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Abstract. For a polynomial P(z) of degree n having no zero in |z| < 1, it was recently
asserted by Shah and Liman [17] that for every R > 1, p > 1,

R™|An| + |A
< Bl ol oy
1+,

| B[P o a](2)ll
where B is a Bjp-operator, (z) = Rz, R > 1 and A, := Ao + )\1”72 + )\2% with pa-
rameters Ao, A1, A2 in the sense of Rahman [13]. The proof of this result is incorrect. In this
paper, we present certain new L, inequalities for B,-operators which not only provide a cor-
rect proof of the above inequality and other related results but also extend these inequalities
for 0 < p <1 as well.

1. INTRODUCTION

Let P,, denote the space of all complex polynomials P(z) = Z?:o a;jz) of
degree n. For P € P, define

PGy = {5 [ log|pte] o)
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1/p
P} 1sp <

pen, = {5 [

1P(2)lloo 1= max | P(z)]

and denote for any complex function 1 : C — C the composite function of
P and 1), defined by (P o) (z) := P (¢(2)) (2 € C), as Po1.
If P € P,, then

1P'), <nlP@E),, p=>1 (1.1)
and

IP(R)|l, < R |P()|,, R>1, p>0. (1.2)

[
Inequality (1.1) was found out by Zygmund [18] whereas inequality (1.2) is
a simple consequence of a result of Hardy [8]. Arestov [2] proved that (1.1)
remains true for 0 < p < 1 as well. For p = oo, the inequality (1.1) is
due to Bernstein (for reference, see [11, 15, 16]) whereas the case p = oo of
inequality (1.2) is a simple consequence of the maximum modulus principle (
see [11, 12, 15]). Both the inequalities (1.1) and (1.2) can be sharpened if we
restrict ourselves to the class of polynomials having no zero in |z| < 1. In fact,
if P € P, and P(z) # 0 in |z| < 1, then inequalities (1.1) and (1.2) can be
respectively replaced by

» ||1+2||p
and
IP(R2)||, < 7%z + 11, |1P(2)||,, R>1, p>0. (1.4)
11+ 2], b

Inequality (1.3) is due to De-Bruijn [6](see also [3]) for p > 1. Rahman and
Schmeisser [14] extended it for 0 < p < 1 whereas the inequality (1.4) was
proved by Boas and Rahman [5] for p > 1 and later it was extended for
0 < p < 1 by Rahman and Schmeisser [14]. For p = oo, the inequality (1.3)
was conjectured by Erdos and later verified by Lax [9] whereas inequality (1.4)
was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1.1) and (1.2), Aziz and Rather
[4] proved that if P € P, then for every real or complex number o with |a| < 1,
R>1,and p >0,

1P(Rz) — aP(2)], < |R" —af [P(2)], - (1.5)
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and if P € P, and P(z) # 01in |z| < 1, then for every real or complex number
a with o <1, R > 1, and p > 0,
[(R" — )z + (1 — o)

IP(Rz) — aP(2)], < TR EIPG)I,- (1.6)

Inequality (1.6) is the corresponding compact generalization of inequalities
(1.3) and (1.4).

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a
class B,, of operators B that maps P € P, into itself. That is, the operator B
carries P € P,, into

BIP|(2) == AoP(2) + M (%) Pll(!z) o (%)2 P;(!Z) (1.7)

2
where \g, A1 and Ay are such that all the zeros of

u(z) := Ao + C(n, )1z + C(n,2)X22%, C(n,r) =nl/ri(n —1)!,
lie in the half plane

|2 < |2 = n/2
and proved that if P € P, then

[B[Pool(z)| < R" [An|[[P(2)]l5 for |z =1. (1.8)
And if P € P, and P(z) does not vanish in |z| < 1, then
1
B[P oo](2)]l = 5 {B" [An] + [Ao|} [P(2)lloc  for [2] =1, (1.9)
(see [13, Inequality (5.2) and (5.3)] where o(z) = Rz, R > 1 and
2 3
-1

M=o+ M+ AQ”("S).
As an extension of inequality (1.8) to L,-norm, recently W. M. Shah and A.
Liman [17, Theorem 1] proved that if P € P, then for every R > 1 and p > 1,
B[P o o](2)[l, < R" [An| [|P(2)]],, (1.11)

where B € B, and o(z) = Rz and A,, is defined by (1.10).

