineering defined by nonlinear functional

equations can be solved by reducing them to an equivalent fixed point problem. Fixed

point theory provides essential tools for solving problems arising in various branches of

mathematical analysis, such as split feasibility problems, variational inequality problems,

nonlinear optimization problems, equilibrium problems, complementarity problems, selection

and matching problems, and problems of proving the existence of solution of integral and

differential equations.The theory of fixed is known to find its applications in many fields of

science and technology. For instance, the whole world has been profoundly impacted by the

novel Coronavirus since 2019 and it is imperative to depict the spread of the coronavirus.

Panda et al. [24] applied fractional derivatives to improve the 2019-nCoV/SARS-CoV-2

models, and by means of fixed point theory, existence and uniqueness of solutions of the

models were proved. For more information on applications of fixed point theory to real life

problems, authors should (see [6, 13, 24] and the references contained in).
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1. introduction

Numerous problems in science and engineering defined by nonlinear func-
tional equations can be solved by reducing them to an equivalent fixed point
problem. Fixed point theory provides essential tools for solving problems
arising in various branches of mathematical analysis, such as split feasibil-
ity problems, variational inequality problems, nonlinear optimization prob-
lems, equilibrium problems, complementarity problems, selection and match-
ing problems, and problems of proving the existence of solution of integral and
differential equations.The theory of fixed is known to find its applications in
many fields of science and technology. For instance, the whole world has been
profoundly impacted by the novel Coronavirus since 2019 and it is imperative
to depict the spread of the coronavirus. Panda et al. [24] applied fractional
derivatives to improve the 2019-nCoV/SARS-CoV-2 models, and by means of
fixed point theory, existence and uniqueness of solutions of the models were
proved. For more information on applications of fixed point theory to real life
problems, authors should (see [6, 13, 24] and the references contained in).

Let E be a real Banach space with its dual E∗. The Monotone Variational
Inclusion Problem (MVIP) is to find x∗ ∈ E such that

0 ∈ (U + V )x∗, (1.1)

where U : E → E∗ is a single-valued monotone mapping and V : E → 2E

is a multi-valued monotone mapping. We denote the set of solution of (1.1)
by MV IP (U, V ) = (U + V )−1(0∗). MVIP (1.1) has received considerable at-
tention due to its wide theoretical value in nonlinear analysis or optimization
theory and wide spectrum of applications such as image reconstruction, ma-
chine learning and signal processing. It is also known that MVIP (1.1) has
been an important tool for solving problems arising in mechanics, finance, ap-
plied sciences, among others (see [1, 2, 3, 5]). If U = 0 in (1.1), we obtain the
following Variational Inclusion Problem (VIP), which is to find x∗ ∈ E such
that

0 ∈ V x∗. (1.2)

The classical method for solving MVIP (1.2) is the following forward-backward
splitting method (see [1, 17, 29]): for any x1 ∈ E and λ > 0

xn+1 = ResVλ ◦ Uλ(xn), ∀ n ≥ 1,

where ResVλ := (I + λV )−1 is the resolvent of V, Uλ := I − λU where I
denotes the identity mapping on E. The forward-backward splitting method
is known to include as special cases of the proximal point algorithm (PPA),
(when U = 0) and the gradient method, (see [15, 16]). However, from the
numerical point of view, the weak convergence of this method is not desirable
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and enough to make it efficient. Several results have been presented to solve
MVIP in the framework of real Hilbert spaces. For instance, Zhang and Wang
[35] introduced a contraction algorithm for solving MVIP (1.1) and proved that
the sequence generated by their algorithm converges weakly to the solution of
problem (1.1).

In the framework of real Hilbert space, Tianchai et al. [30] introduced the
following iterative method for approximating solution of (1.1) and fixed point
problem of a nonexpansive mappings: find x0, x1 ∈ C and let {xn} ⊂ C be
generated by{

yn = xn + θn(xn − xn−1),

xn+1 = S(αnf(xn) + (1− αn)Jλn)(yn − λnUyn + en),

for all n ∈ N, where C is a nonempty, closed and convex subset of a real Hilbert
space H, U is an α-inverse strongly monotone and V is a maximal monotone
operator on H such that the domain of V is included in C. Let Jλn = (I+V )−1

be the resolvent of V for λ > 0 and S : C → C be a nonexpansive mapping.
Then they proved that the sequence {xn} converges strongly to a point x∗

in their solution set. Also, Wei and Duan [33] extended the results of Lopez
et al. [20] from uniformly convex and q-uniformly smooth Banach spaces to
uniformly smooth and uniformly convex Banach spaces.

Furthermore, in the framework of p-uniformly convex real Banach spaces
which are also uniformly smooth, Okeke and Izuchukwu [23] studied and anal-
ysed a Halpern iterative method for split feasibility problem and zero of the
sum of two monotone operators and proved a strong convergence result for
approximating the solution of the aforementioned problems when U : E → E∗

is a single-valued nonlinear mapping and V : E → 2E
∗

is a multi-valued map-
ping.

Very recently, Ogbuisi and Izuchukwu [22] introduced the following shrink-
ing iterative method for approximating a point in the set of zeros of the sum of
two monotone operators, which is also a solution of a fixed point problems for
a Bregman strongly nonexpansive mapping in a real reflexive Banach space.
For u, x0 ∈ E are arbitrary, the sequence {xn} is generated by

C0 = C,

yn = 5g∗(αn 5 g(u) + βn 5 g(xn) + γn 5 g(T (xn))),

un = (ResλV g ◦ Ugλ)yn,

Cn+1 = {z ∈ Cn : Dg(z, un) ≤ αnDg(z, u) + (1− αn)Dg(z, xn)},
xn+1 = P gCn+1

(x0), n ≥ 0,
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with conditions lim
n→∞

αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1.

Then {xn} converges strongly to P gF (T )∩MV IP (1.1)(x0). One of the best ways to

speed up the convergence rate of iterative algorithms is to combine the iterative
scheme with the inertial term. This term is represented by θn(xn− xn−1) and
is a remarkable tool for improving the performance of algorithms and it is
known to have some nice convergence characteristics. For growing interests in
this direction (see [1, 3, 7, 25]).

