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Abstract. In this paper, we consider two types of fractional boundary value problems, one

of them is an implicit type and the other will be an integro-differential type with nonlocal

integral multi-point boundary conditions in the frame of generalized Hilfer fractional deriva-

tives. The existence and uniqueness results are acquired by applying Krasnoselskii’s and

Banach’s fixed point theorems. Some various numerical examples are provided to illustrate

and validate our results. Moreover, we get some results in the literature as a special case of

our current results.

1. Introduction

In recent few decades, fractional differential equations (FDEs) have been the
point of interest of many studies by many investigators. This is because the
theory of FDEs is much significant due to their nonlocal property is suitable

0Received September 30, 2022. Revised December 23, 2022. Accepted December 27, 2022.
02020 Mathematics Subject Classification: 34K37, 26A33, 44A10.
0Keywords: Hilfer fractional derivative, boundary conditions, fixed point theorem.
0Corresponding author: Mohammed N. Alkord(moh1992alkord@gmail.com).



538 M. N. Alkord, S. L. Shaikh, S. S. Redhwan and M. S. Abdo

to describe memory phenomena in many applied more accurately comparing
to classical order differential equations. Therefore, the FDEs styles become
more workable and pragmatic comparing to the integer-order samples. FDEs
appear in lots of engineering and chemistry, physics, biology, signal and im-
age processing, economics, control theory, biophysics, aerodynamics, blood
flow phenomena and so on, see the monographs as [2, 3, 6, 8]. There are
several definitions of fractional calculus (FC), like Riemann-Liouville’s (RL)
definition and Caputo’s definition, and there are other less-famous definitions
like Erdelyi-Kober’s and Hadamard’s definitions and so on. In [7], Hilfer was
given generalization of fractional derivatives (FDs) of RL and Caputo, which
so-called the Hilfer FD of order %1 and a type %2 ∈ [0, 1]. When we give
%2 = 0 and %2 = 1 respectively in the formula of Hilfer FD can get RL’s and
Caputo’s FDs. Such a derivative inset between the RL and Caputo FDs. For
more details on this FD above-mentioned can be found in [1, 2]. In Ref [5],
the authors introduced the FD with another function in the frame of Hilfer
FD, which called ς-Hilfer(or ψ-Hilfer) FD. For some recent results on existence
and stability theorems of ς-Hilfer type IVPs, see [9, 10, 12, 14, 16, 18] and for
BVPs see [11, 13, 15, 17, 19, 20, 21]. Here we also refer to some recent works
[23, 25, 26, 27, 29, 31] dealing with a similar analysis of various problems in
this regard.

Encouraged by the researches going on in this direction, in this article, we
study the existence and uniqueness theorems for ς-Hilfer type implicit nonlocal
integral-multipoint BVPs (for short, implicit-type problem):{

HD
%1,%2;ςz(υ) = f(υ, z(υ),H D%1,%2;ςz(υ)), υ ∈ J := [a, b],

z(a) = 0,
∫ b
a ς
′(t)z(t)dt+ } =

∑m−2
r=1 ξrz(θr),

(1.1)

and ς-Hilfer type integrodifferential nonlocal integral-multipoint BVPs
(integrodifferential-type problem):{

HD
%1,%2;ςz(υ) = f(υ, z(υ), I%3;ςz(υ)), υ ∈ J: = [a, b],

z(a) = 0,
∫ b
a ς
′(t)z(t)dt+ } =

∑m−2
r=1 ξrz(θr),

(1.2)

where HD
%1,%2;ς is the ς−Hilfer FD of order (%1, %2) , 1 < %1 < 2, and 0 ≤

%2 ≤ 1, I%3;ς is the Riemann-Liouville fractional integral of order %3 > 0,
f : J×R2 → R is a continuous function, a < θ1 < θ2 < · · · < θm−2 < b, a ≥ 0,
and ξr, θr ∈ R, r = 1, 2, ...,m− 2.

We focus on the subject of non-local problems due to in many cases the
non-local condition in these kinds of problems reflects physical phenomena
more than classical initial (boundary) conditions. So, we address the existence
and uniqueness theorems of problems (1.1) and (1.2) by applying Banach’s
and Krasnoselskii’s fixed point theorems under the minimum assumptions.
The work done in this article is recent and riches the literature, especially
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the ς-Hilfer type nonlinear problems. The FDEs (1.1) and (1.2) are new to
the literature on FDEs and include many problems, as a special case, for
ς(υ) = υ, the outcomes obtained in this paper incorporates the results of
Nuchpong et al. [23]. For ς(υ) = log υ and ς(υ) = υ%, our problems are re-
duced to Hilfer-Hadamard-type problems and Hilfer-Katugampola problems,
respectively. Moreover, if %2 = 0 and %2 = 1, then proposed problems re-
duce to generalized RL-type problems and generalized Caputo-type problems,
respectively.

