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Abstract. In this paper, we have developed the idea of α-β-ψ-contractive mapping in S-

metric space and renamed it αs-βs-ψ-contractive mapping. We have proved some results of

fixed point present in literature in partially ordered S-metric space using αs-βs-admissible

and αs-βs-ψ-contractive mapping.

1. Introduction and Preliminaries

The theory of fixed point has been applied to different fields of study
throughout the last four-five decades. Samet et al. [20] attempted to gen-
eralize Banach fixed point theorem to contribute by developing the idea of
α-admissible mappings and further the idea of α-ψ-contractive mappings in
metric spaces. The study of Samet et al. [20] demonstrate that Banach’s fixed
point result and other conclusions are natural implications of their results.

The notion of α-admissible mappings is further expanded to S-metric space,
Sb-metric space, G-metric space, etc. Zhou et al. [24] expanded the notion of
α-admissible mappings to S-metric space for mapping and pair of mappings.
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Further, they also defined various types of contractions of mappings viz. type-
A, type-B, etc. [24].

Priyobarta et al. [16] also introduce the notion of α-admissible mappings in
the perspective of S-metric spaces and denote it as αs-admissible mappings.
Further, they established many theorems of fixed point regarding various types
of contractive mappings due to αs-admissibility.

Recently, the presence of fixed points, in partially ordered sets has been
studied in [1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 17]. In the row of extension and
generalization, Asgari et al. [2] considered α-ψ-contractive type mappings
with a supplementary condition for partially ordered set and solved a first-
order boundary value problem in connection with its lower solution. Further
Asgari et al. [3] introduce the notion of α-β-ψ-contractive mappings and
proved various results of the fixed point in a partially ordered metric space.
For more information reader are suggested to see the papers [5, 9, 10, 13, 18,
19, 22, 23, 25].

In this paper, we have introduced the notion of α-β-ψ-contractive mappings
in S-metric space and denote it as αs-βs-ψ-contractive mappings and estab-
lished some theorems of the fixed point in S-metric space equipped with a
partial order. The proposed theorems are expansions in the S-metric space of
theorems found in the literature, specifically, the results of Ran and Reurings
[17], Harjani and Sadrangani [6] and Nieto et al. [12, 13]. Further, we applied
the collected results to find the solution to the boundary value issues of the
first-order ODE in comparison to its lower solution.

Definition 1.1. If (U,≤) is a partially ordered set. The mapping G : U → U
is considered as monotonic non-decreasing if

l ≤ l′ =⇒ G(l) ≤ G(l′), for all l, l′ ∈ U.

Definition 1.2. ([20]) We consider Ψ a collection of mappings ψ : [0,+∞)→
[0,+∞) such that ψ is non-decreasing and

∞∑
0

ψn(k) < +∞, for all k > 0,

where, ψn represents nth iteration of ψ.

Lemma 1.3. ([20]) If a mapping ψ : [0,+∞) → [0,+∞) is non-decreasing
such that

lim
n→∞

ψn(k) = 0, for all k > 0,

then ψ(k) < k.
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In 2012, Sedghi et al. [21] introduced the concept of S-metric space and
defined it as follows;

Definition 1.4. ([21]) Let U be a nonempty set. An S-metric on U is a
function S : U × U × U → [0,∞) that satisfies the following conditions for
each l1, l2, l3, a ∈ U :

(S1) S(l1, l2, l3) ≥ 0,
(S2) S(l1, l2, l3) = 0 if and only if l1 = l2 = l3,
(S3) S(l1, l2, l3) ≤ S(l1, l1, a) + S(l2, l2, a) + S(l3, l3, a).

The pair (U, S) is called an S-metric space.

Example 1.5. ([21]) Let U be a nonempty set and d be an ordinary metric
on U . Then S(l1, l2, l3) = d(l1, l3) + d(l2, l3) is an S-metric on U .

Lemma 1.6. ([21]) Let (U, S) be an S-metric space. Then for all l1, l2 ∈ U ,
we have

S(l1, l1, l2) = S(l2, l2, l1).

Definition 1.7. ([21]) Let (U, S) be an S-metric space,

(i) A sequence {ln} in X converges to l if S(ln, ln, l) → 0 as n → +∞.
That is, for each ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,
S(ln, ln, l) < ε, and we denote this by limn→+∞ ln = l.

(ii) A sequence {ln} in X is called a Cauchy sequence if for each ε > 0
there exists n0 ∈ N such that S(ln, ln, lm) < ε for each n,m ≥ n0.

