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Abstract. In this paper, we have developed the idea of a-B-1y-contractive mapping in S-
metric space and renamed it as-Bs-y-contractive mapping. We have proved some results of
fixed point present in literature in partially ordered S-metric space using as-8s-admissible

and as-fs-1-contractive mapping.

1. INTRODUCTION AND PRELIMINARIES

The theory of fixed point has been applied to different fields of study
throughout the last four-five decades. Samet et al. [20] attempted to gen-
eralize Banach fixed point theorem to contribute by developing the idea of
a-admissible mappings and further the idea of a-i-contractive mappings in
metric spaces. The study of Samet et al. [20] demonstrate that Banach’s fixed
point result and other conclusions are natural implications of their results.

The notion of a-admissible mappings is further expanded to S-metric space,
Sp-metric space, G-metric space, etc. Zhou et al. [24] expanded the notion of
a-admissible mappings to S-metric space for mapping and pair of mappings.
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Further, they also defined various types of contractions of mappings viz. type-
A, type-B, etc. [24].

Priyobarta et al. [16] also introduce the notion of a-admissible mappings in
the perspective of S-metric spaces and denote it as as-admissible mappings.
Further, they established many theorems of fixed point regarding various types
of contractive mappings due to ag-admissibility.

Recently, the presence of fixed points, in partially ordered sets has been
studied in [1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 17]. In the row of extension and
generalization, Asgari et al. [2] considered a-1)-contractive type mappings
with a supplementary condition for partially ordered set and solved a first-
order boundary value problem in connection with its lower solution. Further
Asgari et al. [3] introduce the notion of a-B-1-contractive mappings and
proved various results of the fixed point in a partially ordered metric space.
For more information reader are suggested to see the papers [5, 9, 10, 13, 18,
19, 22, 23, 25].

In this paper, we have introduced the notion of a-f3--contractive mappings
in S-metric space and denote it as «s-5s-1-contractive mappings and estab-
lished some theorems of the fixed point in S-metric space equipped with a
partial order. The proposed theorems are expansions in the S-metric space of
theorems found in the literature, specifically, the results of Ran and Reurings
[17], Harjani and Sadrangani [6] and Nieto et al. [12, 13]. Further, we applied
the collected results to find the solution to the boundary value issues of the
first-order ODE in comparison to its lower solution.

Definition 1.1. If (U, <) is a partially ordered set. The mapping G : U — U
is considered as monotonic non-decreasing if

1<l = G() <G(l), forall 1,I'€U.

Definition 1.2. ([20]) We consider ¥ a collection of mappings v : [0, +00) —
[0, +00) such that v is non-decreasing and

o
> 4" (k) < 4oo, for all k>0,
0
where, ¢™ represents n'”* iteration of .

Lemma 1.3. ([20]) If a mapping ¢ : [0,+00) — [0,+00) is non-decreasing
such that
lim ¢"(k) =0, for all k>0,

n—oo

then (k) < k.
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In 2012, Sedghi et al. [21] introduced the concept of S-metric space and
defined it as follows;

Definition 1.4. ([21]) Let U be a nonempty set. An S-metric on U is a
function S : U x U x U — [0,00) that satisfies the following conditions for
each lq,1s,1l3,a € U:

(81> S(lla l2, l3) >0,

(82) S(ll, lg, 13) =0 if and only if ll = lg = lg,

(S3) S(ll, lo,l3) < S(l1,l1,a) + S(l2,l2,a) + S(ls, 3, a).

The pair (U, S) is called an S-metric space.

Example 1.5. ([21]) Let U be a nonempty set and d be an ordinary metric
on U. Then S(ll, lo, lg) = d(ll, lg) + d(lQ, lg) is an S-metric on U.

Lemma 1.6. ([21]) Let (U, S) be an S-metric space. Then for all l1,ls € U,
we have

S(l, 11, 1s) = S(la, 2, 1h).

Definition 1.7. ([21]) Let (U, S) be an S-metric space,

(i) A sequence {l,,} in X converges to [ if S(lp,l5,l) — 0 as n — +oo.
That is, for each € > 0, there exists ng € N such that, for all n > ny,
S(ln,ln, 1) < e, and we denote this by limy, oo l, = [.