The idea of inertial extrapolation method was first introduced by Polyak
[25] and was inspired by an implicit discretization of a second-order-in-time
dissipative dynamical system, so -called ”Heavy Ball with Friction”

v′′(t) + γv′(t) +5f(v(t)) = 0, (1.3)

where γ > 0 and f : Rn → R is differentiable. System (1.3) is discretized so
that, having the terms xn−1 and xn, the next term xn+1 can be determined
using

xn−1 − 2xn + xn−1

j2
+ γ

xn − xn−1

j
+5f(xn) = 0, n ≥ 1, (1.4)

where j is the step-size. Equation (1.4) yields the following iterative algorithm:

xn+1 = xn + β(x− n− xn−1)− α5 f(xn), n ≥ 1, (1.5)

where β = 1− γj , α = j2 and β(xn − xn−1) is called the inertial extrapolation
term which is intended to speed up the convergence of the sequence generated
by (1.5).

Motivated by the aforementioned results and other results in the literature,
we introduced a modified inertial Halpern method for approximating solution
of systems of monotone variational inclusion problem and fixed point problem
of a finite family of multi-valued Bregman relatively nonexpansive mapping in
a reflexive Banach space. We establish a strong convergence result for approx-
imating common solutions for systems of zeros of sum of maximal monotone
operators involving a Bregman inverse strongly monotone operators and fixed
point equation for finite family of a multi-valued relative nonexpansive map-
ping in a reflexive Banach space. Several consequences and application to
other optimization problems were discussed. Our result improves and extends
some important results presented by authors in literature.

We state our contributions in this article as follows:

(1) We were able to dispense with the condition
∞∑
n=1

θn||xn − xn−1|| < ∞

which is often used when employing the inertial method during the
course of obtaining our strong convergence result, (see [1]).
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(2) The class of mapping employed in our iterative algorithm generalizes
the ones in [1].

(3) The result discussed in this article extends and generalizes the results
of [1, 14, 19, 34] from Hilbert spaces and 2-uniformly convex Banach
spaces to reflexive Banach spaces.

(4) Our algorithm defined does not require at each step of the iteration
process, the computation of subsets of Cn, Qn and Dn (or Cn+1) as
in the case in [2] and the computation of the projection of the initial
point onto their intersection, which leads to a high computational cost
of iteration processes. The removal of all these restrictions makes our
work applicable to more real world problems.

(5) We will also like to emphasize that the sequence generated by our
iterative method converges strongly, which is more desirable to the
weak convergence result obtained in [36].

2. Preliminaries

We state some known and useful results which will be needed in the proof of
our main theorem. In the sequel, we denote strong and weak convergence by
”→” and ”⇀”, respectively. Let E be a reflexive Banach space with E∗ its dual
and C be a nonempty, closed and convex subset of E. Let g : E → (−∞,+∞]
be a proper, lower semicontinuous and convex function. Then the Fenchel
conjugate of g denoted by g∗ : E∗ → (−∞,+∞] is defined by

g∗(x∗) = sup{〈x∗, x〉 − g(x) : x ∈ E}, x∗ ∈ E∗.

Let the domain of g be denoted as domg = {x ∈ E : g(x) < +∞}, hence
for any x ∈ int(domg) and y ∈ E, the right-hand derivative of g at x in the
direction of y is defined by

g0(x, y) = lim
t→0+

g(x+ ty)− g(x)

t
.

The function g is said to be:

(i) Gâteaux differentiable at x if limt→0+
g(x+ty)−g(x)

t exists for any y. In

this case, g0(x, y) coincides with ∇g(x) (the value of the gradient ∇g
of g at x);

(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈
int(domg);

(iii) Fréchet differentiable at x, if its limit is attained uniformly in ||y|| = 1;
(iv) Uniformly Fréchet differentiable on a subset C of E, if the above limit

is attained uniformly for x ∈ C and ||y|| = 1.

Let g : E → (−∞,+∞] be a function. Then g is said to be:
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(i) essentially smooth, if the subdifferential of g denoted as ∂g is both
locally bounded and single-valued on its domain, where ∂g(x) = {w ∈
E : g(x)− g(y) ≥ 〈w, y − x〉, y ∈ E};

(ii) essentially strictly convex, if (∂g)−1 is locally bounded on its domain
and g is strictly convex on every convex subset of dom ∂g;

(iii) Legendre, if it is both essentially smooth and essentially strictly con-
vex. See [8, 9] for more details on Legendre functions.

Alternatively, a function g is said to be Legendre if it satisfies the following
conditions:

(i) The intdom g is nonempty, g is Gâteaux differentiable on intdom g
and dom ∇g = intdom g;

(ii) The intdom g∗ is nonempty, g∗ is Gâteaux differentiable on intdom g∗

and dom∇ g∗ = intdom g.

Let g : E → (−∞,+∞] be a Gâteaux differentiable function. The modulus
of total convexity of g at x ∈ dom g is the function υg(x, .) : [0,+∞)→ [0,+∞)
defined by

υg(x, t) := inf{Dg(y, x) : y ∈ dom g, ||y − x||}.

The function g is totally convex at x if υg(x, t) > 0, whenever t > 0. The func-
tion g is totally convex if it is totally convex at any point x ∈ int(dom g) and
is said to be totally convex on bounded sets if υg(B, t) > 0 for any nonempty
bounded subset B of E and t > 0, where the modulus of total convexity of the
function g on the set B is the function υg : int(dom g) × [0,+∞) → [0,+∞)
defined by

υg(B, t) := inf{vg(x, t) : x ∈ B ∩ dom g}.

We know that g is totally convex on bounded sets if and only if g is uniformly
convex on bounded sets (see [12], Theorem 2.10).

If E is a Banach space and Bs := {z ∈ E : ||z|| ≤ s} for all s > 0, then, a
function g : E → R is said to be uniformly convex on bounded subsets of E,
[35, see pp. 203 and 221] if ρst > 0 for all s, t > 0, where ρs : [0,+∞)→ [0,∞]
is defined by

ρs(t) = inf
x,y∈Bs,||x−y||=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(α(x) + (1− α)y)

α(1− α)
,

for all t ≥ 0, with ρs denoting the gauge of uniform convexity of g. The
function g is also said to be uniformly smooth on bounded subsets of E, [35,
see pp. 221], if limt↓0

σs
t for all s > 0, where σs : [0,+∞) → [0,∞] is defined
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by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αg(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0. The function g is said to be uniformly convex if the function
δg : [0,+∞)→ [0,+∞) defined by

δg(t) := sup

{
1

2
g(x) +

1

2
g(y)− g(

x+ y

2
) : ||y − x|| = t

}
,

satisfies limt↓0
δg(t)
t = 0.