(iii) The S-metric space (U, S) is said to be complete if every Cauchy se-
quence is convergent.

2. Main results

We extended the concept of α-β-ψ-contractive mappings of Asgari and
Badehian [3] in partially ordered, complete S-metric space and defined it as
follows.

Definition 2.1. Let (U,≤, S) be a partially ordered, complete S-metric space.
The mapping G : U → U is said to be an αs-βs-ψ-contractive mapping of type-
A if αs, βs : U × U × U → [0,+∞) and ψ ∈ Ψ are such that

αs(l1, l2, l3)S(G(l1), G(l2), G(l3)) ≤ βs(l1, l2, l3)ψ(S(l1, l2, l3), (2.1)

for all l1, l2, l3 ∈ U with l1 ≥ l2 ≥ l3.
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Definition 2.2. Let (U,≤, S) be a partially ordered, complete S-metric space.
The mapping G : U → U is said to be an αs-βs-ψ-contractive mapping of type-
B if αs, βs : U × U × U → [0,+∞) and ψ ∈ Ψ are such that

αs(l1, l1, l2)S(G(l1), G(l1), G(l2)) ≤ βs(l1, l1, l2)ψ(S(l1, l1, l2)), (2.2)

for all l1, l2 ∈ U with l1 ≥ l2.

Example 2.3. A mapping G : U → U satisfying the Banach contraction
principle and αs(l1, l2, l3) = βs(l1, l2, l3) = 1 for all l1, l2, l3 ∈ U with ψ(k) = δk
for all k ≥ 0, where δ ∈ [0, 1). Then G is an αs-βs-ψ-contractive mapping.

Definition 2.4. Let G : U → U , αs, βs : U × U × U → [0,+∞) and cαs > 0,
cβs ≥ 0. G is said to be an αs-βs-admissible mapping if for all l1, l2, l3 ∈ U
with l1 ≥ l2 ≥ l3,

(a) αs(l1, l2, l3) ≥ cαs =⇒ αs(G(l1), G(l2), G(l3)) ≥ cαs ;
(b) βs(l1, l2, l3) ≤ cβs =⇒ βs(G(l1), G(l2), G(l3)) ≤ cβs ;
(c) 0 ≤ cβs

cαs
≤ 1.

Example 2.5. Let U = (0,+∞) and G : U → U be defined by G(l) = el, for
all l ∈ U . If αs, βs : U × U × U → [0,+∞) are such that

αs(l1, l2, l3) =

{
3, if l1 ≥ l2 ≥ l3;
0, otherwise

and

βs(l1, l2, l3) =

{
1
4 , if l1 ≥ l2 ≥ l3;
0, otherwise.

If we take cαs = 2 and cβs = 1
2 , then G is αs-βs-admissible.

Theorem 2.6. Let (U,≤, S) be a partially ordered, complete S-metric space.
Let a non-decreasing mapping G : U → U be an αs-βs-ψ-contractive mapping
of type A with;

(a) G is αs-βs-admissible;
(b) there exists l0 ∈ U such that l0 ≤ G(l0);
(c) there exists cαs > 0, cβs ≥ 0 such that αs(G(l0), G(l0), l0) ≥ cαs,

βs(G(l0), G(l0), l0) ≤ cβs;
(d) G is continuous.

Then, G(l∗) = l∗ for some l∗ ∈ U , that is, G has a fixed point..

Proof. Let there exists l0 ∈ U such that l0 ≤ G(l0). If G(l0) = l0 then, there
is nothing to prove. Suppose G(l0) 6= l0. Since l0 ≤ G(l0) and mapping is
non-decreasing, by induction we get

l0 ≤ G(l0) ≤ G2(l0) ≤ G3(l0) ≤ · · · ≤ Gn(l0) ≤ Gn+1(l0) ≤ · · · . (2.3)
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Due to αs-βs-admissibility of G, if αs(G(l0), G(l0), l0) ≥ cαs , then

αs(G
2(l0), G

2(l0), G(l0)) ≥ cαs , · · · ,
αs(G

n+1(l0), G
n+1(l0), G

n(l0)) ≥ cαs .
(2.4)

And if βs(G(l0), G(l0), l0) ≤ cβs , then

βs(G
2(l0), G

2(l0), G(l0)) ≤ cβs ,
βs(G

n+1(l0), G
n+1(l0), G

n(l0)) ≤ cβs .
(2.5)

From (2.1), (2.3) and (2.5)

cαsS(G2(l0), G
2(l0), G(l0)) ≤ αs(G(l0), G(l0), l0).S(G2(l0), G

2(l0), G(l0))

≤ βs(G(l0), G(l0), l0).ψ(S(G(l0), G(l0), l0))

≤ cβsψ(S(G(l0), G(l0), l0)).