(ii) A sequence {l,} in X is called a Cauchy sequence if for each € > 0
there exists ng € N such that S(l,, 1, ly,) < € for each n,m > ny.

(iii) The S-metric space (U, S) is said to be complete if every Cauchy se-
quence is convergent.

2. MAIN RESULTS

We extended the concept of a-B-1)-contractive mappings of Asgari and
Badehian [3] in partially ordered, complete S-metric space and defined it as
follows.

Definition 2.1. Let (U, <, S) be a partially ordered, complete S-metric space.
The mapping GG : U — U is said to be an a,-Bs-1-contractive mapping of type-
Aif o, Bs : U xU xU — [0,400) and ¢ € ¥ are such that

as(l,12,13)S(G(l), G(l2), G(13)) < Bs(la,l2,13)1(S(lh, 12, 13), (2.1)

for all ll,l2,13 e U with [; > 1y > l3.
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Definition 2.2. Let (U, <, S) be a partially ordered, complete S-metric space.
The mapping G : U — U is said to be an as-fs-1-contractive mapping of type-
Bif ag,8: : U xU x U — [0,400) and ¢ € ¥ are such that

as(llallaZQ)S(G(ll)vG(ll))G(ZQ)) < Bs(llyl17l2)1/}(s(l17l17l2))7 (22)
for all I1,ly € U with 11 > Is.

Example 2.3. A mapping G : U — U satisfying the Banach contraction
principle and Cks(ll, lg, 13) = ﬁs(ll, 12, l3) = 1for all ll, lg, 13 € U with w(k) =0k
for all £ > 0, where § € [0,1). Then G is an «a,-f3s-1-contractive mapping.

Definition 2.4. Let G : U — U, as, (s : U x U x U — [0,+00) and ¢,, > 0,
cg, > 0. G is said to be an o,-Bs-admissible mapping if for all Iy, I, I3 € U
with I; > Iy > I3,

(a) as(ly,la,l3) > co, = as(G(ly),G(l2),G(l3)) > ca.;

(b) Bs(l1,l2,13) < cg, = Bs(G(l1), G(l2), G(I3)) < ca,s
(c) 0 < % <1.

Example 2.5. Let U = (0, +00) and G : U — U be defined by G(I) = €, for

alll e U. If o, Bs : U x U x U — [0, +00) are such that
_ 3 if >l > s;
as(ly, I2,I3) = { 0, otherwise
and
if Iy > 1o > 13;
otherwise.

1
5S(llal27l3) — { 61’

If we take co, = 2 and cg, = %, then G is a,-Bs-admissible.

Theorem 2.6. Let (U, <,S) be a partially ordered, complete S-metric space.
Let a non-decreasing mapping G : U — U be an ag-Bs-1-contractive mapping
of type A with;

(a) G is as-Bs-admissible;

(b) there exists lo € U such that ly < G(lp);

(c) there exists co, > 0, cg, > 0 such that as(G(lo), G(lp),lo) > ca,,

BS(G(ZO)a G(ZO)? lO) < CBs5

(d) G is continuous.

Then, G(I*) = 1* for some I* € U, that is, G has a fized point..

Proof. Let there exists Iy € U such that lp < G(lp). If G(lyp) = lp then, there
is nothing to prove. Suppose G(ly) # lp. Since Iy < G(lp) and mapping is
non-decreasing, by induction we get

lo < G(lp) < G*(lp) < G3(lg) < --- < G™(lp) < G (lp) < -+ . (2.3)
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Due to as-fs-admissibility of G, if as(G(ly), G(lo),lo) > ca,, then

as(G*(lo), G*(lo), G(lo)) = ca -

e (G (1), G (1), G (1)) > o 24)
And if 53((;([0), G(lo), l(]) < CBs then
58(G2(10)>G2(l0)7G(10)) < CBs» (25)

Bs(G" 1 (10), G* (lp), G (lo)) < cg,-

From (2.1), (2.3) and (2.5)

¢a, S(G(lo), G*(lo). G(ln)) < as(G(ln), G(lo), 10)-S(G(lo), G*(lo). G(lo))
< B5(G(lo), G(lo), 10)-4(S(G(lo), G(lo), 1o))
< c5.0(S(G(lo), Glo), o))
Thus,
S(G (o). G (1o), G(lo)) < =4 (S(G(lo), G(lo). o))
sw (G(lo), G(lo), 1o))-
In general,