Definition 2.1. ([10]) Let g : E → (−∞,+∞] be a convex and Gâteaux
differentiable function. Then, the function Dg : E × E → [0,+∞) defined by

Dg(x, y) := g(x)− g(y)− 〈∇g(y), x− y〉 (2.1)

is called the Bregman distance with respect to g, where x, y ∈ E.

It is well known that Bregman distance Dg does not satisfy the properties
of a metric function because Dg fail to satisfy the symmetric and triangular
inequality property. However, the Bregman distance satisfies the following
so-called three point identity: for any x ∈ dom g and y, z ∈ int(dom g),

Dg(x, y) +Dg(y, z)−Dg(x, z) = 〈∇g(z)−∇g(y), x− y〉. (2.2)

The relationship between Dg and ||.|| is guaranteed when g is strongly convex
with strong convexity constant ρ > 0, that is,

Dg(x, y) ≥ ρ

2
||x− y||2, ∀ x ∈ dom g, y ∈ int(dom g). (2.3)

Let T : C → int(dom g) be a mapping. A point p ∈ C is called a fixed point
of T if Tp = p. However, if T is a multi-valued mapping, then an element
p ∈ C is called a fixed point of T if p ∈ Tp. We denote by F (T ) the set of all
fixed points of T . Furthermore, a point p ∈ C is called an asymptotic fixed
point of T if C contains a sequence {xn} which converges weakly to p such
that lim

n→∞
||Txn − xn|| = 0. In the case of a multi-valued mapping, a point

p ∈ C is called an asymptotic fixed point of T , if there exist {xn} ⊂ C which

converges weakly to p such that lim
n→∞

d(xn, Txn) = 0. We denote by F̂ (T ) the

set of asymptotic fixed points of T .

Let C be a nonempty, closed and convex subset of int(dom g). Then an
operator T : C → int(dom g) is said to be

(i) Bregman nonexpansive, if

Dg(Tx, Ty) ≤ Dg(x, y), ∀ x, y ∈ C.
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(ii) Bregman relatively nonexpansive, if F (T ) 6= ∅ and

Dg(p, Tx) ≤ Dg(p, x), ∀ p ∈ F (T ), x ∈ C and ˆF (T ) = F (T ). (2.4)

(iii) Bregman firmly nonexpansive (BFNE) if

〈∇g(Tx)−∇g(Ty), Tx−Ty〉 ≤ 〈∇g(x)−∇g(y), Tx−Ty〉, ∀x, y ∈ C.

(iv) Bregman strongly nonexpansive (BSNE) with F̂ (T ) 6= ∅ if

Dg(y, Tx) ≤ Dg(y, x), ∀ x ∈ C, y ∈ F̂ (T ),

for any bounded sequence {xn}n≥1 ⊂ C,

lim
n→∞

(Dg(y, xn)−Dg(y, Txn)) = 0

implies

lim
n→∞

Dg(Txn, xn) = 0.

(v) quasi-Bregman nonexpansive if F (T ) 6= ∅ and for all x ∈ C, q ∈ F (T )

Dg(q, Tx) ≤ Dg(q, x).

Let K(C) and CB(C) denote the family of nonempty subsets and nonempty
closed bounded subsets of C, respectively. Let H be the pompieu-Hausdorf
metric on CB(C) defined by

H(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
b∈B

d(y,X)

}
,

for all X,Y ∈ CB(C), where d(x, Y ) := inf{‖x − y‖ : y ∈ Y } is the distance
from the point x to the subset of Y .

Definition 2.2. A mapping T : C → CB(C) is called Bregman relatively
nonexpansive mapping if

(1) F (T ) 6= ∅,
(2) Dg(x

∗, u) ≤ Dg(x
∗, x), ∀ u ∈ Tx, x ∈ C and x∗ ∈ F (T ),

(3) F (T ) = F̂ (T ).

Definition 2.3. A function g : E → R is said to be strongly coercive if

lim
||xn||→∞

g(xn)

||xn||
=∞.

Lemma 2.4. ([31]) Let E be a Banach space, s > 0 be a constant, ρs be the
gauge of uniform convexity of g and g : E → R be a convex function which is
uniformly convex on bounded subset of E. Then,
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(i) For any x, y ∈ Bs and α ∈ (0, 1), we have

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)ρs(||x− y||),
where Bs := {z ∈ E : ||z|| ≤ s}.

(ii) For any x, y ∈ Bs,
ρs(||x− y||) ≤ Dg(x, y),

where Bs := {z ∈ E : ||z|| ≤ s}.

Lemma 2.5. ([12]) Let E be a reflexive Banach space, g : E → R be a strongly
coercive Bregman function and V be a function defined by

V (x, x∗) = g(x)− 〈x, x∗〉+ g∗(x∗), x ∈ E, x∗ ∈ E∗.
Then V is convex in the second variable and V (x, x∗) = Dg(x,∇g∗(x∗)), for
all x ∈ E and x∗ ∈ E∗.

Lemma 2.6. ([12]) Let E be a Banach space and g : E → R a Gâteaux
differentiable function which is uniformly convex on bounded subsets of E. Let
{xn}n∈N and {yn}n∈N be bounded sequences in E. Then,

lim
n→∞

Dg(yn, xn) = 0 ⇒ lim
n→∞

||yn − xn|| = 0.

Lemma 2.7. ([12]) Let E be a Banach space and g : E → R a Gâteaux
differentiable function which is uniformly convex on bounded subsets of E. If
x0 ∈ E and the sequence {Dg(xn, x0)} is bounded, then the sequence {xn} is
also bounded.

Lemma 2.8. ([11]) If dom g contains at least two points, then the function g
is totally convex on bounded sets if and only if the function g is sequentially
consistent.

Definition 2.9. Let E be a reflexive Banach space and C be a nonempty,
closed and convex subset of E. A Bregman projection of x ∈ int(dom g) onto
C ⊂ int(dom g) is the unique vector ProjgC(x) ∈ C satisfying

Dg(P
g
C(x), x) = inf{Dg(y, x) : y ∈ C}.