Thus,

S(G2(l0), G
2(l0), G(l0)) ≤

cβs
cαs

ψ(S(G(l0), G(l0), l0))

≤ ψ(S(G(l0), G(l0), l0)).

In general,

S(Gn+1(l0), G
n+1(l0), G

n(l0)) ≤ ψn(S(G(l0), G(l0), l0)).

This implies

S(Gn+1(l0), G
n+1(l0), G

n(l0))→ 0,

as n → +∞. Now it can be proved that {Gn(l0)}∞n=1 is a Cauchy sequence.
As ψ ∈ Ψ, so for fixed ε > 0 there exist N(ε) ∈ N such that∑

n≥N(ε)

ψn(S(G(l0), G(l0), l0)) < ε.

For m,n ∈ N such that m > n > N(ε),

S(Gn(l0), G
n(l0), G

m(l0))

≤ 2S(Gn(l0), G
n(l0), G

n+1(l0)) + S(Gn+1(l0), G
n+1(l0), G

m(l0))

≤ 2{S(Gn(l0), G
n(l0), G

n+1(l0)) + S(Gn+1(l0), G
n+1(l0), G

n+2(l0))

+ · · ·+ S(Gm−1(l0), G
m−1(l0), G

m(l0))}
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≤ 2{ψnS(G(l0), G(l0), l0) + ψn+1S(G(l0), G(l0), l0)

+ · · ·+ ψm−1S(G(l0), G(l0), l0)}

= 2
m−1∑
k=n

ψk(S(G(l0), G(l0), l0))

≤ 2
∑

n≥N(ε)

ψn(S(G(l0), G(l0), l0))

< ε.

Since (U,≤, S) is a complete space, the sequence {Gn(l0)}∞n=1 will converge in
it, that is, there exists l∗ ∈ U such that limn→+∞G

n(l0) = l∗.
Now it can verify that the limit l∗ is a fixed point of the function G. Since

G is a continuous function, there exists δ > 0 for each ε > 0 such that

S(l, l, l∗) < δ =⇒ S(G(l), G(l), G(l∗)) <
ε

3
, for l ∈ U.

Suppose η = min{ ε3 , δ}, since the sequence {Gn(l0)}∞n=1 converges to l∗, there
exist n0 ∈ N such that,

S(Gn(l0), G
n(l0), l

∗) ≤ η, for all n ≥ n0, n ∈ N.
Taking n ≥ n0, n ∈ N we get,

S(G(l∗), G(l∗), l∗)

≤ 2S(G(l∗), G(l∗), G(Gn(l0))) + S(Gn+1(l0), G
n+1(l0), l

∗)

= 2S(G(Gn(l0)), G(Gn(l0)), G(l∗)) + S(Gn+1(l0), G
n+1(l0), l

∗)

< 2× ε

3
+ η

≤ 2ε

3
+
ε

3
= ε.

Therefore, S(G(l∗), G(l∗), l∗) = 0 that is G(l∗) = l∗. �

Remark 2.7. The hypothesis of continuity of G has been eliminated in the
next theorem.

Theorem 2.8. If (U,≤, S) is a partially ordered, complete S-metric space.
Let a non-decreasing mapping G : U → U be an αs-βs-ψ-contractive mapping
of type-A with

(a) G be αs-βs-admissible;
(b) there exists l0 ∈ U such that l0 ≤ G(l0);
(c) there exists cαs > 0, cβs > 0 such that αs(G(l0), G(l0), l0) ≥ cαs ,

βs(G(l0), G(l0), l0) ≤ cβs;
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(d) if there is a sequence {ln}∞n=1 in U such that αs(ln, ln, ln+1) ≥ cαs ,
βs(ln, ln, ln+1) ≤ cβs for all n ∈ N and limn→+∞ ln = l′ in U , then
αs(ln, ln, l

′) ≥ cαs , βs(ln, ln, l′) ≤ cβs;
(e) for non-decreasing sequence {ln} such that ln → l′ in U , ln ≤ l′ for all n ∈

N.

Then, G(l∗) = l∗ for some l∗ ∈ U .

