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Abstract. In this work, some various types of Dissipativity in random dynamical systems

are introduced and studied: point, compact, local, bounded and weak. Moreover, the notion

of random Levinson center for compactly dissipative random dynamical systems presented

and prove some essential results related with this notion.

1. Introduction

Random Dynamical System(RDS) considered as branch of the dynamical
system that involve two essential components:

• the noise model,
• the system model which is disconcerted by the noise.

The noise, through this paper, will be exhibited by a metric dynamical
system in the view of the ergodic theory. The RDS is an importance in the
modeling of several phenomena in biology, physics, ets. In 1945 [14] Ulam
and Neumann the first lesson the RDS. Arnold (1998) [2] are introduced the
concept of RDS.
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The aim of this paper is studying different types of dissipativity for RDSs
and the notion of Levinson center. Dissipative systems have certain impor-
tance in many science such as physics and engineering. The hypothesis of dis-
sipation yield results in essential constraint on behavior of its dynamic. Many
papers devoted to the study the dissipativety in RDSs, see, for example, Gu
[7], Huang [8], Kloeden [9], Kuehn [10], Kuksin [11], Wang [15], Xiaoying [17],
Yuhong [18] for more details.

There are several applications of the theory of dissipativity: systems with
a finite number of degrees of freedom, stability of feedback systems, electrical
networks, thermodynamic. Like a deterministic case, the theory of stochas-
tic dissipativity play an essential role in lecturing stochastic robustness [16],
risk-sensitive disturbance rejection, stability in probability of feedback inter-
connections, and optimality with averaged performance measures for stochas-
tic dynamical systems [12], the stochastic dissipativity theory can be used to
design feedback controllers that add dissipation and guarantee stability ro-
bustness in probability allowing stochastic stabilization to be understood in
physical terms [13].

Furthermore, in 2021, Cheban [5] give a numerous applications these results
to different classes of evolution equations (ordinary differential equations, dif-
ference equations, functional differential equations and some class of partial
differential equations of parabolic type).

2. Random dynamical systems, some general concepts

General facts about RDSs are stated in this section. For more details, see
for example [1] and [6].

Definition 2.1. ([6]) Let (Ω,F , P) be a probability space and θ : T×Ω −→ Ω
be a measurable function satisfy the following

θ0 = id, θt ◦ θs = θt+s for all t, s ∈ T; and θt P = P for all t ∈ T.

A set B ∈ F is called θ-invariant if θtB=B for all t∈ T . An MDS θ called
ergodic under P if for any θ-invariant set B ∈ F we have either P(B)=0 or
P(B)=1.

Definition 2.2. ([6]) Let X be a topological space and T be a locally compact
group. The random dynamical system (RDS) is a pair (θ, ϕ) involving an MDS
θ and a cocycle ϕ over θ of continuous mappings of X, that is, a measurable
mapping

ϕ T× Ω×X −→ X, (t, ω, x) 7−→ ϕ(t, ω, x) such that
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(1) for every t ∈ T and ω ∈ Ω, the function x 7−→ ϕ(t, ω, x) ≡ ϕ(t, ω)x
is continuous,

(2) for all t, s ∈ T and ω ∈ Ω, the function ϕ(t, ω) := ϕ(t, ω, ·) fulfill:

ϕ(0, ω) = id, ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω).

The property (2) called cocycle property of ϕ.

Definition 2.3. ([6]) Consider the metric space (X, d).

(1) A random set is the set-valued function ω 7−→ M (ω) 6= ∅ such that for
any x ∈ X the function

ω 7−→ distX(x,M(ω))

is measurable. The random set M is called a random closed set if M(ω)
is closed for each ω ∈ Ω and any adjective applying on M(ω) is closed
for each ω ∈ Ω applied similarly on M .

(2) A random set {M(ω)} is said to be bounded if for some x0 ∈ X and
some positive random variable r(ω) the following fulfill:

M(ω) ⊂ {x ∈ X : d (x, x0) ≤ r(ω)} for all ω ∈ Ω.

(3) A tempered random variable (t.r.v) is a measurable function ε : Ω −→
R with

lim
t−→+∞

1

|t|
log |ε(θtω)| = 0.