S(G™ (L), G (L), G (lo)) < ¥"(S(G(lo), G(lo), lo))-
This implies
S(Gn-i-l (10)7 Gn+1 (lo)’ Gn(l() )

)
as n — +o0o. Now it can be proved that {G"(lp)}?2, is a Cauchy sequence.
As 1 € ¥, so for fixed € > 0 there exist N(¢) € N Such that

Z P"(S(G(l),G(lo), o)) <€

n>N(e)
For m,n € N such that m > n > N(eg),
5(G"(lo), G"(lo), G™(lo))
< 28(G"(lo), G"(lo), G" " (lo)) + S(G™ (o), G"* (lo), G™ (lo))
< 2{S(G"(lo), G" (o), G" (o)) + S(G" (L), G (1), G"**(lo))
+o 4 S(GM L), G (L), G™ (1))}
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< 2{¢HS(GU0)7 G(lo), lo) + " S(G(lo), G(lo), lo)
-+ 1S(G (), Glo), o)}

—2Z¢ G(lo), o))

<2 Z Y (S G(lo), o))
n>N(e)

< E.

Since (U, <, S) is a complete space, the sequence {G"(ly)}>2; will converge in
it, that is, there exists {* € U such that lim,,_, 1., G™(ly) = [*.

Now it can verify that the limit [* is a fixed point of the function G. Since
G is a continuous function, there exists § > 0 for each € > 0 such that

S(L,1,1Y) <8 = S(G(1),G(1),G(I")) < % for 1€ U.
Suppose 17 = min{, 0}, since the sequence {G"(lp) };>; converges to [*, there
exist ng € N such that,
S(G"(ly),G"(lp),I") <, for all n>ng, neN.

Taking n > ng, n € N we get,

(G, G, 1)

< 28(G(1"),G(I"), G(G"™(l0))) + S(G"* (lo), G" (1), 1)

= 25(G(G"(lo)), G(G"(l)), G(I")) + S(G" " (lo), G"+ (lo), 1")

Therefore, S(G(1*), G(I*),1*) = 0 that is G(I*) = I*. O

Remark 2.7. The hypothesis of continuity of G has been eliminated in the
next theorem.

Theorem 2.8. If (U,<,S) is a partially ordered, complete S-metric space.
Let a non-decreasing mapping G : U — U be an as-Bs-10-contractive mapping
of type-A with
(a) G be as-fs-admissible;
(b) there exists lo € U such that ly < G(lp);
(c) there exists co, > 0,c5, > 0 such that as(G(ly), G(l),lo) > ca,,
BS(G(ZO)v G(l0)7 lU) < CBs5
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(d) if there is a sequence {1,,}°2 1 in U such that as(ln,ly, lnt1) > ca,,
Bs(lnylny lns1) < ca, for all n € N and lim, 11, =" in U, then

as(lna lna l,) > Cay s /Bs(lnv lnu l,) < CBg s
(e) for non-decreasing sequence {l,} such thatl, — 1" inU, 1, <1 foralln €
N.

Then, G(I*) = I* for some I* € U.

Proof. Proceeding as in the Theorem 2.6, since the sequence {G"(lp)} is a
Cauchy sequence, there exists an element | € U such that lim,,_, 4o, G"(lg) = [.
This limit is a fixed point of G which can be proved as follows:

Since {G™(lp)}o2; converges to [, therefore, for some € > 0 there exists
no € N such that

S(G"(lp),G"(lp),1) < %, for all n > nyg.

Since, the sequence {G"(lp)} is a non-decreasing sequence, on taking account

(e), we have
G"(lp) < 1. (2.6)

Using (2.1), (2.5), (2.6) and (d), we get
Ca, (1,1, G(1)) < €0, S(G(G™ (o)), G(G™ (lo)), G(1))
+ 2¢0, S(G™ (lo), G (lo), 1)
< as(G*(lo), 6" (lo), )S(G(G"(lo)), G(G™(lo)), G(1))
+ 2¢4,5(G™ (1), G™ 1 (19), 1)
< Bs(G"(lo), G™(lo), (S(G™(lo), G™(lo), 1))
+ 2¢4,8(G™" 1 (10), G (lo), 1)
< ¢, 9(S(G" (o), G"(lo), 1)) + 2¢a, S (G (lo), G (lo), 1),
therefore,