Proof. Proceeding as in the Theorem 2.6, since the sequence {Gn(l0)} is a
Cauchy sequence, there exists an element l ∈ U such that limn→+∞G

n(l0) = l.
This limit is a fixed point of G which can be proved as follows:

Since {Gn(l0)}∞n=1 converges to l, therefore, for some ε > 0 there exists
n0 ∈ N such that

S(Gn(l0), G
n(l0), l) <

ε

3
, for all n ≥ n0.

Since, the sequence {Gn(l0)} is a non-decreasing sequence, on taking account
(e), we have

Gn(l0) ≤ l. (2.6)

Using (2.1), (2.5), (2.6) and (d), we get

cαsS(l, l, G(l)) ≤ cαsS(G(Gn(l0)), G(Gn(l0)), G(l))

+ 2cαsS(Gn+1(l0), G
n+1(l0), l)

≤ αs(Gn(l0), G
n(l0), l)S(G(Gn(l0)), G(Gn(l0)), G(l))

+ 2cαsS(Gn+1(l0), G
n+1(l0), l)

≤ βs(Gn(l0), G
n(l0), l)ψ(S(Gn(l0), G

n(l0), l))

+ 2cαsS(Gn+1(l0), G
n+1(l0), l)

≤ cβsψ(S(Gn(l0), G
n(l0), l)) + 2cαsS(Gn+1(l0), G

n+1(l0), l),

therefore,

S(l, l, G(l)) <
cβs
cαs

ψ(S(Gn(l0), G
n(l0), l)) + 2S(Gn+1(l0), G

n+1(l0), l)

<
ε

3
+ 2

ε

3
= ε.

Hence, S(l, l, G(l)) = 0, that is G(l) = l. �

Example 2.9. Let (R,≤) and S metric defined on it by S(p, q, r) = |p− q|+
|q − r|, for all p, q, r ∈ R. Then (R, S) is a complete S-metric space. The
function G : R→ R defined by

G(r) =

{
r
15 , if r ≥ 0;
0, otherwise,
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and the mappings αs, βs : R× R× R→ [0,+∞) given by

αs(p, q, r) =

{
2, if p, q, r ≥ 0;
0, otherwise,

βs(p, q, r) =

{
1
3 , if p, q, r ≥ 0;
0, otherwise.

Let ψ(k) = k
2 for k > 0. Clearly function G is continuous, non-decreasing

and αs-βs-ψ-contractive of type A. Let cαs = 3
2 and cβs = 1

2 . Then G is
αs-βs-admissible. For p, q, r ∈ [0,+∞) with p ≥ q ≥ r, we have

αs(p, q, r) ≥ cαs =⇒ αs(G(p),G(q),G(r)) = αs(
p

15
,
q

15
,
r

15
) ≥ cαs ,

also

βs(p, q, r) ≤ cβs =⇒ βs(G(p),G(q),G(r)) = βs(
p

15
,
q

15
,
r

15
) ≤ cβs .

Also, there exists r0 ∈ U such that

αs(G(r0),G(r0), r0) ≥ cαs
and

βs(G(r0),G(r0), r0) ≤ cβs .
Since 0 ≤ G(0) = 0, r0 ≤ G(r0). Hence each postulates (a)-(d) of Theorem 2.6
holds. Therefore, G(l∗) = l∗ for some l∗ ∈ U . Here 0 ∈ U is a point such that
G(0) = 0.

Remark 2.10. In the next example mapping is discontinuous and follows
Theorem 2.8.

Example 2.11. Let (R,≤) and S-metric defined on it is

S(p, q, r) = |p− q|+ |q − r|+ |r − p|
for all p, q, r ∈ R. Then (R, S) is a complete S-metric space. Define G : R→ R
and αs, βs : R× R× R→ [0,+∞) by

G(r) =

 2r − 1
2 , if r ≥ 1

2 ;
r
10 , if 0 ≤ r < 1

2 ;
0, if r < 0

and

αs(p, q, r) =

{
1, if p, q, r ∈ [0, 12 ];
0, otherwise,

βs(p, q, r) =

{
1
3 , if p, q, r ∈ [0, 12 ];
0, otherwise.
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It is clear that, the mapping G is discontinuous and non-decreasing. Let ψ(k) =
k
3 , for all k > 0. Obviously, if p, q, r ∈ R − [0, 12 ], then the mapping G is αs-

βs-ψ-contractive of type-A. Let p, q, r ∈ [0, 12 ] with p ≥ q ≥ r, cαs = 1
2 and

cβs = 1
3 . Then αs(p, q, r) ≥ cαs and βs(p, q, r) ≤ cβs . Hence, we have

αs(p, q, r)S(Gp,Gq,Gr) = |Gp− Gq|+ |Gq − Gr|+ |Gr − Gp|

= | p
10
− q

10
|+ | q

10
− r

10
|+ | r

10
− p

10
|

=
1

10
(|p− q|+ |q − r|+ |r − p|)

and

βs(p, q, r)ψ(S(p, q, r)) =
1

3
× 1

3
S(p, q, r)

=
1

9
(|p− q|+ |q − r|+ |r − p|).