Definition 2.4. ([6]) Consider the RDS (θ, ϕ). A set-valued mapping ω 7−→
S(ω) is called forward invariant (backward invariant) if for all t > 0 and ω ∈ Ω
we have ϕ(t, ω)S(ω) ⊆ S(θtω) (resp. S (θtω) ⊆ ϕ (t, ω)S (ω)).

Definition 2.5. ([6]) A collection U of random sets is called a universe of sets
if

(1) every members of U is closed, and
(2) U is closed with respect to inclusions.

Definition 2.6. ([6]) An absorbing random set for RDS (θ, ϕ) in the universe
U is a random set A have the property that if for every M∈ U and for all ω
there exists t0(ω) with

ϕ(t, θ−tω)M(θ−tω) ⊂ A(ω) for all t ≥ t0(ω), ω ∈ Ω.

Definition 2.7. Consider the RDS (θ, ϕ). A random set M is said to be
orbitally stable if for any t.r.v ε and any non-negative number t, there exists
t.r.v δ such that

d (x,M (ω)) < δ(ω) implies d (ϕ(t, θ−tω)x,M (ω)) < ε(ω).
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Definition 2.8. ([6]) A random closed set {M(ω)} from a universe M is
called a random attractor of RDS (θ, φ) in M if B(ω) is proper subset of X
for every ω ∈ Ω and:

(1) B is an invariant set, that is, ϕ (t, ω)B (ω) = B(θtω) for t ≥ 0, ω ∈ Ω;
(2) B is an attracting in U , that is, for all M ∈ U

lim
n→+∞

dX {ϕ (t, θ−tω)M (θ−tω) , B (ω)} = 0, ω ∈ Ω,

where dX {A \B} = supx∈AdisX (x,B) .

Definition 2.9. ([3]) Let (X, d) be a metric space. K ⊂ X is said to be
precompact or totally bounded if every sequence in K admits a subsequence
converges to a point of X.

3. Compactly dissipative random dynamical systems

Some limiting properties of RDSs are established in this section, and essen-
tial results related with concept of compactly dissipative RDSs are proved.

Definition 3.1. ([6]) Let M : ω → M(ω) be a random set. The set-valued
function

ω 7−→ ΓM (ω) :=
⋂
γtM (ω) =

⋂
∪ϕ (τ, θ−τω)M (θ−τω), t > 0, τ ≥ t

is called the omega-limit set of the trajectories starting from M .

Proposition 3.2. ([6]) An element x belong to the omega-limit set ΓM (ω) if
and only if there exist sequences tn → +∞ and yn ∈M(θ−tnω) such that

x = lim
n→+∞

ϕ (tn, θ−tnω) yn.

Proposition 3.3. Consider RDS (θ, ϕ), the following fulfill for all random
sets A and B in X.

(1) If A ⊆ B, then ΓA (ω) ⊆ ΓB (ω) .
(2) ΓA∪B(ω) ⊆ ΓA (ω) ∪ ΓB (ω) .
(3) If the random set A is forward invariant (backward invariant, invari-

ant), then ΓA (ω) ⊆ Ā (resp. Ā ⊆ ΓA (ω) , ΓA (ω) = Ā ).

(4) ∪{Γx|x ∈M} ⊆ ΓM (ω) .

Proof. (1) Let x ∈ ΓA (ω). Then there exist sequences tn → +∞, yn ∈
A (θ−tnω) such that x = limn→+∞ ϕ (tn, θ−tnω) yn. SinceA (ω) ⊂ B (ω) , for all
ω ∈ Ω, A (θ−tω) ⊂ B (θ−tω) . So yn ∈ B (θ−tω) and x ∈ ΓB (ω) . Hence
ΓA (ω) ⊂ ΓB (ω) .
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(2) Let x ∈ ΓA∪B(ω). Then there exist sequences tn → +∞, yn ∈ (A ∪
B) (θ−tnω) such that

x = lim
n→+∞

ϕ (tn, θ−tnω) yn.

Since (A ∪B) (ω) ⊆ A (ω)∪B (ω), for all ω ∈ Ω , (A ∪B) (θ−tnω) ⊆ A (θ−tnω)∪
B (θ−tnω) . So, yn ∈ A (θ−tnω) ∪ B (θ−tnω), therefor yn ∈ A (θ−tnω) or yn ∈
B (θ−tnω) . Hence x ∈ ΓA (ω) or x ∈ ΓB (ω) , then we get x ∈ ΓA (ω)∪ΓB (ω) .