The content of this article is organized as follows: Section 2, we present
some essential fractional calculus definitions and notions about ς-Hilfer FD
that will be applied. The existence results and Ulam–Hyers type stability
for the problems (1.1) and (1.2) are checked in Section 3. Some illustrative
examples are included to illustrate our obtained results in Section 4. Finally,
conclusive remarks and suggested future directions are expressed in Section 5.

2. Preliminaries

In this section, we setting notations and some introductory facts that will
be applied in the proofs of the subsequent results.

Let C(J,R) and L(J,R) are the Banach spaces of continuous functions and
Lebesgue integrable functions from J into R with the norms

‖z‖∞ = sup{|z| : υ ∈ J}
and

‖z‖L =

∫ b

a
|z(υ)| dυ,

respectively.

For ζ = %1 + 2%2 − %1%2, 1 < %1 < 2, and 0 ≤ %2 ≤ 1. Then 1 < ζ ≤ 2. Let
ς ∈ C1 (J,R) be an increasing function with ς ′(υ) 6= 0, for all υ ∈ J.

Definition 2.1. ([18]) Let %1 > 0 and g ∈ L1(J,R). The ς-RL fractional
integral of order %1 of a function g is given by

I%1;ςg(υ) =
1

Γ(%1)

∫ υ

a
ς ′(t)(ς(υ)− ς(t))%1−1g(t)dt,

where Γ(·) denotes the Gamma function.

Definition 2.2. ([32]) The ς−Hilfer FD of order %1 and parameter %2 is de-
fined by

HD
%1,%2;ςg(υ) = I%2(n−%1);ς

(
1

ς ′(υ)

d

dυ

)n
I(1−%2)(n−%1);ςg(υ),

where n− 1 < %1 < n, 0 ≤ %2 ≤ 1, υ > a.
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Lemma 2.3. ([18, 32]) Let %1, η, δ > 0. Then

(1) I%1;ςIη;ςg(υ) = I%1+η;ςg(υ),

(2) I%1;ς(ς(υ)− ς(a))δ−1 = Γ(δ)
Γ(%1+δ)(ς(υ)− ς(a))%1+δ−1.

We note also that HD
%1,%2;ς(ς(υ)− ς(a))ζ−1 = 0, where ζ = %1 + %2(n− %1).

Lemma 2.4. ([32]) Let g ∈ L1(J,R), %1 ∈ (n − 1, n] (n ∈ N) and %2 ∈ [0, 1].
Then

(I%1;ς
HD

%1,%2;ςg)(υ)=g(υ)−
n∑
k=0

(ς(υ)−ς(a))ζ−k

Γ(ζ−k+1)
g[n−k]
ς lim

υ→a

(
I(1−%2)(n−%1);ςg

)
(a),

where g
[n−k]
ς (υ) =

(
1

ς′(υ)
d
dυ

)[n−k]
g(υ).

Here we can suffice to refer to Banach’s fixed point theorem [13] and Kras-
noselskii’s fixed point theorem [13].

3. Main results

We first, prove an auxiliary lemma concerning a linear variant of the ς−Hilfer
type BVP (1.1).

Lemma 3.1. Let ζ = %1 + 2%2 − %1%2 where 1 < %1 < 2, and 0 ≤ %2 ≤ 1, and
φ ∈ C(J,R). If

Ω =
(ς(b)− ς(a))ζ

ζ
−
m−2∑
r=1

ξr(ς(θr)− ς(a))ζ−1 6= 0, (3.1)

then the function z ∈ C(J,R) is a solution of the ς−Hilfer BVP

HD
%1,%2,ςz(υ) = φ(υ), υ ∈ J, (3.2)

z(a) = 0,

∫ b

a
ς ′(t)z(t)dt+ } =

m−2∑
r=1

ξrz(θr), (3.3)

if and only if

z(υ) = I%1,ςφ(υ) +
(ς(υ)− ς(a))ζ−1

Ω

[
m−2∑
r=1

ξrI
%1,ςφ(θr)−

(
I1+%1,ςφ(t)

)
(b)−}

]
.

(3.4)

Proof. Assume that z is a solution of (3.2) and (3.3). Operating fractional
integral I%1,ς on (3.2). It follows from Lemma (2.4) that

z(υ) = c0
(ς(υ)− ς(a))ζ−2

Γ(ζ − 1)
+ c1

(ς(υ)− ς(a))ζ−1

Γ(ζ)
+ I%1,ςφ(υ),
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since (1 − %2)(2 − %1) = 2 − ζ, where c0,c1 ∈ R. From (3.3), the condition
z(a) = 0 gives c0 = 0. Hence

z(υ) = c1
(ς(υ)− ς(a))ζ−1

Γ(ζ)
+ I%1,ςφ(υ). (3.5)

Also, the condition
∫ b
a ς
′(t)z(t)dt+ } =

∑m−2
r=1 ξrz(θr) brings us to

c1 =
Γ(ζ)

Ω

[
m−2∑
r=1

ξrI
%1,ςφ(θr)−

(
I1+%1,ςφ(t)

)
(b)− }

]
. (3.6)

Substituting (3.6) in (3.5), we get the solution (3.4). The converse follows by
direct computation. �

Now, according to Lemma 3.1, we define the operator T : C(J,R)→ C(J,R)
by

(Tz)(υ)=I%1,ςFz(υ)+
(ς(υ)−ς(a))ζ−1

Ω

(
m−2∑
r=1

ξrI
%1,ςFz(θr)−I%1+1;ςFz(b)−}

)
,

(3.7)
where Fz ∈ C(J,R) with Fz(υ) := f(υ, z(υ),Fz(υ)).