Therefore,

1

10
(|p− q|+ |q − r|+ |r − p|) ≤ 1

9
(|p− q|+ |q − r|+ |r − p|).

In other words,

αs(p, q, r)S(Gp,Gq,Gr) ≤ βs(p, q, r)ψ(S(p, q, r)),

for all p, q, r ∈ R. Therefore, the mapping G is an αs-βs-ψ-contractive mapping
of type-A. Moreover, there exists r0 ∈ R such that αs(Gr0,Gr0, r0) ≥ cαs and
βs(Gr0,Gr0, r0) ≤ cβs . Let r0 = 0. Then

αs(Gr0,Gr0, r0) = αs(G(0),G(0), 0) = αs(0, 0, 0) = 1 ≥ 1

2

and

βs(Gr0,Gr0, r0) = βs(G(0),G(0), 0) = βs(0, 0, 0) =
1

3
≤ cβs =

1

3
.

Since 0 = r0 ≤ 0 = Gr0, that is, r0 ≤ Gr0, G is αs-βs-admissible. Now, if
the sequence {rn} is non-decreasing in R such that αs(rn, rn, rn+1) ≥ cαs and
βs(rn, rn, rn+1) ≤ cβs for all n ∈ N and rn → r, then by definition of αs and

βs, rn ∈ [0, 12), that is, r ∈ [0, 12). In addition, {rn} is non-decreasing hence
rn ≤ r. Hence, all the hypotheses of Theorem 2.8 are satisfied, therefore G
has a fixed point. 0 and 1

2 are fixed points for G.

Remark 2.12. It is clear that the fixed point of G may not be unique(see
above Example 2.11). The following theorems are obtained by applying addi-
tional conditions to the hypotheses of Theorem 2.6 and 2.8 to obtain a unique
fixed point.
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Theorem 2.13. Considering all the hypotheses of Theorems 2.6 or 2.8, there
exists p ∈ U for all l1, l2,∈ U with l1 ≥ p, l2 ≥ p such that{

αs(l1, l1, p) ≥ cαs and βs(l1, l1, p) ≤ cβs
αs(l2, l2, p) ≥ cαs and βs(l2, l2, p) ≤ cβs

(2.7)

provides unique fixed point of G.

Proof. Suppose l′ and l′′ are two fixed points of G, that is, G(l′) = l′ and
G(l′′) = l′′. Then there exists p ∈ U for l′ and l′′ such that (2.7) holds. Now
by the first part of (2.7), we have

αs(l
′, l′, p) ≥ cαs and βs(l

′, l′, p) ≤ cβs , l′ ≥ p. (2.8)

Since G is αs-βs-admissible, we get

αs(G(l′), G(l′), G(p)) ≥ cαs and βs(G(l′), G(l′), G(p)) ≤ cβs ,

G(l′) ≥ G(p).

Therefore, αs(l
′, l′, G(p)) ≥ cαs and βs(l

′, l′, G(p)) ≤ cβs , l′ ≥ G(p). Continuing
this process, we have

αs(l
′, l′, Gn(p)) ≥ cαs and βs(l

′, l′, Gn(p)) ≤ cβs , l′ ≥ Gn(p), for all n ∈ N.(2.9)

Using the αs-βs-ψ-contractivity of G, we have

cαsS(l′, l′, Gn(p)) = cαsS(G(l′), G(l′), G(Gn−1(p)))

≤ αs(l′, l′, Gn−1(p))S(G(l′), G(l′), G(Gn−1(p)))

≤ βs(l′, l′, Gn−1(p))ψ(S(l′, l′, Gn−1(p)))

≤ cβsψ(S(l′, l′, Gn−1(p))).

Therefore

S(l′, l′, Gn(p)) ≤
cβs
cαs

ψ(S(l′, l′, Gn−1(p)))

≤ ψ(S(l′, l′, Gn−1(p)))

≤ ψ(ψ(S(l′, l′, Gn−2(p))))

...