(3) Suppose that A is forward invariant. Let x ∈ ΓA (ω) . Then there exist
tn → +∞, yn ∈ A (θ−tnω) such that

x = lim
n→+∞

ϕ (tn, θ−tnω) yn.

Since yn ∈ A (θ−tnω) for all n,

ϕ (tn, θ−tnω) yn ∈ ϕ (tn, θ−tnω)A (θ−tnω) ⊆ A (ω) , for all n.

Put zn = ϕ (tn, θ−tnω) yn, for all n, then for every n and for all ω ∈ Ω, we get
zn ∈ A(ω), and x = limn→+∞ zn. Hence x belong to Ā(ω) for all ω ∈ Ω.

(4) Let x ∈M V x ⊂M V Γx(ω) ⊂ ΓM (ω) (by(1)), where x ∈M
V
⋃
x∈M Γx (ω) ⊂ ΓM (ω)V ¯⋃

x∈M Γx (ω) ⊂ ¯ΓM (ω) = ΓM (ω) (by definition
of ΓM (ω)). �

Proposition 3.4. The necessary condition for the omega limit set ΓM (ω)
being invariant is the trajectory γtM (ω) is precompact random set.

Proof. To prove that ϕ (t, ω) ΓM (ω) = ΓM (θtω). Let x ∈ ΓM (ω) . Then by
Proposition 3.2 there exist sequences tn → +∞ and yn ∈ M(θ−tnω) with
x = limn→+∞ ϕ (tn, θ−tnω) yn. Therefore,

ϕ (t, ω)x = lim
n→+∞

ϕ (t, ω) ◦ ϕ (tn, θ−tnω) yn

= lim
n→+∞

ϕ (t+ tn, θ−t−tn ◦ θ tω) yn.

According to Proposition 3.2, we have ϕ (t, ω)x ∈ ΓM (θtω). Thus

ϕ (t, ω) ΓM (ω) = ΓM (θtω) .

Suppose that x ∈ ΓM (θtω) for some t > 0 and ω ∈ Ω. By Proposition 3.2

x = lim
n→+∞

ϕ (tn, θ−tn ◦ θt ω) yn,

where yn ∈M(θ−tn ◦ θtω) and tn −→∞. From the cocycle property,

x = lim
n→+∞

ϕ (t, ω) zn with zn = ϕ (tn − t, θ−tn+tω) yn.

Then {zn} is a sequence in γtM (ω). Since γtM (ω)is precompact, {zn} admits
subsequence {znk} such that znk −→ a ∈ X.
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Furthermore, from Proposition 3.2 we have a ∈ ΓM (ω). Also we have
x = ϕ (t, ω) a. Therefore, ΓM (θtω) ⊆ ϕ (t, ω) ΓM (ω) for all positive real
number t and ω ∈ Ω. So ΓM (ω) is invariant. �

Theorem 3.5. Consider the RDS (θ, ϕ). The next statements are equivalent
for every random set B ⊆ X:

(1) The sequence {ϕ(tk, θ−tω)xk} is random precompact for all sequence
tk → +∞ and {xk} ⊆ B(θ−tω).

(2) (a) ΓB (ω) 6= ∅ and compact,
(b) ΓB (ω) is invariant, and

lim
t→+∞

sup
x∈B(θ−tω)

d (ϕ(t, θ−tω)x,ΓB (ω)) = 0. (3.1)

(3) For some compact random set ∅ 6= K ⊆ X we have

lim
t→+∞

sup
x∈B(θ−tω)

d (ϕ(t, θ−tω)x,K(ω)) = 0.

Proof. To prove (1) ⇒ (2). Let {xk} ⊆ B(θ−tω), where tk → +∞. Then
according to (1), the sequence {ϕ(t, θ−tω)xk} convergent. Assume

x̄ = lim
t→+∞

ϕ (tk, θ−tkω)xk.

Then x̄ ∈ ΓB (ω), so, ΓB (ω) is nonempty. Let us show that ΓB (ω) is compact.
Let εk ↓ 0 and yk ⊆ ΓB (ω). Then there is xk ∈ B(θ−tω) and tk ≥ k with

d(ϕ(tk, θ−tkω)xk, yk) < εk.