It should be observed that the implicit-type problem (1.1) has a solution if
and only if T has fixed points. Hence, for convenience purpose, we are setting
two constants:

Λ : =
(ς(b)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))ζ−1

|Ω|

[
m−2∑
r=1

|ξr|
(

(ς(θr)− ς(a))%1

Γ(%1 + 1)

)
+

(ς(b)− ς(a))%1+1

Γ(%1 + 2)

]
(3.8)

and

Λ? :=
(ς(b)− ς(a))ζ−1

|Ω|

[
m−2∑
r=1

|ξr|
(

(ς(θr)− ς(a))%1

Γ(%1 + 1)

)
+

(ς(b)− ς(a))%1+1

Γ(%1 + 2)

]
.

(3.9)

Clearly, Λ = Λ? + (ς(b)−ς(a))%1

Γ(%1+1) .

In the following, we demonstrate the results of the existence and uniqueness
of (1.1) by employing the Banach’s and Krasnoselskii’s fixed point theorems.

3.1. Implicit-type problem (1.1). Some essential assumptions are presented
as follows:



542 M. N. Alkord, S. L. Shaikh, S. S. Redhwan and M. S. Abdo

(H1): There exists κ ∈ (0, 1) such that

|f(υ, z1, z
∗
1)− f(υ, z2, z

∗
2)| ≤ κ (|z1 − z2|+ |z∗1 − z∗2 |) ,

for any z1, z
∗
1 , z2, z

∗
2 ∈ R and υ ∈ J.

(H2): Let f ∈ C(J× R2,R) and Θ ∈ C(J,R+) such that

|f(υ, z, z∗)| ≤ Θ(υ), ∀(υ, z, z∗) ∈ J× R2.

Theorem 3.2. Assume that (H1) holds. If

κ

1− κ
Λ < 1, (3.10)

then the implicit-type problem (1.1) has a unique solution on J.

Proof. We convert (1.1) into a fixed point problem, that is, z = Tz, as T is
defined by (3.7). Note that the fixed points of T are solutions of (1.1). We
shall show that T has a unique fixed point by using Banach theorem [13].
Indeed, we set supυ∈J |f(υ, 0, 0)| = N <∞ and choose

ε ≥
N

1−κΛ + (ς(b)− ς(a))ζ−1
∣∣ }

Ω

∣∣
1− κ

1−κΛ
.

First, we show that TAε ⊂ Aε, where Aε = {z ∈ C(J,R) : ‖z‖ ≤ ε}. By using
(H1), we obtain

|Fz(υ)| = |f(υ, z(υ),Fz(υ))|
≤ |f(υ, z(υ),Fz(υ))− f(υ, 0, 0)|+ |f(υ, 0, 0)|
≤ κ |z(υ)|+ κ |Fz(υ)|+ N,

which gives

|Fz(υ)| ≤ κ

1− κ
|z(υ)|+ N

1− κ
.

For any z ∈ Aε, we get

|(Tz)(υ)| ≤ sup
υ∈J

I%1,ς |Fz(υ)|+ sup
υ∈J

(ς(υ)− ς(a))ζ−1

|Ω|

×

(
m−2∑
r=1

|ξr| I%1,ς |Fz(θr)|+ I%1+1;ς |Fz(b)|+ |}|

)
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≤
(
I%1;ς κ

1− κ
‖z‖
)

(b) +

(
I%1;ς N

1− κ

)
(b)

+
(ς(b)− ς(a))ζ−1

|Ω|

×
m−2∑
r=1

|ξr|
((

I%1;ς κ

1− κ
‖z‖
)

(θr) +

(
I%1;ς N

1− κ

)
(θr)

)
+

(ς(b)− ς(a))ζ−1

|Ω|

×
((

I%1+1;ς κ

1− κ
‖z‖
)

(b) +

(
I%1+1;ς N

1− κ

)
(b) + |}|

)
≤ (ς(b)− ς(a))%1

Γ(%1 + 1)

(
κ

1− κ
ε+

N
1− κ

)
+

(ς(b)− ς(a))ζ−1

|Ω|

m−2∑
r=1

|ξr|
(

(ς(θr)− ς(a))%1

Γ(%1 + 1)

(
κ

1− κ
ε+

N
1− κ

))
+

(ς(b)− ς(a))%1+ζ

|Ω|Γ(%1 + 2)

(
κ

1− κ
ε+

N
1− κ

)
+

(ς(b)− ς(a))ζ−1

|Ω|
|}|

≤ κ

1− κ
Λε+

N
1− κ

Λ + (ς(b)− ς(a))ζ−1

∣∣∣∣ }Ω
∣∣∣∣

≤ ε.