≤ ψn(S(l′, l′, p)).

Which implies,

S(l′, l′, Gn(p)) ≤ ψn(S(l′, l′, p)) for all n ∈ N,

this implies Gn(p) → l′ as n → +∞. Similarly, for the second part of (2.7),
Gn(p)→ l′′. Therefore l′ = l′′ proves uniqueness of fixed point of G. �
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Note: Similarly, we can easily prove the following theorems (2.14), (2.15)
and (2.16) obtained by replacing the inequality l0 ≤ G(l0) by l0 ≥ G(l0) in the
assumption (b) of the theorems (2.6), (2.8) and (2.13) respectively.

Theorem 2.14. Let (U,≤, S) be a partially ordered, complete S-metric space
and G : U → U be a non-decreasing, αs-βs-ψ-contractive mapping of type-A
satisfying;

(a) G is αs-βs-admissible;
(b) there exists l0 ∈ U such that l0 ≥ G(l0);
(c) there exists cαs > 0, cβs ≥ 0 such that αs(l0, l0, G(l0)) ≥ cαs,

βs(l0, l0, G(l0)) ≤ cβs ;
(d) G is continuous.

Then, there exists a fixed point of G.

Theorem 2.15. Let (U,≤, S) be a partially ordered, complete S-metric space.
If a non-decreasing mapping G : U → U is αs-βs-ψ-contractive mapping of
type-A with;

(a) G is αs-βs-admissible;
(b) there exists l0 ∈ U such that l0 ≥ G(l0);
(c) there exists cαs > 0, cβs ≥ 0 such that αs(l0, l0, G(l0)) ≥ cαs ,

βs(l0, l0, G(l0)) ≤ cβs;
(d) if {ln}∞n=1 is a sequence in U and limn→∞ ln = l,

if αs(ln+1, ln+1, ln) ≥ cαs, βs(ln+1, ln+1, ln) ≤ cβs for all n ∈ N
implies αs(l, l, ln) ≥ cαs, βs(l, l, ln) ≤ cβs;

(e) if there exists a non-increasing sequence {ln} in U such that ln → l
then l ≤ ln for all n ∈ N .

Then, there exists a fixed point of G.

Theorem 2.16. Considering all the postulates of the Theorems 2.14 or 2.15,
if there exists p ∈ U for all l1, l2 ∈ U such that l1 ≥ p, l2 ≥ p and{

αs(l1, l1, p) ≥ cαs and βs(l1, l1, p) ≤ cβs ,
αs(l2, l2, p) ≥ cαs and βs(l2, l2, p) ≤ cβs .

(2.10)

Then, there exists a unique fixed point of G.

3. Applications to ordinary differential equations

Here, we have proved the uniqueness of a solution of the following first-
order boundary value problem with continuous T : J × R → R and αs-βs-ψ-
contractive mapping of type-A considering existence of a lower solution.{

x′(j) = T (j, x(j)), j ∈ J = [0,M ];
x(0) = x(M),

(3.1)
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where M ≥ 0 and function T : J ×R→ R is continuous.

Nieto and Rod.-Lopez [12] solved the differential equation (3.1) in the rela-
tion of its lower solution as:

Theorem 3.1. ([12]) The problem (3.1) with continuous T : J ×R→ R and
some λ > 0, µ > 0 with µ < λ such that, for all l1, l2 ∈ R with l1 ≤ l2,

µ(l2 − l1) ≥ T (j, l2) + λl2 − T (j, l1)− λl1 ≥ 0,

then, the existence of a lower solution for (3.1), provides the existence of a
unique solution of (3.1).

Also, Sadarangani and Harjani [7] have proved the theorem:

Theorem 3.2. ([7]) The problem (3.1) with continuous T : J × R → R and
suppose that there exists λ > 0 such that for all l1, l2 ∈ R with l1 ≤ l2,

λψ(l2 − l1) ≥ T (j, l2) + λl2 − T (j, l1) ≥ 0,

where ψ : [0,+∞)→ [0,+∞) given by ψ(k)=k-φ(k) for φ : [0,+∞)→ [0,+∞)
continuous, increasing with φ(k)=0 only for k = 0 and limk→+∞ φ(k)=+∞
for all k ∈ (0,+∞). If (3.1) has a lower solution exists, then it is unique
solution.

Now we solve problem (3.1) using the above theorems.