According to condition (1), the sequence { ϕ(tk, θ−tkω)xk} is precompact, and
since εk ↓ 0, so {yk} is precompact. Easy to get the positive invariance of
ΓB (ω) from the definition. To show ΓB (ω) to be invariant it is enough to
prove it is negatively invariant. Let y ∈ ΓB (ω) and t ∈ T . Hence there is
{xk} ⊆ B(θ−tω) and tk −→ +∞ such that

y = lim
k→+∞

ϕ(tk, θ−tkω)xk

= lim
k→+∞

ϕ(tk − t+ t, θ−tkω)xk

= lim
k→+∞

ϕ(tk − t, θ−tkω)xk.

As tk−t −→ +∞, according to condition (1), the sequence { ϕ(tk−t, θ−tkω)xk}
can be considered convergent.

Assume yk = limk→+∞ ϕ(tk − t, θ−tkω)xk. Then y = ϕ(t, θ−tω)yk and yt ∈
ΓB (ω), that is, y ∈ ϕ(t, θ−tω)ΓB (ω). The invariance of ΓB (ω) is proved at
the same way.
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Now to prove (3.1) fulfill. Assume that (3.1) is invalid, then for some ε0 > 0,
tk → +∞, and xk ∈ B such that

d (ϕ (tk, θ−tkω)xk,ΓB (ω)) ≥ ε0. (3.2)

According to condition (2), the sequence { ϕ(tk, θ−tkω)xk} convergent. Let
y = limt→+∞ ϕ(tk, θ−tkω)xk. Then y ∈ ΓB (ω). Take k −→ +∞ in (3.2), we
get y /∈ ΓB (ω). This is a contradiction and this end the proof of (1) ⇒(2).

It is evident that (2) ⇒ (3) and (3) ⇒ (1). �

Corollary 3.6. Let M ⊆ X be nonempty random set and γtM (ω) be relatively
compact. Then, we have ΓM (ω) 6= ∅ is invariant and compact such that

lim
t→+∞

sup
x∈M(θ−tω)

d(ϕ(t, θ−tω)x, ΓM (ω)) = 0. (3.3)

The proof follows directly from above theorem.

The converse of Corollary 3.6 holds, nonetheless we will state the concept
of measure of non-compactness before formulating it.

Definition 3.7. ([4]) Let B(X) be the collection of bounded sets in X, the
mapping µ : B(X) −→ R+ filling the following axioms is said to be a measure
of non-compactness on X:

(1) µ(U) = 0 if and only if Ū is compact, U ∈ B(X).
(2) µ (U ∪ V ) = max {µ(U), µ(V )}, U, V ∈ B(X).

Definition 3.8. ([4]) The measure of non-compactness of Kuratowski µ :
B(X) −→ R+ is defined by

µ(U) := inf{ ε > 0 | U has a finite ε− covering}.

Lemma 3.9. For every nonempty precompact random M, the trajectory γtM (ω)
is precompact if ΓM (ω) nonempty, compact and (3.3) holds.

Proof. Suppose that ε is a tempered random variable. Then from (3.3) there
exists a number L (ε) > 0 so that

Mε := ∪ϕ (t, θ−tω)M (θ−tω) ⊆ B (ΓM (ω) , ε) . (3.4)

Assume that the measure of non-compactness of Kuratowski of K is denoted
by µ(K). Then from (3.4), we get

µ(γtM (ω)) = µ((ϕ (t, θ−tω)M (θ−tω) : t ∈ [0, L(ε)] ∪Mε(ω))

= max(µ(ϕ(t, θ−tω), [0, L(ε)]), µ(Mε(ω)) = µ(Mε)

≤ 2ε.

So we get µ(γtM (ω)) = 0. �
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Theorem 3.10. Suppose that M ⊆ X is a nonempty bounded random set
and precompact. Then γtM (ω) is a precompact random set if and only if the
following statements hold:

(1) ΓM (ω) 6= ∅;
(2) ΓM (ω) is compact.
(3) Equality (3.3) fulfill .

Proof. Applying Corollary 3.6 and Lemma 3.9 we get the result. �

Definition 3.11. ([6]) Consider the RDS (θ, ϕ) and the universe U . Then
(θ, ϕ) is called dissipative in U , if for some absorbing set A for the RDS (θ, ϕ)
in U and some closed random ball Br(ω)(x0) with center x0 ∈ X and radius
r(ω) we have

A(ω) ⊂ Br(ω)(x0), for all ω ∈ Ω.