This means that TAε ∈ Aε, that is, TAε ⊂ Aε.
Next, For each z, z∗ ∈ R and υ ∈ J, we have

|(Tz)(υ)− (Tz∗)(υ)|

≤ I%1;ς |Fz(υ)− Fz∗(υ)|+ (ς(υ)− ς(a))ζ−1

Ω

×

(
m−2∑
r=1

ξrI
%1,ς |Fz(θr)− Fz∗(θr)|+ I%1+1;ς |Fz(b)− Fz∗(b)|

)
.

From (H1), one has

|Fz(υ)− Fz∗(υ)| = |f(t, z(t),Fz(t))(υ)− f(t, z∗(t),Fz∗(t))(υ)|
≤ κ |z(υ)− z∗(υ)|+ κ |Fz(υ)− Fz∗(υ)| ,

which implies

|Fz(υ)− Fz∗(υ)| ≤ κ

1− κ
|z(υ)− z∗(υ)| .
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Consequently,

|(Tz)(υ)− (Tz∗)(υ)|

≤ κ

1− κ
( I%1;ς ‖z − z∗‖) (υ) +

(ς(b)− ς(a))ζ−1

|Ω|

×

(
m−2∑
r=1

|ξr|
κ

1−κ
( I%1;ς ‖z − z∗‖) (θr)+

κ

1− κ
(
I%1+1;ς ‖z − z∗‖

)
(b)

)

≤ κ

1− κ

[
(ς(b)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))ζ−1

|Ω|

m−2∑
r=1

|ξr|
(

(ς(θr)− ς(a))%1

Γ(%1 + 1)

)
+

(ς(b)− ς(a))%1+ζ

|Ω|Γ(%1 + 2)

]
‖z − z∗‖

≤ κ

1− κ
Λ ‖z − z∗‖ ,

which leads us to ‖Tz − Tz∗‖ ≤ κ
1−κΛ ‖z − z∗‖ . By (3.10), we realize that T

is a contraction. Then, a unique solution exists on J to (1.1) by virtue of the
Banach’s fixed point theorem [13], and this completes the proof. �

Second, we will use the Krasnoselskii’s fixed point theorem [13] to prove the
existence result for the implicit-type problem (1.1).

Theorem 3.3. Assume that (H1) and (H2) hold. If

κ

1− κ
Λ? < 1, (3.11)

where Λ? is defined by (3.9), then the implicit-type problem (1.1) has at least
one solution on J.

Proof. Consider the ball Aσ = {z ∈ C(J,R) : ‖z‖ ≤ σ} where σ > 0 with

σ ≥ Λ ‖Θ‖+
(ς(b)− ς(a))ζ−1

|Ω|
|}| , (3.12)

and supυ∈J |Θ(υ)| = ‖Θ‖ , where Λ is defined by (3.8). Then we build the
operators T1, T2 on Aσ by

(T1z)(υ) = I%1;ςFz(υ), υ ∈ J

and

(T2z)(υ) =
(ς(υ)− ς(a))ζ−1

Ω

(
m−2∑
r=1

ξrI
%1,ςFz(θr)− I%1+1;ςFz(b)− }

)
.
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For any z, z∗ ∈ Aσ, we get

|(T1z)(υ) + (T2z
∗)(υ)|

≤ sup
υ∈J

{
I%1;ς |Fz(υ)|+ (ς(υ)− ς(a))ζ−1

|Ω|

×

[
m−2∑
r=1

|ξr| I%1;ς |Fz∗(θr))|+ I%1+1;ς |Fz∗(b)|+ |}|

]}

≤

[
(ς(b)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))ζ−1

|Ω|

m−2∑
r=1

|ξr|
(

(ς(θr)− ς(a))%1

Γ(%1 + 1)

)
+

(ς(b)− ς(a))%1+ζ

|Ω|Γ(%1 + 2)

]
‖Θ‖+

(ς(b)− ς(a))ζ−1

|Ω|
|}|

= Λ ‖Θ‖+
(ς(b)− ς(a))ζ−1

|Ω|
|}|

≤ σ.
This proves that T1z + T2z

∗ ∈ Aσ. It is easy to find, by using (3.11) that T2

is a contraction map.
T1 is continuous, due to Fz(·) = f(·, z(·),Fz(·)) ∈ C(· ×R2,R). Also, T1 is

uniformly bounded on Aσ because we have from (H2) that

‖T1z‖ ≤
(ς(b)− ς(a))%1

Γ(%1 + 1)
‖Θ‖ .

In addition, we prove the compactness of T1 as follows.

Let υ1, υ2 ∈ J such that υ1 < υ2. Then

|(T1z)(υ2)− (T1z)(υ1)|

≤ 1

Γ(%1)

∣∣∣∣∫ υ1

a
ς ′(t)[(ς(υ2)− ς(t))%1−1 − ((ς(υ1)− ς(t))%1−1]Fz(t))dt

+

∫ υ2

υ1

ς ′(t)((ς(υ2)− ς(t))%1−1Fz(t)dt

∣∣∣∣
≤ ‖Θ‖

Γ(%1 + 1)
[2(ς(υ2)− ς(υ1))%1 + |(ς(υ2)− ς(a))%1 − (ς(υ1)− ς(a))%1 |] .