S(L,1,G(1) < Lop(S(G™ (1), G™(10), 1)) + 25(G™ (lo), G (1o), 1)

S

+2

AN
M owlom o
. ‘g
Wl m

Hence, S(I,1,G(l)) = 0, that is G(I) = I. O

Example 2.9. Let (R, <) and S metric defined on it by S(p,q,7) = |p — q| +
lg — r|, for all p,q,r € R. Then (R,S) is a complete S-metric space. The
function G : R — R defined by

L=, ifr>0;
—J) 15 Ur=u
G(r) = { 0, otherwise,
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and the mappings as, 85 : R x R x R — [0, +00) given by

[ 2, ifp,gr>0;
as(p,q,r) = { 0, otherwise,
1 .
3, ifp,q,r>0;
Bs(p,q,7) = { 8, otherwise.

Let (k) = % for k > 0. Clearly function G is continuous, non-decreasing

and as-fs-1-contractive of type A. Let ¢, = % and cg, = % Then G is
as-Bs-admissible. For p, q,r € [0,400) with p > ¢ > r, we have

0u(p.0.7) > co, = 0(G(9),G(0).9(r)) = as({z. 75 75) = o
also
Bulp.a.7) < c5, = B:(0(0).9(0).G(r)) = Bu({5. 75 1) < o5,

Also, there exists rg € U such that
as(G(r0), G(r0),m0) > ca,

and

Bs(G(ro), G(ro), o) < cg,-
Since 0 < G(0) =0, ro < G(rp). Hence each postulates (a)-(d) of Theorem 2.6
holds. Therefore, G(I*) = I* for some [* € U. Here 0 € U is a point such that
G(0) =0.

Remark 2.10. In the next example mapping is discontinuous and follows
Theorem 2.8.
Example 2.11. Let (R, <) and S-metric defined on it is

Spqr) =Ilp—aql+lg—r[+Ir—p|
for all p,q,r € R. Then (R, S) is a complete S-metric space. Define G : R — R
and as, s : R xR xR — [0, +00) by

or — 1 ifrzé;

27
G = 5 H0<r<i;
0, ifr<o0
and 1
- 17 ifp7q>r€ [0’5}’
as(p,q,r) = { 0, otherwise,
1 . 1
_ 3 lfpa(LrG [0’ 5]’
Bs(p,q,7) { 0, otherwise.
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It is clear that, the mapping G is discontinuous and non-decreasing. Let (k) =
g, for all k£ > 0. Obviously, if p,q,r € R — [0, %], then the mapping G is a-
Bs-1-contractive of type-A. Let p,q,r € [0, %] with p > q¢ > r, ¢, = % and
cg, = % Then a4(p,q,7) > cq, and Bs(p,q,7) < cg,. Hence, we have

as(p,q,7)S(Gp,Gq,Gr) = |Gp — Gq| + |Gq — Gr| + |Gr — Gp|
_p_aqa,, 4 T r_p
_‘10 10+|1o 10|+|10 10|
= S (p—dl+lg—rl+Ir—p)
_10 pP—q q—r r—p

and
1 1
ﬁs(pa q, T)qvb(S(pvq’T)) = g X gS(pa CLT)
1
=glp—al+lg—r[+]r—pl).
Therefore,

1

1
ﬁ(!p—QHIq—THIr—p!) < (lp—ql+lg—r[+|r—pl).

©|

In other words,

as(p,q,7)S(Gp,Gq,Gr) < Bs(p, q,7)(S(p, q,7)),

for all p, ¢, € R. Therefore, the mapping G is an a,-Bs-1-contractive mapping
of type-A. Moreover, there exists rop € R such that as(Gro,Gro,70) > ¢q, and
Bs(Gro, Gro,m0) < ca,. Let ro = 0. Then

as(QTOaQTOaTO) = as(g(O),g(O),O) = O‘S(Ovoao) =1=>

N | =

and
1 1

Bs(gTOa grOa 7/‘0) = BS(Q(O), Q(O),O) = ﬂs(oa Oa 0) = g < Cpy = g
Since 0 = rg < 0 = Grg, that is, ro < Grg, G is as-Bs-admissible. Now, if
the sequence {r,} is non-decreasing in R such that a(ry, 7n, Tht1) > ca, and
Bs(TnyTnsTny1) < cg, for all n € N and r, — r, then by definition of o, and
Bs, ™ € [0, %), that is, r € [0, %) In addition, {r,} is non-decreasing hence
rn < r. Hence, all the hypotheses of Theorem 2.8 are satisfied, therefore G
has a fixed point. 0 and % are fixed points for G.