Definition 3.12. (Compact RDS) Consider RDS (θ, ϕ) and the universe U .
Then (θ, ϕ) is called compact in U , if

(1) (θ, ϕ) is dissipative in U and
(2) the absorbing set A is a random compact set.

Definition 3.13. Consider the RDS (θ, ϕ) and the universe U . Then (θ, ϕ)
is said to be U-strong dissipative if for every tempered random variable ε and
U ∈ U , there is positive number t0 (ε, U) > 0 so that

ϕ(t, θ−tω)U(θ−tω) ⊂ Bε(ω)(K) for all t ≥ t0(ω) and ω ∈ Ω,

where K is a certain fixed random set in X depending only on U and

Bε(ω)(K) ≡ {x ∈ X : distX (x,K(ω)) ≤ r(ω)} .
Here, K will be called the attractor of U .

Remark 3.14. From the fact that every singleton set is a random set, one
can show that the dissipativity implies U-strong dissipativity.

Definition 3.15. The RDS (θ, ϕ) is said to be:

(1) point dissipative if for every x ∈ XΩ, there is a random set K ⊂ X so
that,

lim
t−→+∞

d (ϕ (t, θ−tω)x (θ−tω) ,K (ω)) = 0. (3.5)

(2) compact dissipative if for any compact random set D ⊂ X there is a
random set K ⊂ X so that

lim
t−→+∞

sup {d (ϕ (t, θ−tω)x,K (ω)) : x ∈ D(θ−tω)} = 0.
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(3) locally dissipative if for every y ∈ X there are δy(ω) > 0 and random
set K ⊂ X so that

lim
t−→+∞

sup
{
d (ϕ (t, θ−tω)x,K (ω)) : x ∈ Bδy(ω)(y)

}
= 0.

(4) bounded dissipative if for any bounded random set B in X there is
random set K in X so that

lim
t−→+∞

sup {d (ϕ (t, θ−tω)x,K (ω)) : x ∈ B(θ−tω)} = 0.

According to this, we have the following:

Definition 3.16. The RDS (θ, ϕ) is said to be:

(1) point κ-dissipative if (θ, ϕ) is point dissipative and K in (3.5) is com-
pact.

(2) point b-dissipative if (θ, ϕ) is point dissipative andK in (3.5) is bounded.
(3) compact κ-dissipative system if (θ, ϕ) is compact dissipative and K in

(3.5) is compact.
(4) compact b-dissipative system if (θ, ϕ) is compact dissipative and K in

(3.5) is bounded.
(5) locally κ-dissipative system if (θ, ϕ) is locally dissipative and K in (3.5)

is compact.
(6) locally b-dissipative system if (θ, ϕ) is locally dissipative andK in (3.5)

is bounded.

From the Definitions 3.15, 3.16 above it follows that:

Proposition 3.17. In any RDS (θ, ϕ) the following statement hold:

(1) bounded κ-dissipativity implies local k dissipativity.
(2) bounded b-dissipativity implies local b-dissipativity.
(3) local κ-dissipativity implies compact k -dissipativity.
(4) local b-dissipativity implies compact b-dissipativity.
(5) compact κ-dissipativity implies point k -dissipativity.
(6) compact b-dissipativity implies point b-dissipativity.

Proof. (3) and (4): Let (θ, ϕ) be local κ(b)-dissipative. Then there is a
nonempty compact (bounded) random set K ⊆ X so that for every tempered
random variable ε > 0 and x ∈ X, there exist δp(ω) > 0 and l = l(ε, x) > 0
for which

d (ϕ (t, θ−tω) y,K) < ε (ω) (3.6)

for every t ≥ l and y ∈ B(p, δp(ω)).
Consider a nonempty compact randomM(ω) in X. Then for every x ∈

M(ω), there is δ = δx(ω) > 0 and l = l(ε, x) > 0 such that ( 3.6) valid.
Consider the open covering

{Bδx(ω)(x) |x ∈M} of M.
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By the compactness of M and completeness of the space X, there a finite
subcovering

{Bδxi (ω) (xi) |i = 1, 2, . . . ,m}.
Assume L (ε,M) := max{{l (ε, xi)| i = 1, 2, . . . , m}. Then from (3.6) it

follows that
d
(
ϕ (t, θ−tω)x, (ω)

)
< ε(ω)

for every x ∈M and t ≥ L(ε, M). �

Lemma 3.18. Let M ⊆ X be a random set. If γtM (ω) is compact and
ΓM (ω) ⊆M , then

ΓM (ω) =
⋂
{ϕ (t, θ−tω)M (θ−tω)| t ∈ T, ω ∈ Ω}. (3.7)

Proof. Set

I(M) :=
⋂
{ϕ (t, θ−tω)M (θ−tω)| t ∈ T, ω ∈ Ω}.