The last inequality with υ2 − υ1 → 0, gives

|(T1z)(υ2)− (T1z)(υ1)| → 0, for l |υ2 − υ1| → 0, z ∈ Aσ.
Then, T1 is relatively compact on Aσ. An application of the Arzel-Ascoli
theorem, T1 is compact on Aσ. Hence, all the assumptions of Krasnoselskii’s
fixed point theorem are satisfied. So, we infer that (1.1) has at least one
solution on J. �
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3.2. Integrodifferential-type problem (1.2).

Theorem 3.4. Assume that (H1) holds. If

κκ1Λ < 1, (3.13)

where Λ is defined by (3.8) and κ1 = 1+ (ς(b)−ς(a))%3

Γ(%3+1) , then the integrodifferential-

type problem (1.2) has a unique solution on J.

Proof. We convert (1.2) into a fixed point problem,that is, z = T?z such that
T? : C(J,R)→ C(J,R) defined by

(T?z)(υ)

= I%1,ςf(t, z(t), I%3;ςz(t))(υ) +
(ς(υ)− ς(a))ζ−1

Ω

×

(
m−2∑
r=1

ξr I
%1,ςf(t, z(t), I%3;ςz(t))(θr)−I%1+1;ς f(t, z(t), I%3;ςz(t))(b)−}

)
.

(3.14)

Note that the fixed points of T? are solutions of (1.2). We will show that T?
has a unique fixed point by using Banach theorem [13]. Indeed, we select

β ≥
ΛN + (ς(b)− ς(a))ζ−1

∣∣ }
Ω

∣∣
1− κκ1Λ

,

where N is as in Theorem 3.2. First, we show that T?Sβ ⊂ Sβ, where Sβ =
{z ∈ C(J,R) : ‖z‖ ≤ β}. By using (H1), we obtain

|f(υ, z(υ), I%3;ςz(υ))| ≤ |f(υ, z(υ), I%3;ςz(υ))− f(υ, 0, 0)|+ |f(υ, 0, 0)|
≤ κ |z(υ)|+ κ |I%3;ςz(υ)|+ N

≤ κ ‖z‖
(

1 +
(ς(b)− ς(a))%3

Γ(%3 + 1)

)
+ N.

For any z ∈ Sβ, we get

|(T?z)(υ)| ≤ sup
υ∈J

{
I%1,ς |f(t, z(t), I%3;ςz(t))(υ)|+ (ς(υ)− ς(a))ζ−1

|Ω|

×

(
m−2∑
r=1

|ξr| I%1,ς |f(t, z(t), I%3;ςz(t))(θr)|

+ I%1+1;ς |f(t, z(t), I%3;ςz(t))(b)|+ |}|
)}
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≤ I%1;ς

(
κ ‖z‖

(
1 +

(ς(b)− ς(a))%3

Γ(%3 + 1)

)
+ N

)
(b)

+
(ς(b)−ς(a))ζ−1

|Ω|

[
m−2∑
r=1

|ξr| I%1;ς

(
κ ‖z‖

(
1 +

(ς(b)− ς(a))%3

Γ(%3 + 1)

)
+ N

)
(θr)

+ I%1+1;ς

(
κ ‖z‖

(
1 +

(ς(b)− ς(a))%3

Γ(%3 + 1)

)
+ N

)
(b) + |}|

]
≤

{
(ς(b)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))ζ−1

|Ω|

[
m−2∑
r=1

|ξr|
(ς(θr)− ς(a))%1

Γ(%1 + 1)

+
(ς(b)− ς(a))%1+1

Γ(%1 + 2)

]}
×
(
κ ‖z‖

(
1 +

(ς(b)− ς(a))%3

Γ(%3 + 1)

)
+ N

)
+

(ς(b)− ς(a))ζ−1

|Ω|
|}|

≤ Λ (κκ1β + N) +
(ς(b)− ς(a))ζ−1

|Ω|
|}|

≤ β.

This means that T?Sβ ∈ Sβ, that is, T?Sβ ⊂ Sβ.
Next, for each z, z? ∈ C(J,R) and υ ∈ J, we have

|(T?z)(υ)− (T?z?)(υ)|

≤ I%1;ς |f(t, z(t), I%3;ςz(t))−f(t, z?(t), I%3;ςz?(t))| (b)+
(ς(b)− ς(a))ζ−1

Ω

×

{
m−2∑
r=1

|ξr| I%1,ς |f(θr, z(θr), I
%3;ςz(θr))− f(θr, z

?(θr), I
%3;ςz?(θr))|

+ I%1+1;ς |f(t, z(t), I%3;ςz(t))− f(t, z?(t), I%3;ςz?(t))| (b)

≤ κκ1

{
(ς(b)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))ζ−1

|Ω|

×

[
m−2∑
r=1

|ξr|
(ς(θr)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))%1+1

Γ(%1 + 2)

]}
‖z − z?‖

= κκ1Λ ‖z − z?‖ ,

which leads us to ‖T?z − T?z?‖ ≤ κκ1Λ ‖z − z?‖ . By (3.13), T is a contraction.
Then, a unique solution exists on J for (1.2) by virtue of the Banach’s fixed
point theorem [13], and this completes the proof. �
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Second, we will use the Krasnoselskii’s fixed point theorem [13] to prove the
existence result for the integrodifferential-type problem (1.1).