Remark 2.12. It is clear that the fixed point of G may not be unique(see
above Example 2.11). The following theorems are obtained by applying addi-
tional conditions to the hypotheses of Theorem 2.6 and 2.8 to obtain a unique
fixed point.
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Theorem 2.13. Considering all the hypotheses of Theorems 2.6 or 2.8, there
exists p € U for all ly,la,€ U with Iy > p, la > p such that

as(l17l17p) Z Coyg and /Bs(llalhp) S Cﬁs (2 7)
as(la,la,p) > ca, and Bs(l2,la,p) < cp, '

provides unique fized point of G.

Proof. Suppose I’ and I” are two fixed points of G, that is, G(I') = I’ and
G(I") =1". Then there exists p € U for I’ and [” such that (2.7) holds. Now
by the first part of (2.7), we have

as(I'U,p) > co, and Bs(I',1',p) <cg,, I > p. (2.8)
Since G is as-Bs-admissible, we get
as(G(), G(l'),G(p)) = ca, and Bs(G(I'), G(I'), G(p)) < ca,,
G(I") > G(p).

Therefore, a(I',1', G(p)) > ca, and Ss(I', 1", G(p)) < cp,, ' > G(p). Continuing
this process, we have

as(I',I',G"(p)) > ca, and Bs(I',I',G"(p)) < ca,,I' > G™(p), for all n € N.(2.9)
Using the as-fBs-1)-contractivity of G, we have
Ca S U, GM(p)) = ca, S(G(I'), G(I), G(G™ 1 (p)))
< (I, 1,61 (p))S(G(), G(I'), G(G"(p)))
< B U, GPH ) (S, G H(p)))
< g (S, G (p))).
Therefore

SW.U,GM(p)) < (S, 1,6 (p)

As

<P(SUU,G"H(p))
<P (SW,1,G"2(p))))

<P (Sl 1, p)).
Which implies,
S, G™(p)) <yY™(S(',lI',p)) forallm €N,

this implies G"(p) — I’ as n — +oo. Similarly, for the second part of (2.7),
G"(p) — I". Therefore I' =" proves uniqueness of fixed point of G. O
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Note: Similarly, we can easily prove the following theorems (2.14), (2.15)
and (2.16) obtained by replacing the inequality Iy < G(lp) by lo > G(lp) in the
assumption (b) of the theorems (2.6), (2.8) and (2.13) respectively.

Theorem 2.14. Let (U, <,S) be a partially ordered, complete S-metric space
and G : U — U be a non-decreasing, as-Bs-1)-contractive mapping of type-A
satisfying;

(a) G is as-Bs-admissible;

(b) there exists lo € U such that lo > G(lp);

(c) there exists co, > 0,c5, > 0 such that as(lo,lo, G(lo)) > ca,,

Bs(lo, 1o, G(lo)) < cp;

(d) G is continuous.

Then, there exists a fixed point of G.

Theorem 2.15. Let (U, <,S) be a partially ordered, complete S-metric space.
If a non-decreasing mapping G : U — U is as-Bs-1-contractive mapping of
type-A with;
(a) G is as-Bs-admissible;
(b) there exists lo € U such that lo > G(lp);
(c) there exists co, > 0,c5, > 0 such that as(lo,lo, G(lg)) > ca,,
Bs(loa lo, G(ZO)) < CBs s
(d) if {ln}22 is a sequence in U and lim, o0 l,, =1,
if  os(lng1, lng1, ln) > cays Bs(lnst, lns1,ln) < e, for all n € N
implies as(1,1,1,) > cay, Bs(l,1, 1) < cp,;
(e) if there exists a mnon-increasing sequence {l,} in U such that l, — 1
then | <1, for all m € N.

Then, there exists a fixed point of G.