While seeking the desired extension of inequality (1.9) to Ly-norm, they
[17, Theorem 2] have made an incomplete attempt by claiming to have proved
that if P € P, and P(z) does not vanish in |z| < 1, then for each R > 1 and
p=1,

(1.10)

R A + [ Mol

IBLP 0 o)), = =57

1P, » (1.12)
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where B € B, and o(z) = Rz and A,, is defined by (1.10).
Further, it has been claimed in [17] to have proved the inequality (1.12) for
self-inversive polynomials as well.

The proof of inequality (1.12) and other related results including the Lemma
4 in [17] given by Shah and Liman is not correct. The reason being that the
authors in [17] deduce line 10 from line 7 on page 84, line 19 on page 85 from
Lemma 3 [17] and line 16 from line 14 on page 86 by using the fact that if
P*(z) := 2"P(1/%), then for 0(2) = Rz, R > 1 and |z| =1,

|B[P" o o](2)| = |B[(P" o 0)"](2)],
which is not true, in general, for every R > 1 and |z| = 1. To see this, let
P(2)=anz" 4 - +apz" 4+ -+ a1z +ag
be an arbitrary polynomial of degree n, then
P*(z) = 2"P(1/Z) = Gp2" + a1 2" ' + -+ @2V 4+ d.

Now with g1 := A\n/2 and us := Aan?/8, we have
n
=> (Ao +pi(n—k) + pa(n — k) (n— k — 1)) apz" "R",
k=0

and in particular for |z| = 1, we get

n

BIP* o p)(2) = B™2" 3" (Mo + pa(n — k) + pialn — k)(n — k — 1)) ay (%)k
k=0

whence

n

> O o=+l =R == D (7)' |-

|BIP* o p)()] = R”

But

kz Ao + pik + pok(k — 1)) ay (%)k

IBI(P* o p)")(2)] = R"

9

so the asserted identity does not hold in general for every R > 1 and |z| =1
as e.g. the immediate counterexample of P(z) := 2" demonstrates in view of

P*(2) = 1, |B[P* 0 p](2)| = || and

[ BI(P* 0 p)"](2)] = Ao + M (n?/2) + Aen’(n = 1)/8], |2] =1.
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The main aim of this paper is to present correct proofs of the results mentioned
in [17] by investigating the dependence of

|BIP 0 0](2) + ¢n (R, o, 3) B[P](2)],,

on ||P(2)]|, for arbitrary real or complex numbers a, 8 with |a| <1, [8] <1,
R>1,0<p<o0,o0(z):= Rz,

on o) =p{ (TE) ~lalf -a (113

and establish certain generalized L,-mean extensions of the inequalities (1.8)
and (1.9) for 0 < p < 0.

2. LEMMAS

For the proofs of our main results, we need the following lemmas. The first
Lemma is easy to prove.

Lemma 2.1. If P € P, and P(z) has all its zeros in |z| < 1, then for every
R>1and|z| =1,

P = (B 1P

The following Lemma follows from Corollary 18.3 of [10, p. 65].

Lemma 2.2. If all the zeros of polynomial P € Py, lie in |z| < 1, then all the
zeros of the polynomial B[P](z) also lie in |z| < 1.

Lemma 2.3. If F € P, has all its zeros in |z| <1 and P(z) s a polynomial
of degree at most n such that

[P(2)] <|F(2)] for || =1,

then for arbitrary real or complex numbers o, f with |a| <1, || <1, R > 1,
and |z| > 1,

|B[P o 0l(z) + én (R, , ) B[P](2)]
< |B[P" 0 0](2) + ¢n (R, o, B) B[P"](2)] (2.1)

where P*(z) := 2"P(1/Z), B € By, 0(2) := Rz, A, and ¢, (R, o, ) are de-
fined by (1.10) and (1.13) respectively.
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Proof. Since the polynomial F'(z) of degree n has all its zeros in |z| < 1 and
P(z) is a polynomial of degree at most n such that
|P(2)| < |F(2)| for |z|=1, (2.2)

therefore, if F(z) has a zero of multiplicity s at z = €%, then P(2) has a zero
of multiplicity at least s at z = €. If P(z)/F(z) is a constant, then the
inequality (2.1) is obvious. We now assume that P(z)/F(z) is not a constant,
so that by the maximum modulus principle, it follows that

|P(2)| < |F(2)| for |z| > 1.
Suppose F'(z) has m zeros on |z| = 1 where 0 < m < n, so that we can write
F(z) = F1(2)Fa(2),

where Fj(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and
F5(z) is a polynomial of degree exactly n — m having all its zeros in |z| < 1.
This implies with the help of inequality (2.2) that