Lemma 2.10. ([26]) Let C be a nonempty, closed and convex subset of a
reflexive Banach space E and x ∈ E. Let g : E → R be a Gâteaux differentiable
and totally convex function. Then,

(i) z = P gC(x) if and only if 〈∇g(x)−∇g(z), y − z〉 ≤ 0, ∀ y ∈ C.
(ii) Dg(y, P

g
C(x)) +Dg(P

g
C(x), x) ≤ Dg(y, x), ∀ y ∈ C.
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Lemma 2.11. ([26]) Let E be a real Banach space and g : E → R be uni-
formly Fréchet differentiable and bounded on bounded subsets of E, then ∇g
is uniformly continuous on bounded subsets of E from the strong topology of
E to the strong topology of E∗.

Lemma 2.12. ([32]) Let {an}, {γn}, {δn} and {tn} be sequences of nonneg-
ative real numbers satisfying the following relation:

an+1 ≤ (1− tn − γn)an + γnnan−1 + tnsn + δn, ∀n ≥ 0,

where
∞∑

n=n0

tn = +∞,
∞∑

n=n0

δn < +∞, for each n ≥ n0 (where n0 is a positive

integer) and {γn} ⊂ [0, 1
2 ], lim sup

n→∞
sn ≤ 0. Then, the sequence {an} converges

weakly to zero.

Lemma 2.13. ([26]) Let f : X → (−∞,+∞] be a proper, convex and lower
semicontinuous function. Then f∗ : X → (−∞,+∞] is a proper convex weak∗

lower semicontinuous function. Thus, for all z ∈ X; we have

Df

(
z,∇f∗

( N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi), (2.5)

where {xi} ⊆ X and {ti} ⊂ (0, 1) with
N∑
i=1

ti = 1.

Lemma 2.14. ([22]) Let f : E → R be a strongly coercive, bounded and Frchet
differentiable Legendre function which is totally convex on bounded subsets of
E. let A : E → E∗ be a Bregman inverse strongly monotone mapping and
B : E ( E∗ be a maximal monotone operator. Then the following statements
hold:

(i) Df (z,ResfλB ◦ A
f
λ(x)) + Df (ResfλB ◦ A

f
λ(x), x) ≤ Df (z, x) for all z ∈

(A+B)−10, x ∈ E and λ > 0;

(ii) ResfλB ◦A
f
λ is a BSNE operator such that

F (ResfλB ◦A
f
λ(x)) = F̂ (ResfλB ◦A

f
λ(x)).

Lemma 2.15. ([17]) Assume that f : X → R is a Legendre function which
is uniformly Fréchet differentiable and bounded on bounded subset of X. Let
Ti : 1 ≤ i ≤ N be BSNE operators which satisfy F̂ (Ti) = F (Ti) for each
1 ≤ i ≤ N and let T := TNTN−1 · · ·T1. If {F (Ti) : 1 ≤ i ≤ N} is nonempty,

then T is also BSNE with F (T ) = F̂ (T ).
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Lemma 2.16. ([17]) Let X be a reflexive real Banach space and f : X → R
be a Legendre function which is uniformly Fréchet differentiable and bounded
on bounded subset of X. Let B : X → 2X

∗
be a maximal monotone mapping

and T be a QBFNE mapping on X. Suppose that F (ResfλB) ∩ (T ) 6= ∅, then

ResfλB ◦ T is also a QBFNE mapping.

Lemma 2.17. ([17]) Let X be a reflexive real Banach space and f : X → R
be a Legendre function which is uniformly Fréchet differentiable and bounded
on bounded subset of X. Let Ti,i = 1, 2, · · · , N be QBFNE on X and TN =

TN ◦ TN−1 ◦ · · · ◦ T1. Assume that
N⋂
i=1

F (Ti) 6= ∅, then F (TN ) =
N⋂
i=1

F (Ti).

Remark 2.18. Set T iλ = ResfλBi ◦ A
f
iλ, where i = 1, 2, · · · , N and λ >

0. If (
N⋂
i=1

F (ResfλBi) ∩ (
N⋂
i=1

F (Afiλ)) is nonempty for each i = 1, 2, · · · , N , then

by Lemma 2.16, we obtain that T iλ is QBFNE for each i = 1, 2, · · · , N . Thus,
by Lemma 2.17, we obtain that

F (TNλ ◦ TN−1
λ ◦ · · ·T 1

λ ) =
N⋂
i=1

F (T iλ). (2.6)

Lemma 2.19. ([27]) Let B : X → 2X
∗

be a maximal monotone mapping such
that B−1(0∗) 6= ∅. Then

Df

(
u,ResfλB(x)

)
+Df

(
ResfλB(x), x

)
≤ Df (u, x) (2.7)

for all λ > 0, u ∈ B−1(0∗) and x ∈ X. Furthermore, B−1(0∗) = F (ResfλB)

and ResfλB is single-valued.

Lemma 2.20. ([18]) Let f : X → (−∞,+∞] be a Legendre function and let
A : X → 2X

∗
be a BISM mapping such that A−1(0∗). Then for any λ > 0, we

have the following:

(i) A−1(0∗) = F (Afλ) and Afλ is single valued;

(ii) For any u ∈ A−1(0∗) and x ∈ (dom Afλ), we have

Df (u,Afx) +Df (Afx, x) ≤ Df (u, x).

Remark 2.21. It follows that

(A+B)−1(0∗) = F (ResfλB ◦A
f
λ), (2.8)
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where A and B are single-valued and multi-valued mappings, respectively. If in
addition, A and B are BISM and maximal monotone mappings, respectively,

then it follows from Lemma 2.19 and Lemma 2.20 that the compositionResfλB◦
Afλ is also single-valued for any λ > 0.

Lemma 2.22. ([12]) Let C be a nonempty, closed and convex subset of a
reflexive Banach space E. Let f : E → R be a Gâteaux differentiable and
totally convex function. Then

(a) z = P fC(x) if and only if 〈∇f(x)−∇f(z), y−z〉 ≤ 0, ∀x ∈ E and y ∈ C;

(b) Df (y, P fC(x)) +Df (P fC(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C.

Lemma 2.23. ([32]) Let {an}, {xn}, {γn}, {δn} and {tn} be sequences of
nonnegative real numbers satisfying the following relation:

an+1 ≤ (1− tn − γn)an + γnnan−1 + tnsn + δn, n ≥ 0,

where
∞∑

n=n0

tn = +∞;
∞∑

n=n0

γn < +∞ for each n ≥ n0 (where n0 is a positive

integer) and {γn} ⊂ [0, 1
2 ], lim sup

n→∞
sn ≤ 0. Then, the sequence {an} converges

to zero.