Theorem 3.5. Assume that (H1) and (H2) hold. If

κκ1Λ? < 1, (3.15)

where Λ? is defined by (3.9), then the integrodifferential-type problem (1.2) has
at least one solution on J.

Proof. Consider the ball SΠ = {z ∈ C(J,R) : ‖z‖ ≤ Π} where Π > 0 with

Π ≥ Λ ‖Θ‖+ (ς(b)− ς(a))ζ−1

∣∣∣∣ }Ω
∣∣∣∣ .

Then we build the operators T?1, T?2 on SΠ by

(T?1z)(υ) = I%1,ςf(t, z(t), I%3;ςz(t))(υ), υ ∈ J
and

(T?2z)(υ) =
(ς(υ)− ς(a))ζ−1

Ω

(
m−2∑
r=1

ξr I
%1,ςf(t, z(t), I%3;ςz(t))(θr)

− I%1+1;ς f(t, z(t), I%3;ςz(t))(b)− }
)
.

For any z, z? ∈ SΠ, we get

|(T?1z)(υ) + (T?2z?)(υ)|
≤ sup

υ∈J

{
I%1;ς |f(t, z(t), I%3;ςz(t))| (υ)

+
(ς(υ)− ς(a))ζ−1

|Ω|

[
m−2∑
r=1

|ξr| I%1;ς |f(t, z?(t), I%3;ςz?(t))| (θr)

+ I%1+1;ς | f(t, z?(t), I%3;ςz?(t))| (b) + |}|
]}

≤
{

(ς(b)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))ζ−1

|Ω|

×

[
m−2∑
r=1

|ξr|
(ς(θr)− ς(a))%1

Γ(%1 + 1)
+

(ς(b)− ς(a))%1+1

Γ(%1 + 2)

]}
‖Θ‖

+
(ς(b)− ς(a))ζ−1

|Ω|
|}|

= Λ ‖Θ‖+ (ς(b)− ς(a))ζ−1

∣∣∣∣ }Ω
∣∣∣∣

≤ Π.

This proves that T?1z + T?2z? ∈ SΠ. It is easy to find that T∗2 is a contraction
by using (3.15).
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T?1 is continuous, due to f(·, z(·), I%3;ςz(·)) ∈ C(· × R2,R). Also, T?1 is
uniformly bounded on SΠ because we have from (H2) that

‖T?1z‖ ≤
(ς(b)− ς(a))%1

Γ(%1 + 1)
‖Θ‖ .

The compactness of T1 holds.

Indeed, we define sup (t,z1,z2)∈J×SΠ×SΠ
|f(t, z1, z2)| = Πf and let υ1, υ2 ∈ J

such that υ1 < υ2. Then

|(T?1z)(υ2)− (T?1z)(υ1)|

≤ 1

Γ(%1)

∣∣∣∣∫ υ1

a
ς ′(t)[(ς(υ2)−ς(t))%1−1−((ς(υ1)−ς(t))%1−1]f(t, z(t), I%3;ςz(t))dt

+

∫ υ2

υ1

ς ′(t)((ς(υ2)− ς(t))%1−1f(t, z(t), I%3;ςz(t))dt

∣∣∣∣
≤

Πf

Γ(%1 + 1)
[2(ς(υ2)− ς(υ1))%1 + |(ς(υ2)− ς(a))%1 − (ς(υ1)− ς(a))%1 |] .

Since υ2 − υ1 → 0, we obtain

|(T?1z)(υ2)− (T?1z)(υ1)| → 0, for any z ∈ SΠ.

Therefore, T?1 is equicontinuous. Consequently, T?1 is relatively compact on SΠ.
An implementation of the Arzelá-Ascoli theorem, T?1 is compact on SΠ. So,
all the assumptions of Krasnoselskii’s fixed point theorem are fulfilled. Thus,
we infer that (1.2) has at least one solution on J. �

Remark 3.6. In Theorem 3.2, we can reciprocity the roles of the operators
T?1 and T?2 to get other result along with following condition:

Υ1 :=
κ

1− κ
(ς(b)− ς(a))%1

Γ(%1 + 1)
< 1. (3.16)

Remark 3.7. In Theorem 3.4, we can reciprocity the roles of the operators
T?1 and T?2 to get other results along with following condition:

Υ2 := κκ1
(ς(b)− ς(a))%1

Γ(%1 + 1)
< 1. (3.17)

Corollary 3.8. Assume that (H1), (H2) and condition (3.16) hold. Then the
implicit-type problem (1.1) has at least one solution on J.