Theorem 2.16. Considering all the postulates of the Theorems 2.14 or 2.15,
if there exists p € U for all l1,ls € U such that l1 > p, lo > p and

as(lly llap) > Cay and /Bs(lla llap) < Chgs (2 10)
Oés(lg, l2ap) > Cous and /BS(ZQa l2>p) < CBs+ )
Then, there exists a unique fized point of G.

3. APPLICATIONS TO ORDINARY DIFFERENTIAL EQUATIONS

Here, we have proved the uniqueness of a solution of the following first-
order boundary value problem with continuous 7' : J x R — R and as-f5s-1-
contractive mapping of type-A considering existence of a lower solution.

{2 =TG.a0), 3 €7 =10, )
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where M > 0 and function T : J x R — R is continuous.

Nieto and Rod.-Lopez [12] solved the differential equation (3.1) in the rela-
tion of its lower solution as:

Theorem 3.1. ([12]) The problem (3.1) with continuous T : J x R — R and
some A >0, > 0 with u < X such that, for all l1,lo € R with l1 <o,

p(le =) > T(j4,l2) + Mo —T(j,11) — Ay >0,

then, the existence of a lower solution for (3.1), provides the ezistence of a
unique solution of (3.1).

Also, Sadarangani and Harjani [7] have proved the theorem:

Theorem 3.2. ([7]) The problem (3.1) with continuous T : J x R — R and
suppose that there exists A > 0 such that for all l1,lo € R with l; <o,

M(lg —11) = T(j,12) + M2 — T'(j,11) >0,

where ¢ : [0, +00) — [0, +00) given by Y(k)=k-p(k) for ¢ : [0,+00) — [0, +00)
continuous, increasing with ¢(k)=0 only for k = 0 and limg_, 4 ¢(k)=+00
for all k € (0,4+00). If (3.1) has a lower solution exists, then it is unique
solution.

Now we solve problem (3.1) using the above theorems.

Remark 3.3. For some \ > 0, problem (3.1) can be expressed as

{ ?'(5) + Ax(G) = T(G,2() + Aze(5), j € J =10, M];
z(0) = z(M).

The corresponding integral equation to this differential equation is given by

M
2(j) = /0 G BT (t, 2(1) + Ae (D),

where _
GGt SO 0<t<j<M;
Jit) = = .
’ %; 0<j<t< M.

G(j,t) is known as the Green function in differential equation theory.

Theorem 3.4. Consider the given problem (3.1) with continuous T : J X R —
R holding the following conditions:

(a) for allli,ly € R withly > 11, and ¢ € VU there exists X > 0 such that
Mp(lp —11) > T(4,12) + Mo —T(j, 1) — A1 > 0;
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(b) for all j € I and a,b € R there exists & : R® — R such that if
&(a,a,b) > 0 implies

M M
([ cupmeamaolar, | G s ) >0

where v € C(J, R) is lower solution of (3.1);
(c) for all z,y € C(J,R) and j € J, £&(x(j),z(5),y(j)) > 0 implies

f(/o G, )Tt x(t)) + Ao(t / G(j,t ,2(t)) + Ax(t)]ds,
/ GO y(2) + At >]ds) > 0;
(d) if zn, = z € C(J,R) and &(2zn, 2n, 2nt+1) = 0 implies £(zn, 2n, z) > 0 for
alln € N.

Then, there exists a unique solution if a lower solution exists.

Proof. Let U = C(J, R) and define A: U — U by

/ GULOT(t 2(8) + Aa(®)]dt, j € J.
Note that solution of (3.1) is a fixed point of A. U is a partially ordered set
with order relation.
<y & xz(j) <y(j) forall j€J, wherez,y e U.
If we define
S(x,x,y) =sup2lz(j) —y(j)| for z,yeU, jeJ

Then (U, S) is a complete S-metric space. Let us take a sequence {x,} C U,
which is monotonic, non-decreasing and converges to * € U. Then for each
Jed,
21(j) S @2(j) S 3(j) < --- Swnlj) <+

Since the sequence {x,(j)} converges to x*(j) implies that x,(j) < z*(j)
forallm € N and j € J. Therefore, z,, < z* for all n € N. A is non-decreasing,
for all y < x where z,y € U, we have

T(j,y) + My <T(j,z) + Az,

also G(j,t) > 0 for all (j,t) € J x J, therefore
M
- /0 G DTt () + A ()t
M
> /0 G, O[T (E,y(t) + Ay(t)ldt = [Ay](j).