Lemma 2.24. ([21]) Let {Γk} be a sequence of real numbers such that there
exists a subsequence {Γkj}j≥0 of {Γk} which satisfies Γkj ≤ Γkj+1 for all j ≥ 0.
Define a sequence of integers {τ(k)}k≥k∗ defined by:

τ(k) = max{n ≤ k : Γk < Γk+1}.

Then {τ(k)}k≥k∗ is a nondecreasing sequence satisfying lim
k→∞

τ(k) = ∞, and

for all k ≥ k∗, we have that Γτ(k) ≤ Γτ(k)+1.

3. Main results

Lemma 3.1. Let C be a nonempty closed convex subset of a reflexive Banach
space E with its dual E∗ and g : E → R be a strongly coercive Legendre func-
tion which is bounded, uniformly Freichet differentiable and totally convex on
bounded subsets of E. For each 1 ≤ r ≤ N , let Ur : E → E∗ be a finite family
of BISM mappings, Vr : E → 2E

∗
be a finite family of maximal monotone

mappings and Sr : C → CB(C) be a multi-valued Bregman relatively nonex-

pansive mapping. Suppose that Ω =
N⋂
r=1

(
F (Sr) ∩ (Ur + Vr)

−1(0)
)
6= ∅. Define
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a sequence {xn}∞n=1 generated arbitrarily by chosen x0, x1 ∈ E and any fixed
u ∈ E:

un = ∇g∗(∇g(xn) + θn(∇g(xn−1)−∇g(xn))),

wn = ∇g∗(JNφ ◦ J
N−1
φ · · · ◦ J1

φun),

yn = ∇g∗(δn,0∇g(wn) +
N∑
r=1

δn,r∇g(zn,r)), zn,r ∈ Srwn,

xn+1 = ∇g∗(αn∇g(n) + βn∇g(xn) + γn∇g(yn)),

(3.1)

where {θn} ⊂ [0, 1
2 ], {αn}, {βn}, {γn} and {δn,r} are sequences in (0, 1) such

that αn + βn + γn = 1, Jrφ = ResgφVr ◦ U
g
rφ, r = 1, 2, · · ·N , φ > 0 and the

following conditions are satisfied

(A1) 0 < e ≤ θn < γn ≤ 1
2 , ∀n ≥ 1;

(A2) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞;

(A3) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(A4)
N∑
r=0

βn,r = 1, lim inf
n→∞

δn,0δn,r > 0 for all 1 ≤ r ≤ N for all n ∈ N.

Then the sequence {xn} is bounded.

Proof. Let x∗ ∈ Ω. Then from (3.1), we obtain that

Dg(x
∗, un) = Dg(x

∗,∇g∗(∇g(xn)) + θn(∇g(xn−1))−∇g(xn)) (3.2)

≤ (1− θn)Dg(x
∗ − xn) + θnDg(x

∗, xn−1).

From (3.1), Lemma 2.13 and Lemma 2.14, we get

Dg(x
∗, yn) = Dg(x

∗,∇g∗(δn,0∇g(wn) +
N∑
r=1

δn,r∇g(zn,r)))

= δn,0Dg(x
∗, wn) +

N∑
r=1

δn,rDg(x
∗, zn,r)

≤ δn,0Dg(x
∗, wn) +

N∑
r=1

δn,rDg(x
∗, Srwn)

= Dg(x
∗, wn)

= Dg(x
∗∇g∗(JNφ ◦ JN−1

φ ◦ · · · ◦ J1
φun))

≤ Dg(x
∗, un)

≤ (1− θn)Dg(x
∗ − xn) + θnDg(x

∗, xn−1). (3.3)

Let ρs : E → R be a guage function of uniform convexity of the conjugate
function g∗. By (3.3), (3.1) and Lemma 2.13, we get
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Dg(x
∗, xn+1) ≤ Dg(x

∗,∇g∗(βn∇g(xn) + γn∇g(yn) + αn∇g(u)))

= Vg(x
∗, βn∇g(xn) + γn∇g(yn) + αn∇g(u)))

= g(x∗)− 〈x∗, βn∇g(xn) + γn∇g(yn) + αn∇g(u)〉
+ y∗(βn∇g(xn) + γn(yn) + αn∇g(u))

≤ βng(x∗) + γng(x∗) + αng(x∗)− βn〈x∗,∇g(xn)〉
− γn〈x∗,∇g ∗ (yn)〉 − αn〈x∗,∇g(u)〉+ βng

∗(∇g(xn))

+ γng
∗(∇g(yn))+αng

∗(∇g(u))−βnγnρ∗s
(
||∇g(xn)−∇g(yn)||

)
− βnαnρ∗s

(
||∇g(xn)−∇g(u)||

)
−γnαnρ∗s

(
||∇g(xn)−∇g(u)||

)
≤ βn

[
g(x∗)− 〈x∗,∇g(xn)〉+ g∗(∇g(xn))

]
+ γn

[
g(x∗)− 〈x∗,∇g(yn)〉+ g∗(∇g(yn))

]
+ αn

(
g(x∗)− 〈x∗,∇g(u)〉+ g∗(∇g(u))

)]
− βnγnρ∗s

(
||∇g(xn)−∇g(yn)||

)
= βnVg

(
x∗,∇g(xn)

)
+ γnVg

(
x∗,∇g(yn)

)
+ αnVg

(
x∗,∇g(u)

)
− βnγnρ∗s

(
||∇g(xn)−∇g(yn)||

)
≤ βnDg(x

∗, xn) + γnDg(x
∗, yn) + αnDg(x

∗, u)

− βnγnρ∗s
(
||∇g(xn)−∇g(yn)||

)
≤ βnDg(x

∗, xn) + γn(1− θnDg(x
∗, xn) + γnθnDg(x

∗, xn−1)

+ αnDg(x
∗, u)− βnγnρ∗s

(
||∇g(xn)−∇g(yn)||

)
= βnDg(x

∗, xn) + γnDg(x
∗, xn)− γnθnDg(x

∗, xn)

+ γnθnDg((x
∗, xn−1) + αnDg(x

∗, u)

− βnγnρ∗s
(
||∇g(xn)−∇g(yn)||

)
≤ (1− αn − γnθn)Dg(x

∗, xn) + γnθnDg(x
∗, xn−1) + αnDg(x

∗, u)

− βnγnρ∗s
(
||∇g(xn)−∇g(yn)||

)
≤ (1− αn − γnθn)Dg(x

∗, xn) + γnθnDg(x
∗, xn−1) + αnDg(x

∗, u)
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≤ max{Dg(x
∗, xn), Dg(x

∗, xn−1), Dg(x
∗, u)}

...