P(z) = Pi(2)F1(2),
where Pj(z) is a polynomial of degree at most n —m. Now, from inequality
(2.2), we get
[P1(2)] < |[Fa(2)] for [2] =1,
where Fy(z) # 0 for |z| = 1. Therefore for every real or complex number A
with |A| > 1, a direct application of Rouche’s theorem shows that the zeros of
the polynomial P;(z) — AFa(z) of degree n —m > 1 lie in |z| < 1. Hence the
polynomial
f(2) = F1(2) (P1(2) = AFa(2)) = P(2) = AF(2)

has all its zeros in |z| < 1 with at least one zero in |z| < 1, so that we can
write

f(2) = (z — te”)H(2),
where ¢t < 1 and H(z) is a polynomial of degree n — 1 having all its zeros in

|z| < 1. Applying Lemma 2.1 to the polynomial f(z), we obtain for every
R>1and 0 <0 <2,

|F(Re)| =|Re? — ] | (Rei)|
. . 1\ "1 .

2ire? — 1| (F5H) )

_ (R+1\""|Re? — te?]

S\ 2 lei? — teid]

> (Rgl) (fij) 7).

’(eie _ tei&)H(€i6)|
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This implies for R > 1 and 0 < 0 < 2,

1+t 0 R+1\""" .
N> —— . 2.
(7 e = (F54) e (23)
Since R > 1 > t so that f(Re®) # 0 for 0 < # < 27 and 1+R > }%ﬁ, from
inequality (2.3), we obtain R > 1 and 0 < 6 < 2,
i R+1N" .
et > (1) e (2.4

Equivalently,

o> () 1)

for |z] =1 and R > 1. Hence for every real or complex number o with |a| <1
and R > 1, we have

[f(Rz) — af(2)| = | f(R2)| — ||| f(2)]

(B b - es)

Also, inequality (2.4) can be written in the form
. 2 n .
i0) 0 2
[f(e™] < <R+1> |f(Re™)] (2.6)

for every R > 1 and 0 < 6 < 2. Since f(Re") # 0 and <Ri+1>n < 1, from
inequality (2.6), we obtain for 0 <6 < 27 and R > 1,

£ < | f(Re™)].
Equivalently,
[f () < [f(R2)] for [z = 1.
Since all the zeros of f(Rz) lie in |z| < (1/R) < 1, a direct application of
Rouche’s theorem shows that the polynomial f(Rz) — af(z) has all its zeros
in |z| < 1 for every real or complex number « with |a| < 1. Applying Rouche’s

theorem again, it follows from (2.5) that for arbitrary real or complex numbers
a, B with |o| < 1,|5] <1 and R > 1, all the zeros of the polynomial

T(2) ﬂR@—wﬁ()+5{<R+ ) m@f@>
_ J(R2) + 6By, B)1(2)
= (P(Rz) — A\F(Rz)) + én (R, a, B) (P(2) — AF(2))
— (P(R2) + ¢n (R, B) P(2)) — A(F(R2) + b (R.v, ) F(2))
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lie in |z] < 1 for every A with |A| > 1. Using Lemma 2.2 and the fact that B
is a linear operator, we conclude that all the zeros of polynomial

W(z) = B[T|(z)
= (B[P 0 0](2) + én (R, a, §) B[F](2))
also lie in |z| < 1 for every A with |[A| > 1. This implies
|B[P 0 0](2) + én (R, o, B) B[P](2)]
< |B[F 0 0](z) + ¢n (R, o, B) BIF](2)]
for |z| > 1 and R > 1. If inequality (2.7) is not true, then exist a point z = 2
with |zg| > 1 such that
|BIP 0 0](20) + ¢n (R @, B) B[P](20)|
> |B[F o 0)(20) + ¢n (R, a, B) B[F](20)]-

But all the zeros of F(Rz) lie in |2| < 1, therefore, it follows (as in case of
f(2)) that all the zeros of F(Rz) + ¢n(R,a, B)F(2) lie in |z| < 1. Hence by
Lemma 2.2, all the zeros of B[F oo]|(z)+¢n (R, «a, ) B[F](z) also lie in |z| < 1,
which shows that

B[F o 0](20) + ¢n (R, o, B) B[F](20) # 0.