Then I(M) ⊆ ΓM (ω). To show the reverse inclusion is holds, if ΓM (ω) ⊆M .
Indeed, by Theorem 3.5 and Corollary 3.6, ΓM (ω) is an invariant random set.
So,

ΓM (ω) = ϕ(t, θ−tω)ΓM (θ−tω) ⊆ ϕ(t, θ−tω)M(θ−tω) for every t ∈ T.
Therefore, ΓM (ω) ⊆ I(M) and consequently ΓM (ω) = I(M). �

4. Random Levinson center(RLS)

We will study the k-dissipative RDSs, so we will neglect the prefix k without
lead to misapprehension. Consider a compact dissipative RDS (θ, ϕ) and a
nonempty compact random set K in X, that is an attractor for compact
subsets of X. Then the following equality hold for every compact subset M ⊆
X,

lim
t→+∞

sup
x∈M(θ−tω)

d (ϕ (t, θ−tω)x,K(ω)) = 0.

Hence ΓK (ω) ⊆ K, and consequently,

JX (ω) := ΓK (ω) = ∩{ϕ (t, θ−tω)K (θ−tω)| t ∈ T, ω ∈ Ω}. (4.1)

To prove that the JX (ω) does not be governed by the select of K attracting
compact random sets in X. Indeed, if we indicate by JK (ω) := ΓK (ω) and K1

every other compact random set attracting any compact random sets in X, so
there is L = L(K, K1, ε) > 0 such that ϕ(t, θ−tω)K ⊆ K1 and ϕ(t, θ−tω)K1 ⊆
K1 for all t ≥ L. Since JK (ω) = ΓK (ω) ⊆ K and JK1 (ω) = ΓK1 (ω) ⊆ K1, it
follows from the invariance of JK1 (ω) and JK (ω) that JK (ω) ⊆ K1,
JK1 (ω) ⊆ K, JK (ω) ⊆ ϕ(t, θ−tω)K1 ⊆ K1, and JK1 (ω) ⊆ ϕ(t, θ−tω)K for all
t ∈ T , and consequently,
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JK (ω) = JK1 (ω) . Hence JX (ω) defined by (4.1) does not be governed by the
select of attractor K.

Definition 4.1. we will call the set JX (ω) defined by equality (4.1) the ran-
dom Levinson Center (RLC) of the compact dissipative RDS (θ, ϕ).

Next, we will prove some essential properties of RLC.

Theorem 4.2. Let JX (ω) be a RLC of a compact dissipative RDS (θ, ϕ).
Then:

(1) JX (ω) is a compact invariant random set.
(2) JX (ω) is an orbitally stable.
(3) JX (ω) is an attractor of the collection of compact random subsets of

X.
(4) JX (ω) is the maximal compact invariant random (MCI) set of (θ, ϕ).

Proof. (1) The first statement yield by the definition of JX (ω) and Theorem
3.5.

(2) To prove that JX (ω) is an orbitally stable. Assume contrary that JX (ω)
is not orbitally stable. Then there is a tempered random variable (t.r.v)
ε0 (ω) > 0, δn −→ 0(δn > 0), xn ∈ B(JX (ω) , δn), and tn −→ +∞ such
that

d (ϕ (tn, θ−tnω)xn, JX (ω)) ≥ ε0(ω). (4.2)

Since xn ∈ B(JX (ω) , δn) and δn −→ 0, by the compactness of JX (ω) ,
we can consider {xn} to be convergent. Since the RDS (θ, ϕ) is compact
dissipative, the set γt{xn}(ω) is precompact.

Now the set K̃ = K ∪γt{xn}(ω) is a random set and it is an attractor for the

collection of compact random sets in X, and so, Γ
K̃

(ω) = ΓK (ω) = JX (ω).