≤ max{Dg(x
∗, x1), Dg(x

∗, x0), Dg(x
∗, u)}. (3.4)

Hence, {Dg(x
∗, xn)} is bounded by applying Lemma 2.7, it implies that {xn}

is bounded. Consequently, {un}, {wn} and {yn} are bounded. �

Now, we state and prove the following strong convergence theorem

Theorem 3.2. Assume that Lemma 3.1 and assumptions (A1)-(A4) holds.
Then {xn} converges strongly to z = P gΩ(u) where P gΩ is the Bregman projection
of E onto Ω.

Proof. Let x∗ ∈ Ω, then by applying (3.3) and Lemma 2.13, we obtain that

Dg(x
∗, yn) = Vg(x

∗, δn,0∇g(wn) +
N∑
r=1

δn,r∇g(zn,r))

= g(x∗)− δn,0〈x∗,∇g(wn)〉 −
N∑
r=1

δn,r〈x∗,∇g(zn,r)〉

+ δn,0g
∗(∇g(wn)) +

N∑
r=1

δn,rg
∗(∇g(zn,r))

− δn,0δn,rρ∗s(||∇g(wn)−∇g(zn,r)||)

= δn,0Dg(x
∗, wn) +

N∑
r=1

δn,rDg(x
∗, zn,r)

− δn,0δn,rρ∗s(||∇g(wn)−∇g(zn,r)||)
≤ Dg(x

∗, wn)− δn,0δn,rρ∗s(||∇g(wn)−∇g(zn,r)||). (3.5)

On substituting (3.5) into (3.4), we get

Dg(x
∗, xn+1) ≤ βnDg(x

∗, xn) + γn(Dg(x
∗, wn)

− δn,0δn,rρ∗s(||∇g(wn)−∇g(zn,r)||)
− βnγnρ∗s(||∇g(xn)−∇g(yn)||)
≤ βnDg(x

∗, xn) + γnDg(x
∗, xn)− γnθnDg(x

∗, xn)

+ γnθnDg(x
∗, xn−1) + αnDg(x

∗, u)

− βnγnρ∗s(||∇g(xn)−∇g(yn)||)
− γnδn,0δn,rρ∗s(||∇g(wn)−∇g(zn,r)||)
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= (1− αn)Dg(x
∗, xn)− γnθnDg(x

∗, xn) + γnθnDg(x
∗, xn−1)

+ αnDg(x
∗, u)− βnγnρ∗s(||∇g(xn)−∇g(yn)||)

− γnδn,0δn,rρ∗s(||∇g(wn)−∇g(zn,r)||). (3.6)

We consider two cases:

Case 1: Assume that {Dg(x
∗, xn)} is monotone decreasing, that is,

Dg(x
∗, xn1) ≤ Dg(x

∗, xn).

Since Dg(x
∗, xn) ≤M , for all n ≥ 1, where

M := max{Dg(x
∗, u), Dg(x

∗, x1), Dg(x
∗, x0)},

which implies that {Dg(x
∗, xn)} is bounded. Therefore, {Dg(x

∗, xn)} is con-
vergent. Thus,

lim
n→∞

(Dg(x
∗, xn)−Dg(xn+1)) = lim

n→∞
(Dg(x

∗, xn−1)−Dg(x
∗, xn)) = 0. (3.7)

From (3.6), we obtain that

γnδn,0δn,rρ
∗
s(||∇g(wn)−∇g(zn,r)||) + βnγnρ

∗
s(||∇g(xn)−∇g(yn)||)

≤ (1− αn)Dg(x
∗.xn)−Dg(x

∗, xn+1) + γnθn(Dg(x
∗, xn−1)

−Dg(x
∗, xn)) + αnDg(x

∗, u).

By applying (3.7) and (A3), we obtain that

lim
n→∞

ρ∗s(||∇g(wn)−∇g(zn,r)||) = 0 = lim
n→∞

ρ∗s(||∇g(wn)−∇g(yn)||). (3.8)

Using the property of ρ∗ in Lemma 2.13, we obtain that

lim
n→∞

||∇g(wn)−∇g(zn,r)|| = 0 6= lim
n→∞

||∇g(wn)−∇g(yn)||. (3.9)

Since ∇g∗ is norm to norm uniformly continuous on bounded subsets of E∗,
we have

lim
n→∞

||wn − zn,r|| = 0 = lim
n→∞

||xn − yn||. (3.10)

Since d(wn, Srwn) ≤ ||wn − zn,r||, for each r ∈ (1, 2, · · · , N), we have

lim
n→∞

d(wn, Srwn) = 0. (3.11)

Also from (3.1), we get

||∇g(xn+1)−∇g(xn)|| = αn||∇g(u)−∇g(xn)||+ γn||∇g(yn)−∇g(xn)||.

Using (A2) and (3.9), we obtain

lim
n→∞

||∇g(xn+1)−∇g(xn)|| = 0. (3.12)
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Since ∇g∗ is a norm to norm uniformly continuous on bounded subsets of E∗,
we get

lim
n→∞

||xn+1 − xn|| = 0. (3.13)

By applying (3.12) in (3.1), we have

||∇g(un)−∇g(xn)|| = θn||∇g(xn−1)−∇g(xn)|| = 0 as n→∞. (3.14)

Since ∇g∗ is a norm to norm uniformly continuous on bounded subsets of E∗,
we have

lim
n→∞

||un − xn|| = 0. (3.15)

From (3.1) and (3.9), we have

||∇g(yn)−∇g(wn)|| =
N∑
r=1

δn,r||∇g(zn,r)−∇g(wn)|| = 0 as n→∞. (3.16)

Since ∇g∗ is a norm to norm uniformly continuous on bounded subsets of E∗,
we obtain

lim
n→∞

||yn − wn|| = 0. (3.17)

By combining (3.10) and (3.17), we have

lim
n→∞

||wn − xn|| = 0. (3.18)

Also, from (3.15) and (3.18), we get

lim
n→∞

||un − wn|| = 0 = ||un − JNφ ◦ JN−1
φ ◦ J ′φun||. (3.19)

By applying (3.17) and (3.18), we obtain

lim
n→∞

||yn − xn|| = 0. (3.20)