Remark 3.3. For some λ > 0, problem (3.1) can be expressed as{
x′(j) + λx(j) = T (j, x(j)) + λx(j), j ∈ J = [0,M ];
x(0) = x(M).

The corresponding integral equation to this differential equation is given by

x(j) =

∫ M

0
G(j, t)[T (t, x(t)) + λx(t)]dt,

where

G(j, t) =

{
eλ(M+t−j)

eλM−1 ; 0 ≤ t < j ≤M ;
eλ(t−j)

eλM−1 ; 0 ≤ j < t ≤M.

G(j, t) is known as the Green function in differential equation theory.

Theorem 3.4. Consider the given problem (3.1) with continuous T : J×R→
R holding the following conditions:

(a) for all l1, l2 ∈ R with l2 ≥ l1, and ψ ∈ Ψ there exists λ > 0 such that

λψ(l2 − l1) ≥ T (j, l2) + λl2 − T (j, l1)− λl1 ≥ 0;
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(b) for all j ∈ I and a, b ∈ R there exists ξ : R3 → R such that if
ξ(a, a, b) ≥ 0 implies

ξ
(∫ M

0
G(t, j)[T (t, x(t))+λx(t)]dt,

∫ M

0
G(t, j)[T (t, x(t))+λx(t)]dt, γ(j)

)
≥ 0,

where γ ∈ C(J,R) is lower solution of (3.1);
(c) for all x, y ∈ C(J,R) and j ∈ J , ξ(x(j), x(j), y(j)) ≥ 0 implies

ξ
(∫ M

0
G(j, t)[T (t, x(t)) + λx(t)]ds,

∫ M

0
G(j, t)[T (t, x(t)) + λx(t)]ds,∫ M

0
G(j, t)[T (t, y(t)) + λx(t)]ds

)
≥ 0;

(d) if zn → z ∈ C(J,R) and ξ(zn, zn, zn+1) ≥ 0 implies ξ(zn, zn, z) ≥ 0 for
all n ∈ N .

Then, there exists a unique solution if a lower solution exists.

Proof. Let U = C(J,R) and define A : U → U by

[A(x)](j) =

∫ M

0
G(j, t)[T (t, x(t)) + λx(t)]dt, j ∈ J.

Note that solution of (3.1) is a fixed point of A. U is a partially ordered set
with order relation.

x ≤ y ⇔ x(j) ≤ y(j) for all j ∈ J, where x, y ∈ U.
If we define

S(x, x, y) = sup 2|x(j)− y(j)| for x, y ∈ U, j ∈ J.
Then (U, S) is a complete S-metric space. Let us take a sequence {xn} ⊆ U ,
which is monotonic, non-decreasing and converges to x∗ ∈ U . Then for each
j ∈ J ,

x1(j) ≤ x2(j) ≤ x3(j) ≤ · · · ≤ xn(j) ≤ · · · .
Since the sequence {xn(j)} converges to x∗(j) implies that xn(j) ≤ x∗(j)

for all n ∈ N and j ∈ J. Therefore, xn ≤ x∗ for all n ∈ N . A is non-decreasing,
for all y ≤ x where x, y ∈ U , we have

T (j, y) + λy ≤ T (j, x) + λx,

also G(j, t) ≥ 0 for all (j, t) ∈ J × J , therefore

[Ax](t) =

∫ M

0
G(j, t)[T (t, x(t)) + λx(t)]dt

≥
∫ M

0
G(j, t)[T (t, y(t)) + λy(t)]dt = [Ay](j).
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In addition, for x ≥ y using (a) and by the definition of G(j, t), we have

S(Ax,Ax,Ay) = sup 2|Ax(j)−Ay(j)|, j ∈ J

≤ sup
j∈J

∫ M

0
2G(j, t)|T (t, x(t)) + λx(t)− T (t, y(t))− λy(t)|dt

≤ sup
j∈J

∫ M

0
2G(j, t)|λψ(x(t)− y(t))|dt

≤ sup
j∈J

∫ M

0
G(j, t)λψ(2|x(t)− y(t)|)dt

≤ λψ(S(x, x, y)) sup
j∈J

∫ M

0
G(j, t)dt

= λψ(S(x, x, y)) sup
j∈J

1

eλM − 1
(
1

λ
eλ(M+t−j)|j0 +

1

λ
eλ(t−j)|Mj )

= λψ(S(x, x, y))× 1

λ
= ψ(S(x, x, y)),

it implies that

S(Ax,Ax,Ay) ≤ ψ(S(x, x, y)).