Especially, Γ ¯γt{xn}
(ω) ⊆ ΓK (ω) = JX (ω). By the compactness of Υt

{xn}(ω) ,

the sequence {ϕ(tn, θ−tnω)xn} is convergent. Let p = limn−→+∞ ϕ(tn, θ−tnω)xn.
Then p ∈ Γ ¯γt{xn}

(ω). Also from it follows (4.2) that p /∈ JX (ω). This is a

contradiction. Thus the second statement is proved.

(3) Let M be a compact random subset of X. The trajectory γtM (ω) is
precompact by the compact dissipativity of (θ, ϕ), and by Theorem 3.10,
conditions (1) and (2) are hold. Especially, for every ε(ω) > 0 there is
L(ε) > 0 such that ϕ(t, θ−tω)M(θ−tω) ⊆ B(ΓM (ω) , ε) for all t ≥ L(ε).

The set K̃ = K ∪ ΓM (ω) is also an attractor of compact subsets of X, so,
Γ
K̃

(ω) = ΓK (ω) = JX (ω) . So ΓM (ω) ⊆ Γ
K̃

(ω) = JX (ω), and hence

d(ϕ(t, θ−tω)M(θ−tω), JX (ω)) ≤ d(ϕ(t, θ−tω)M(θ−tω),ΓM (ω)) < ε (ω) ,
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that is,
lim

t−→+∞
d(ϕ(t, θ−tω)M(θ−tω), JX (ω)) = 0

for all M compact random subset of X, where d(A,B) := supa∈A d(a,B) and
d(a, B) = supa∈A(θ−tω) inf {d(a, b)|b ∈ B(ω))}.

(4) If J1 (ω) is a compact invariant random set in X. Then by (3) above we
have

lim
t→+∞

d(ϕ(t, θ−tω)J1(θ−tω), JX (ω)) = 0. (4.3)

Since J1 (ω) is invariant, ϕ(t, θ−tω)J1(θ−tω) = J1 (ω) for all t ∈ T . From this
and (4.3), we get J1 (ω) ⊆ JX (ω) . �

Let {Kλ(θ−tω)|λ ∈ Λ} denote the collection of nonempty compact forward
invariant random sets that attract every compact random set in X.

Theorem 4.3. Let JX (ω) be the RLC of compact dissipative RDS (θ, ϕ).
Then

JX (ω) = ∩Kλ(θ−tω)|λ ∈ Λ, ω ∈ Ω.

Proof. Suppose that K (ω) := ∩{Kλ(θ−tω)|λ ∈ Λ, ω ∈ Ω}. Note first that
JX (ω) ⊆ K (ω), so, K (ω) 6= ∅. Indeed JX (ω) = ΓKλ (ω) ⊆ Kλ (ω), for
every λ ∈ Λ i.e., JX (ω) ⊆ K (ω). To show that JX (ω) ⊇ K (ω) holds. Since
JX (ω) it is nonempty and positively invariant and attracts every random
compact set in X, then JX (ω) ∈ {Kλ(θ−tω)|λ ∈ Λ, ω ∈ Ω}, and consequently,
K(θ−tω) ⊆ JX(θ−tω). �

Lemma 4.4. Let JX (ω) be the LRC of compact dissipative RDS (θ, ϕ), and
K(ω) a nonempty compact random set attracting every compact set in X.
Then

JX (θ−tω) = ∩{ϕ (t, θ−tω)K (θ−tω) : t ∈ T} .

Proof. Since K(ω) is an attractor of compact sets in X, ΓK (ω) ⊆ K(θ−tω),
and by Lemma 3.18,

JX (θ−tω) := ΓK (ω) =
⋂
{ϕ (t, θ−tω)K (θ−tω) : t ∈ T} .

�

Definition 4.5. The stable manifold of a random set M in X is a set

W s (M) = {x ∈ X : lim
t−→+∞

d(ϕ(t, θ−tω)x, M (ω)) = 0}.

Lemma 4.6. Let M be a forward invariant compact attractor set and for
every t the function ϕ (t, θ−tω) : X −→ Xis continuous. Then we have the
following:
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(1) W s(M) is an open set.
(2) If K is a compact set in W s(M), then

lim
t−→+∞

d(ϕ (t, θ−tω)K (θ−tω) ,M(ω)) = 0. (4.4)

Proof. (1) If M is a random attracting, then there exists a tempered random
variable δ (ω) > 0 so that B(M, δ(ω)) ⊂W s(M). To end the proof we need
to show that if p ∈ W s(M) B(M, δ(ω)), there exists η > 0 with B(p, η) ⊂
W s(M). Since p ∈ W s(M), there is tp > 0 with p̂ := ϕ

(
tp, θ−tpω

)
p ∈

B(M, δ (ω)). Since B(M, δ (ω)) is open, there exists α > 0 with B(p̂, α) ⊂
B(M, δ (ω)). But ϕ

(
tp, θ−tpω

)
: X −→ X is continuous, thus there is η > 0

such that
ϕ
(
tp, θ−tpω

)
B(p, η) ⊂ B(M, δ (ω)) ⊂W s(M).