Since {xn} is bounded and E is a reflexive Banach space, there exists a
subsequence {xnm} of {xn}, such that xnm ⇀ z. Using (3.15), there exists a
subsequence {unm} of {un} which converges weakly to z. Also, from (3.18),
there exists a subsequence {wnm} of {wn} which converges to z. Hence, using

(3.11) and F (Sr) = F̂ (Sr), we obtain that z ∈
N⋂
r=1

F (Sr). Also, from [18] and

(3.19) we obtain that z ∈ F́ (JNφ ◦ J
N−1
φ ◦ J ′φ) = F (JNφ ◦ J

N−1
φ ◦ J ′φ), which

implies from Remark 2.18 and Remark 2.21 that

z ∈
N⋂
r=1

F (Jrφ) =

N⋂
r=1

F

(
ResgφVr ◦ U

g
rφ

)
,

that is, z ∈ Ω.
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Now, we show that {xn} converges strongly to z ∈ Ω. Note that,

lim sup
n→∞

〈xn − z,∇g(u)−∇g(z)〉 = lim
n→∞

〈xnm − z,∇g(u)−∇g(z)〉

= 〈x∗ − z,∇g(u)−∇g(z)〉.

Applying Lemma 2.21, we obtain

〈x∗ − z,∇g(u)−∇g(z)〉 ≤ 0,

and hence

lim sup
n→∞

〈xn − z,∇g(u)−∇g(z)〉 = 〈x∗ − z,∇g(u)−∇g(z)〉 ≤ 0. (3.21)

From (3.1), (3.3), (3.4) and Lemma 2.14

Dg(z
∗, xn+1) ≤ Dg(z

∗,∇g∗(βn∇g(xn) + γn∇g(yn) + αn∇g(u)))

= Vg(z
∗, βn∇g(xn) + γn∇g(yn) + αn∇g(u))

= Vg(z
∗, βn∇g(xn) + γn∇g(yn) + αn∇g(u)

− αn(∇g(u)∇g(z))) + αn〈xn+1 = z,∇g(u)−∇g(z)〉
= βnDg(z, xn) + γnDg(z, yn) + αn〈xn+1, z,∇g(u)−∇g(z)〉
≤ βnDg(z, xn) + γnDg(z, wn) + αn〈xn+1, z,∇g(u)−∇g(z)〉
≤ βnDg(z, xn) + γn((1− θn)Dg(z, xn) + θnDg(z, xn−1))

+ αn〈xn+1, z,∇g(u)−∇g(z)〉
≤ (1− αn − γnθn)Dg(z, xn) + αnθnDg(z, xn−1)

+ αn〈xn+1, z,∇g(u)−∇g(z)〉. (3.22)

Now, by (3.22) and Lemma 2.23, we prove that xn → z.

Case 2: Suppose that {Dg(z, xn)} is not monotone decreasing sequence.
Then, there exists a subsequence {Dg(z, xnm)} of {Dg(z, xn)} such that

Dg(z, xnm) < dg(z, xnm+1)

for all m ∈ N. Set Γn of Lemma 2.24, as Γn = Dg(z, xn) and τ : N → N is a
mapping for all n ≥ n0 (for some n0 large enough), defined by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Then τ is a nondecreasing sequence such that τ(n)→∞ as n→∞. Thus

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀ n ≥ n0.

This implies

Dg(z, xτ(n)) ≤ Dg(z, xτ(n)+1), n ≥ n0.

Since {Dg(z, xτ(n))} is bounded, lim
n→∞

Dg(z, xτ(n)) exists.



Monotone variational inclusion and fixed point problems 515

Following the same arguments as in Case 1, we have the following estimates

lim
τ(n)→∞

||uτ(n) − xτ(n)|| = 0;

lim
τ(n)→∞

||wτ(n) − uτ(n)|| = 0;

lim
τ(n)→∞

||yτ(n) − wτ(n)|| = 0;

lim
τ(n)

d(wτ(n), Sr(wτ(n));

lim
τ(n)
||xτ(n)+1 − xτ(n)|| = 0;

lim sup
τ(n)→∞

〈|xτ(n)+1 − z,∇g(u)−∇g(z)〉 ≤ 0.

(3.23)

From (3.23) and Γτ(n) ≤ Γτ(n)+1, we get

Dg(z, xτ(n)+1) ≤ (1− ατ(n) − γτ(n)θτ(n))Dg(z, xτ(n))

+ γτ(n)θτ(n)Dg(z, xτ(n)−1)

+ ατ(n)〈|xτ(n)+1 − z,∇g(u)−∇g(z)〉
≤ (1− ατ(n))Dg(z, xτ(n)+1)

+ ατ(n)〈|xτ(n)+1 − z,∇g(u)−∇g(z)〉.

Hence, we obtain

Dg(z, xτ(n)) ≤ Dg(z, xτ(n)+1) ≤ 〈|xτ(n)+1 − z,∇g(u)−∇g(z)〉, (3.24)

which yields from (3.23) that

lim
τ(n)

Dg(z, xτ(n)) = 0.

Hence

lim
τ(n)→∞

Dg(z, xτ(n)+1) = 0

and therefore

lim
τ(n)→∞

Γτ(n) = lim
τ(n)→∞

Γτ(n)+1 = 0, (3.25)

for all n ≥ n0, we have that Γτ(n) ≤ Γτ(n)+1, if n 6= τ(n) (that is, τ(n) < n),
because Γk+1 ≤ Γk for τ(n) ≤ h ≤ n. This yields for all n ≥ n0

0 ≤ Γn max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Therefore, lim
n→∞

Γn = 0 which also implies that lim
n→∞

Dg(z, xτ(n)) = 0. Hence

xn → z = P gΩu, as n→∞. �

By setting N = 1, in Theorem 3.2, we obtain the following results.