Define αs : U × U × U → [0,+∞) by

αs(x, x, y) =

{
1, if ξ(x(j), x(j), y(j)) ≥ 0, j ∈ J ;
0, otherwise

and βs : U × U × U → [0,+∞) by

βs(x, x, y) =

{
1, if ξ(x(j), x(j), y(j)) ≥ 0, j ∈ J ;
0, otherwise

for all x, y ∈ U with x ≥ y. Then

αs(x, x, y)S(Ax,Ax,Ay) ≤ βs(x, x, y)ψ(S(x, x, y)).

Hence mapping A is αs-βs-ψ-contractive of type-A. Let cαs = cβs = 1. From
(c) for all x, y ∈ U with x ≥ y, we get for αs(x, x, y) ≥ 1 = cαs , we have
ξ(x(j), x(j), y(j)) ≥ 0. Then

ξ(Ax(j),Ax(j),Ay(j)) ≥ 0.

It implies that

αs(Ax,Ax,Ay) ≥ 1 = cαs .

And also, for βs(x, x, y) ≤ 1 = cβs , we have ξ(x(j), x(j), y(j)) ≥ 0. Then

ξ(Ax(j),Ax(j),Ay(j)) ≥ 0.
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It implies that
βs(Ax,Ax,Ay) ≤ 1 = cβs ,

this means that A is αs-βs-admissible. If γ is a lower solution of (3.1), from
(b),

ξ((Aγ)(j), (Aγ)(j), γ(j)) ≥ 0 =⇒
{
αs(Aγ,Aγ, γ) ≥ cαs ;
βs(Aγ,Aγ, γ) ≤ cβs .

Now, we prove that Aγ ≥ γ. Since γ is lower solution of the considered
problem (3.1), therefore{

γ′(j) ≤ h(j, γ(j)), j ∈ J = [0,M ];
γ(0) ≤ γ(M),

for all j ∈ J and λ > 0. Hence

γ′(j) + λγ(j) ≤ h(j, γ(j)) + λγ(j),

on multiplying by eλj , we have

(γ(j)eλj)′ ≤ (h(j, γ(j)) + λγ(j))eλj .

By integrating from 0 to j, we have

γ(j)eλj ≤ γ(0) +

∫ j

0
[h(t, γ(t)) + λγ(t)]eλtdt. (3.2)

This implies that

γ(0)eλM ≤ γ(M)eλM ≤ γ(0) +

∫ M

0
[h(t, γ(t)) + λγ(t)]eλtdt,

γ(0) ≤
∫ M

0

eλt

eλM − 1
[h(t, γ(t)) + λγ(t)]dt. (3.3)

From (3.2) and (3.3)

γ(j)λj ≤
∫ M

0

eλt

eλM − 1
[h(t, γ(t)) + λγ(t)]dt+

∫ j

0
[h(t, γ(t)) + λγ(t)]eλtdt

≤
∫ j

0

eλ(M+t)

eλM − 1
[h(t, γ(t))+λγ(t)]dt+

∫ M

j

eλt

eλM − 1
[h(t, γ(t))+λγ(t)]dt,

and dividing by eλj , we obtain

γ(j) ≤
∫ j

0

eλ(M+t−j)

eλM − 1
[h(t, γ(t))+λγ(t)]dt+

∫ M

j

eλ(t−j)

eλM − 1
[h(t, γ(t))+λγ(t)]dt.

Hence, by the definition of green function G(j, t), we have

γ(j) ≤
∫ M

0
G(j, t)[h(t, γ(t)) + λγ(t)]dt = [Aγ](j)
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for all j ∈ J , which implies that Aγ ≥ γ.
Finally, from (d) if ln → l ∈ U, for all n, we have

ξ(ln, ln, ln+1) ≥ 0 =⇒ ξ(ln, ln, l) ≥ 0,

therefore

αs(ln, ln, ln+1) ≥ cαs =⇒ αs(ln, ln, l) ≥ cαs ,

βs(ln, ln, ln+1) ≤ cβs =⇒ βs(ln, ln, l) ≤ cβs .
Thus each postulates (a)-(e) of Theorem 2.8 hold. Therefore, A has a fixed
point that is given differential equation (3.1) has a solution. The solution’s
uniqueness can be verified using Theorem 2.15. �

Theorem 3.5. If lower solution of the differential equation (3.1) replaced by
upper solution, Theorem 3.4 still holds.
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