Hence W s(M) is an open set.

(2) Let ε(ω) > 0 be a tempered random variable (t.r.v) and let K be a
compact random set in W s(M). For the (t.r.v) ε(ω) > 0, choose the (t.r.v)
δ(ε, ω) > 0, taking into version the stability of M. Since every point of W s(M)
attracting by M, for every element x in K(ω) there is a (t.r.v) ρx( ε, ω) > 0
and l(x, ε) > 0 such that

ϕ (t, θ−tω)B (x, ρx ( ε, ω)) ⊆ B (M, ε) (4.5)

for all t ≥ l(x, ε). Since K is compact and {B(x, ρx( ε, ω))| x ∈ K} is an open
cover of K, this open cover admits a finite open subcover

{B (xi, ρx ( ε, ω))| i = 1, . . . , n}.
Set L (M, ε) := max{{l (xi, ε)| i = 1, . . . , n}. Then ϕ(t, θ−tω)M(θ−tω) ⊆

B(K, ε) for all t ≥ L(M, ε). This means that M attracts K. �

Definition 4.7. Set

J ′′ (ω) :=
⋂
{Mλ (ω) |λ ∈ Λ, ω ∈ Ω},

where M := {Mλ (ω) |λ ∈ Λ, ω ∈ Ω} is a collection of nonempty random sets
in X such that every member of M is

(1) forward invariant,
(2) compact, and
(3) globally asymptotically stable (GAS).

Theorem 4.8. Let JX (ω) be the RLC of compact dissipative RDS (θ, ϕ).
Then JX(ω) = J ′′ (ω).

Proof. First, by Lemma 4.6 we have J ′ (ω) ⊆ J ′′ (ω) , and according to The-
orem 4.3, JX (ω) = J ′ (ω) ⊆ J ′′ (ω). Now, for certain λ0 ∈ Λ Mλ0 = JX (ω) ,
and so, J ′′ (ω) ⊆ JX (ω) . Hence JX(ω) = J ′′ (ω) . �
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Theorem 4.9. Consider a compact dissipative RDS (θ, ϕ) and K a nonempty
compact invariant random set in X. Then the following statements are equiv-
alent:

(1) K is RLC of (θ, ϕ).
(2) K is globally asymptotically stable (GAS).
(3) K is a maximal compact invariant set (MCI) in X.

Proof. (1) implies (2) by Theorem 4.2. To show that (2) implies (1). Let
JX (ω) be the RLC of (θ, ϕ). By Theorem 4.8, JX(ω) ⊆ K. But by Theorem
4.2, the RLC attracts all compact sets in X, and since K is an invariant, we
have K ⊆ JX(ω). So JX(ω) = K.

Finally, (1) implies (3) by Theorem 4.2. To proof (3) implies (1). Let
JX(ω) be the RLC of (θ, ϕ). But by Theorem 4.2, the set JX(ω) is compact
and invariant, and since K is the maximal compact invariant set we have
JX(ω) ⊆ K. By Theorem 4.2, the LC is attracts the collection of compact
subsets of X and since K is invariant, then K ⊆ JX(ω). So, K = JX(ω). �

5. Conclusion

In this work, some essential facts related to the RDSs are stated, and intro-
duce the concept of orbitally stable RDS without the study of its properties.
Then some new properties of the omega limits set in RDSs are proved to
study the compactly dissipative RDSs. Some types of dissipative RDSs were
introduced and studied. We proved some relations among different dissipative
types. The RLC of a compact dissipative RDS (θ, ϕ) is a compact invariant
random set, an orbitally stable attractor of the collection of compact random
subsets in phase space and it is the maximal compact invariant random set
(MCI) of RDS. Moreover, any nonempty compact invariant random set in a
compact dissipative RDS is RLC, GAS and MCI.
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