516 H. A. Abass, O. K. Narain and O. M. Onifade

Corollary 3.3. Let C be a nonempty closed convex subset of a reflexive Ba-
nach space E with its dual E∗ and g : E → R be a strongly coercive Le-
gendre function which is bounded, uniformly Frechet differentiable and totally
convex on bounded subsets of E. Let Ur : E → E∗ be a BISM mapping,
Vr : E → 2E

∗
be a maximal monotone mapping and Sr : C → CB(C)

be a multi-valued Bregman relatively nonexpansive mapping. Suppose that

Ω =
N⋂
r=1

F (Sr) ∩ (Ur + Vr)
−1(0) 6= ∅. Define a sequence {xn}∞n=1 generated

arbitrarily by chosen x0, x1 ∈ E and any fixed u ∈ E:

un = ∇g∗(∇g(xn) + θn(∇g(xn−1)−∇g(xn)),

wn = Resgφv ◦ U
g
φun,

yn = ∇g∗(δn,0∇g(wn) +
N∑
r=1

δn,r∇g(zn,r)), zn,r ∈ Srwn,

xn+1 = ∇g∗(αn∇g(u) + βn∇g(xn) + γn∇g(yn)),

Assume that Lemma 3.1 and assumptions (A1)-(A4) holds. Then {xn} con-
verges strongly to z = P gΩ(u), where P gΩ is the Bregman projection of E onto
Ω.

When Sr is a single-valued Bregman relatively nonexpansive mapping we
obtain the following result:

Corollary 3.4. Let C be a nonempty closed convex subset of a reflexive Ba-
nach space E with its dual E∗ and g : E → R be a strongly coercive Legendre
function which is bounded, uniformly Frechet differentiable and totally convex
on bounded subsets of E. For each 1 ≤ r ≤ N , let Ur : E → E∗ be a finite
family of BISM mappings, Vr : E → 2E

∗
be a finite family of maximal mono-

tone mappings and Sr : C → C be a Bregman relatively nonexpansive map-

ping. Suppose that Ω =
N⋂
r=1

(
F (Sr) ∩ (Ur + Vr)

−1(0)
)
6= ∅. Define a sequence

{xn}∞n=1 generated arbitrarily by chosen x0, x1 ∈ E and any fixed u ∈ E:

un = ∇g∗(∇g(xn) + θn(∇g(xn−1)−∇g(xn)),

wn = ∇g∗(JNφ ◦ J
N−1
φ ◦ · · · ◦ J ′φun),

yn = ∇g∗(δn,0∇g(wn) +
N∑
r=1

δn,r∇g(Srwn),

xn+1 = ∇g∗(αn∇g(u) + βn∇g(xn) + γn∇g(yn)).

Assume that Lemma 3.1 and assumptions (A1)-(A4) holds. Then {xn} con-
verges strongly to z = P gΩ(u), where P gΩ is the Bregman projection of E onto
Ω.

By setting U = 0, we obtain the following result:
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Corollary 3.5. Let C be a nonempty closed convex subset of a reflexive Ba-
nach space E with its dual E∗ and g : E → R be a strongly coercive Legendre
function which is bounded, uniformly Frechet differentiable and totally convex
on bounded subsets of E. For each 1 ≤ r ≤ N , let Ur : E → E∗ be a finite fam-
ily of BISM mappings, Vr : E → 2E

∗
be a finite family of maximal monotone

mappings and Sr : C → CB(C) be a multi-valued Bregman relatively non-

expansive mapping. Suppose that Ω =
N⋂
r=1

(
F (Sr) ∩ (Vr)

−1(0)
)
6= ∅. Define

a sequence {xn}∞n=1 generated arbitrarily by chosen x0, x1 ∈ E and any fixed
u ∈ E: 

un = ∇g∗(∇g(xn) + θn(∇g(xn−1)−∇g(xn))),

wn = ∇g∗(JNφ ◦ J
N−1
φ ◦ · · · ◦ J ′φun),

yn = ∇g∗(δn,0∇g(wn) +
N∑
r=1

δn,r∇g(zn,r)), zn,r ∈ Srwn,

xn+1 = ∇g∗(αn∇g(u) + βn∇g(xn) + γn∇g(yn)).

Assume that Lemma 3.1 and assumptions (A1)-(A4) holds. Then {xn} con-
verges strongly to z = P gΩ(u), where P gΩ is the Bregman projection of E onto
Ω.

Hence Jrφ = ResφVr , r = 1, 2, · · ·N and φ > 0.

4. Application

Variational Inequality Problem: Let E be a reflexive Banach space and
E∗ be its dual, let U : E → E∗ be a BISM mapping and C be a nonempty,
closed and convex subset of dom U . The variational inequality problem (VIP)
is to find z ∈ C such that

〈x− z, Uz〉 ≥ 0, ∀x ∈ C. (4.1)

We denote by V I(C,A) the solution set of VIP (4.1). Recall that the indication
function of C is given by

iC(x) =

{
0, if x ∈ C,
∞, if x /∈ C.

It is known that iC is a proper, lower semicontinuous and convex function and
its subdifferential ∂iC is maximal monotone. Furthermore, from [4], we know
that

∂iC(x) =

{
NC(x), if x ∈ C,
φ, if x /∈ C,
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where NC is the normal curve of C given by

NC(x) = {z∗ ∈ E∗ : 〈y − x, z〉 ≤ 0, ∀y ∈ C}.
Thus, we can define the resolvent associated with ∂iC for φ > 0 by

Resgφ∂iC (x) = (∇g + φ∂iC)−1 ◦ ∇g(x), ∀x ∈ E.
Hence, we have for any x ∈ E and y ∈ C,

z = Resgφ∂iC (x)⇔ ∇g(x) ∈ ∇g(z) + φ∂iC(z)

⇔ ∇g(x) ∈ ∇g(z) + φNC(z)

⇔ ∇g(x)−∇g(z) ∈ φNC(z)

⇔ 1

φ
〈y − z,∇g(x)−∇g(z)〉 ≤ 0 ∀y ∈ C

⇔ 〈y − z,∇g(x)−∇g(z)〉 ≤ 0 ∀y ∈ C
⇔ z = P gC(x),

where P gC is the Bregman projection from E onto C. Thus, it follows that ([28],
Proposition 8) that F (Resgφ∂iC ◦ U

g
φ) = F (P gC ◦ U

g
φ) = V IP (U,C). Therefore,

by setting V = ∂iCr , r = 1, 2, · · ·N in Theorem 3.2, we obtain the following
result: 

un = ∇g∗(∇g(xn) + θn(∇g(xn−1)−∇g(xn))),

wn = ∇g∗(JNφ ◦ J
N−1
φ ◦ · · · ◦ J ′φun),

yn = ∇g∗(δn,0∇g(wn) +
N∑
r=1

δn,r∇g(zn,r)), zn,r ∈ Srwn,

xn+1 = ∇g∗(αn∇g(u) + βn∇g(xn) + γn∇g(yn)),

where Jrφ = Resgφ∂iC ◦ U
g
φ ◦ U

g
φ .
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