584 Deep Chand and Yumnam Rohen

In addition, for x > y using (a) and by the definition of G(j,t), we have
S(Az, Az, Ay) = sup 2|Az(j) — Ay(j)|, j € J

M
<sup [ 26T o(0) + Aalt) — Tt y(t)) ~ Ny(0)
jeJ Jo

M
< sup / 2G(j, )M x(t) — (1)) dt

jeJ Jo

M
< sup / G, )MG(2J(t) — (b))t

jeJ

< \(S(x, 2, y) Sup/ G(j,1)

JjeJ

1 PR B
(=M ])|6+X€)\(t J)|§\4)

= Mp(S(z, z,y)) sup G

jed 6’\M -1

1
= )\TZJ(S(I’,Z‘,y)) X X
= ¢(S(z, z,y)),
it implies that
S(Az, Az, Ay) < (S(z, 2,y)).
Define as : U x U x U — [0, +00) by
0u (2. 5.4 = { Lo €(e()),2 (), y(7) 2 0, j € T;

0, otherwise
and By : U x U x U — [0, 400) by
1, if &x(5),x(9),y(j)) >0, 5 € J;
By(w, 2, y) = { &), 2(5),9()) > 0, j

0, otherwise

for all x,y € U with x > y. Then
as(z,7,y)S(Az, Az, Ay) < Bs(z, 2,9)(S (2, 2, y)).

Hence mapping A is a,-f,-1p-contractive of type-A. Let co, = cg, = 1. From
(c) for all z,y € U with x > y, we get for as(z,z,y) > 1 = c,,, we have
§(x(4),2(j),y(4)) = 0. Then

§(Azx(5), Ax(j), Ay(j5)) = 0.

It implies that
as(Az, Az, Ay) > 1 = c,,.
And also, for Bs(z,z,y) <1 = cg,, we have {(z(j),z(j),y(j)) > 0. Then

§(Az(j), Ax(5), Ay(j)) > 0.
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It implies that

Bs(Azx, Az, Ay) <1 = cg,,
this means that A is as-fs-admissible. If 7 is a lower solution of (3.1), from
(b),

HANG a0 20 = { ST A1) 2 o

Now, we prove that Ay > ~. Since « is lower solution of the considered
problem (3.1), therefore

{ Y (5) < h(§,7(), € J =10,M];
7(0) < (M),

for all j € J and A > 0. Hence
Y (3) + M) < h(5,7() + (),

on multiplying by eV, we have
(v()eM) < (A, 7(5)) + M (G)eV.

By integrating from 0 to j, we have
. J
AN <20+ [Tt A(0) + M@ (32)
0

This implies that
M
7(0)eM < (M) < ~(0) +/0 [, (1)) + Ay ())eMdt,

M e)\t
100 < [ S (e) + Mol (33)

From (3.2) and (3.3)

, Mot j
YV < [ i i) 4 ol + [ o) + e

7 MM+t Mo oN
< /0 S A (E) Ay (B)]dt+ /j oxar — (@) + X (1)]dt,

and dividing by e, we obtain

| AMAt—]) M e
() g/ojW[h<tav<t>>+A7<f>]dt+/j N1

Hence, by the definition of green function G(j,t), we have

M
7(J7) S/O G (4, 1) [h(t, () + Ay(B)]dt = [A](5)
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for all j € J, which implies that Ay > ~.
Finally, from (d) if [,, — [ € U, for all n, we have

Eln, lnslns1) >0 = &(ln, 1y, 1) >0,

therefore

as(ln,lnaln+l) > Ca, — as(lnalnal) > Cays

5s(lnylnyln+l) < cgy, — 6s(lnalnal) < Cpag-

Thus each postulates (a)-(e) of Theorem 2.8 hold. Therefore, A has a fixed
point that is given differential equation (3.1) has a solution. The solution’s
uniqueness can be verified using Theorem 2.15. O

Theorem 3.5. If lower solution of the differential equation (3.1) replaced by
upper solution, Theorem 3.4 still holds.
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