Corollary 3.9. Assume that (H1), (H2) and condition (3.17) hold. Then the
integrodifferential-type problem (1.2) has at least one solution on J.
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4. UH Stability Analysis

In this section, we discuss the UH and GUH stability of the problem (1.2).

Definition 4.1. The problem (1.2) is UH stable if there exists a constant
Υf > 0 such that for each ε > 0 and every solution z ∈ C(J,R) of the
inequalities

|HD%1,%2;ςz(υ)− f(υ, z(υ), I%3;ςz(υ))| ≤ ε, for all υ ∈ J, (4.1)

there exists a solution z ∈ C(J,R) of the problem (1.2) that satisfies

|z(υ)− z(υ)| ≤ Υfε. (4.2)

Remark 4.2. z ∈ C(J,R) satisfies the inequality (4.1) if and only if there
exists a function Π ∈ C(J,R) with

(1) |Π(υ)| ≤ ε, υ ∈ J,
(2) for all υ ∈ J,

HD
%1,%2;ςz(υ) = f(υ, z(υ), I%3;ςz(υ)) + |Π(υ)| .

Lemma 4.3. If z ∈ C(J,R) is a solution to inequality (4.1), then z satisfies
the following inequality

|z(σ)−Θz| ≤ ε∆,
where

Θz = I%1,ςFz(υ) +
(ς(υ)−ς(a))ζ−1

Ω

(
m−2∑
r=1

ξrI
%1,ςFz(θr)−I%1+1;ςFz(b)−}

)
and

∆ =
(ς(b)− ς(a))%1

Γ (%1 + 1)
+

(ς(υ)− ς(a))ζ−1

Ω

{
m−2∑
r=1

ξr
(ς(b)− ς(a))%1

Γ (%1 + 1)

−(ς(b)− ς(a))%1+1

Γ (%1 + 2)
− }
ε

}
.

Proof. In view of Remark 4.2, we have{
HD

%1,%2;ςz(υ) = f(υ, z(υ), I%3;ςz(υ)) + |Π(υ)|
z(a) = 0,

∫ b
a ς
′(t)z(t)dt+ } =

∑m−2
r=1 ξrz(θr)

.

Then, by Lemma 3.1, we get

z(υ) = Θz + I%1,ςΠ(υ)

+
(ς(υ)− ς(a))ζ−1

Ω

(
m−2∑
r=1

ξrI
%1,ςΠ(θr)− I%1+1;ςΠ(b)− }

)
,
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which implies

|z(υ)−Θz| ≤ ε
(ς(b)− ς(a))%1

Γ (%1 + 1)
+ ε

(ς(υ)− ς(a))ζ−1

Ω

×

(
m−2∑
r=1

ξr
(ς(b)− ς(a))%1

Γ (%1 + 1)
− (ς(b)− ς(a))%1+1

Γ (%1 + 2)
− }
ε

)

= ε

(
(ς(b)− ς(a))%1

Γ (%1 + 1)
+

(ς(υ)− ς(a))ζ−1

Ω

{
m−2∑
r=1

ξr
(ς(b)− ς(a))%1

Γ (%1 + 1)

−(ς(b)− ς(a))%1+1

Γ (%1 + 2)
− }
ε

})
≤ ε∆.

�

Theorem 4.4. Assume that (H1)-(H2) hold. Under the Lemma 4.3, the fol-
lowing equation

HD
%1,%2;ςz(υ) = f(υ, z(υ), I%3;ςz(υ)), υ ∈ J, (4.3)

is UH stable as well as GUH provided that κκ1Λ < 1.

Proof. Let z ∈ C(J,R) be a function satisfies (4.1), and z ∈ C(J,R) be unique
solution of the following problem HD

%1,%2;ςz(υ) = f(υ, z(υ), I%3;ςz(υ)), υ ∈ J,
z(a) = 0,

∫ b
a ς
′(t)z(t)dt+ } =

∑m−2
r=1 ξrz(θr),

z(υ) = z(υ), υ ∈ J.

Then, by Lemma 3.1, we get

z(υ) = Θz.

It follows from Theorem 3.4, that

‖z − z‖ = sup
υ∈J
|z(υ)−Θz| ≤ sup

υ′∈f
|z(υ)−Θz|+ sup

υ′∈f
|Θz −Θz|

≤ ε∆ + κκ1Λ ‖z − z‖ .
Thus

‖z − z‖ ≤ Υfε,

where

Υf =
∆

1− κκ1Λ
> 0.

Now, by choosing ϕκ(ε) = Υfε such that ϕκ(0) = 0, then the problem (4.3) is
GUH stability. �
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5. Examples

Example 5.1. Consider the implicit-type problem HD
4
3
, 1
3

;2υz(υ) = e−υ

(eυ+8)

(
1

1+|z(υ)|+
∣∣∣HD

4
3 ,

1
3 ;2υ z(υ)

∣∣∣
)

+ 1
2 , υ ∈ [0, 1],

z(0) = 0,
∫ 1

0 ς
′(t)z(t)dt+ 1

2 = 3
5z(

4
11) + 4

5z(
5
11).

(5.1)

Here %1 = 4
3 , %2 = 1

3 , ξ1 = 3
5 , ξ2 = 4

5 , θ1 = 4
11 , θ2 = 5

11 , ζ = 14
9 , ς(υ) = 2υ

and } = 1
2 .

Set

f(υ, z, y) =
e−υ

(eυ + 8)

(
1

1 + z + y

)
+

1

2
.

For each z, z∗, y, y∗ ∈ R, we have

|f(υ, z, y)− f(υ, z∗, y∗)| =
e−υ

(eυ + 8)

∣∣∣∣ 1

1 + z + y
− 1

1 + z∗ + y∗

∣∣∣∣
≤ e−υ

(eυ + 8)

|z − z∗|+ |y − y∗|
(1 + z + y) (1 + z∗ + y∗)

≤ 1

9
(|z − z∗|+ |y − y∗|) , for υ ∈ [0, 1].

Hence, (H1) holds with κ = 1
9 . Moreover, for each (υ, z, y) ∈ J× R2, we have

|f(υ, z, y)| ≤ e−υ

(eυ + 8)

(
1

1 + |z(υ)|+ |y(υ)|

)
+

1

2

≤ e−υ

(eυ + 8)
+

1

2
.

Consequently, (H2) holds with Θ(υ) = e−υ

(eυ+8) + 1
2 .

Next, we can find that Ω = −0.11756 6= 0 and κ
1−κΛ = 0.779 < 1, the

Theorem 3.2 is fulfilled, then the implicit-type problem (5.1) has a unique
solution on [0, 1]. Also, we can find κ

1−κΛ∗ = 0.674 < 1, the Theorem 3.3

is fulfilled, then the implicit-type problem (5.1) has at least one solution on
[0, 1].Additionally, we can find Υ1 = 0.104 < 1, hence the Corollary 3.8 hold.

Example 5.2. Consider the integrodifferential-type problem:{
HD

5
3
, 1
2

;υz(υ) = 1
(10+υ)

[
|z(υ)|

1+|z(υ)| + sin
(
I

3
2

;υz(υ)
)]

+ υ
2 , υ ∈ [0, 1],

z(0) = 0,
∫ 1

0 ς
′(t)z(t)dt+ 1

30 = 2
5z(

4
5).

(5.2)
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Here ξ1 = 2
5 , θ1 = 4

5 , %1 = 5
3 , %2 = 1

2 , %3 = 3
2 , ζ = 11

6 and } = 1
30 with ς(υ) = υ.

For each z, z∗, y, y∗ ∈ R, we have∣∣∣f(υ, z,I
3
2

;ςz)− f(υ, y, I
3
2

;ςy)
∣∣∣

=
1

(10 + υ)

∣∣∣∣ |z|1 + |z|
+ sin

(
I

3
2

;υz
)
− |y|

1 + |y|
− sin

(
I

3
2

;υy
)∣∣∣∣

≤ 1

(10 + υ)

[
|z − y|

(1 + |z|) (1 + |y|)
+
∣∣∣sin(I 3

2
;υz
)
− sin

(
I

3
2

;υy
)∣∣∣]

≤ 1

(10 + υ)

[
|z − y|+

∣∣∣I 3
2

;υz − I
3
2

;υy
∣∣∣] .

For υ ∈ [0, 1], we have∣∣∣f(υ, z,I
3
2

;υz)− f(υ, y, I
3
2

;υy)
∣∣∣ ≤ 1

10

[
|z − y|+

∣∣∣I 3
2

;υz − I
3
2

;υy
∣∣∣] .

Hence, (H1) holds with κ = 1
10 . Moreover, for each (υ, z, y) ∈ J×R2, we have

|f(υ, z, y)| ≤ 1

(10 + υ)

[
|z(υ)|

1 + |z(υ)|
+ sin

(
I

3
2

;υz(υ)
)]

+
υ

2

≤ 2

(10 + υ)
+
υ

2
.

Consequently, (H2) holds with Θ(υ) = 2
(10+υ) + υ

2 .

Next, we can find that Ω = 0.213, κκ1Λ = 0.379 < 1, κκ1Λ? = 0.337 < 1
and Υ2 = 0.110 < 1. Therefore, by the applying of Theorems 3.3, 3.5, and
Corollary 3.9, the problem (5.2) has a solution which is unique.

6. Conclusions

In this work, we have proven the existence and uniqueness of solution for
nonlinear implicit-type FDEs and integrodifferential-type FDEs with nonlocal
integral-multipoint boundary conditions in the frame of ς-Hilfer FD. The anal-
ysis of the main results is based on the employment of the fixed point theorems
of Banach and Krasnoselskii. The obtained results extend many fundamental
results existing in the current literature for other types of FDs. We made some
observations and special cases related to the function ς which generates many
other FDs.

Further, it will be of interest to investigate the current problem in this work
for the Mittag-Leffler power low [11] and for fractal fractional operators [10].
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