(2.7)

We take

B[P o U]('ZO) + ¢H(Ra «, B)B[P](ZO)

B[F o 0](20) + ¢n(R, o, B) B[F](20)’

then A is a well defined real or complex number with |A] > 1 and with this
choice of A\, we obtain W(zy) = 0. This contradicts the fact that all the zeros
of W(z) lie in |z| < 1. Thus (2.7) holds and this completes the proof of Lemma
2.3. ]

A\ =

Lemma 2.4. If P € P,, and P(z) does not vanish in |z| < 1, then for arbitrary
real or complex numbers c, B with |a] < 1,|8] <1,R > 1 and |z| > 1,

|B[P o 0](2) + ¢n (R, o, §) B[P](2)]
< |B[P* o 0](2) + ¢n (R, a, B) B[P"](2)] (2.8)

where P*(z) := z"P(1/Z), B € By, 0(z) := Rz and ¢y, (R, a, () is defined by
(1.13).

Proof. By hypothesis the polynomial P(z) of degree n does not vanish in
|z| < 1, therefore, all the zeros of the polynomial P*(z) = 2" P(1/Z) of degree
n lie in |z| < 1. Applying Lemma 2.3 with F'(z) replaced by P*(z), it follows
that

|B[P o 0](2) + én (R, , B) B[P](2)]
< |B[P" 0 0](2) + ¢n (R, a, B) B[P"](2)]
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for |z] > 1,|a| <1,|8] <1 and R > 1. This proves the Lemma 2.4. O

Next we describe a result of Arestov [2].

For v = (70,71, -+ ,Vn) € C"™  and P(z) = > =0 a;jz’, we define

C,P(z) = Z viai 2.
j=0

The operator C, is said to be admissible if it preserves one of the following
properties:

(i) P(2) has all its zeros in {z € C: |z| < 1},

(ii) P(2) has all its zeros in {z € C: |z| > 1}.

The result of Arestov may now be stated as follows.

Lemma 2.5. ([2, Th. 2]) Let ¢(x) = ¥(logx) where ¥ is a convex non
decreasing function on R. Then for all P € P, and each admissible operator
A,

2

/027r o <|pr(ei9)|) df < /0 o (c(’y,n)|P(ei9)|) de,

where ¢(v,n) = mazx (|70, [1n])-

In particular Lemma 2.5 applies with ¢ : x — 2P for every p € (0,00) and
¢ : x — logx as well. Therefore, we have for 0 < p < o0,

{/02” ¢ (|C7P(e"9)|”> de}l/p < cly.m) {/0%

From Lemma 2.5, we deduce the following result.

P(ew))p de}l/p. (2.9)

Lemma 2.6. If P € P, and P(z) does not vanish in |z| < 1, then for each
p>0, R>1andn real, 0 <n < 2,

/27r
0

) __p 2
S ‘(Rn+¢n(R7a’B))Ane”7+ (1 +¢n(Rad76)))\0) A

where B € B,, o(z) := Rz, B[P* o o]*(z) := (B[P* o 0](z))*, A, and
on (R, a, B) are defined by (1.10) and (1.13) respectively.

(B[P 0 0](€”) + ¢n(R, . /)BIP](e”) )™

+ (BIP* o o] (e") + 6u(R, &, B)BIP'T () | do

P(eie)’p de,
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Proof. Since P(z) does not vanish in |z| < 1 and P*(z) = 2"P(1/z), by Lemma
2.3, we have for R > 1,

|B[P o 0o](z) + ¢n (R, a, B) B[P)(2)
< |B[P* o 0](z) + ¢n (R, o, B) B[P*|(2)] (2.10)
Also, since
P*(Rz) + ¢ (R, o, B) P*(2) = R"2"P(1/Rz) + ¢y, (R, v, B) 2" P(1/ %),
therefore,
B[P 0 0](2) + ¢n(R, v, B) B[P"](2)

= M (R"2"P(1/Rz) + ¢n (R, o, 8) 2"P(1/Z)) + M1 (%

— R" 2" 2PI(1/RZ) + ¢ (R, o, B) (n2""'P(1/2) — 2" 2P(1/3))

% (") (ntn — VR ="2P(/RE) ~ 2fn — DR 2" P(1/R2)
+ R"2"APY(1/RZ) + én (R, v, B) (n(n — 1)2"2P(1/%)
—2(n = 1)z PJE) + 2 P7))
and hence,
B[P* 0 0]*(2) + s (R, @, B) B[P*]*(2)
= (B[P" 0 0](2) + ¢n (R a, 8) B[P*](2))"

) (w2 PR

(A0+A17j+A2 ) P(z/R) + 6u (R, @ B) P(2))
()\1 ) (R” 12P'(2/R) + ¢, (R, a, B) ZP’(Z))
WL - (R” 2.2P"(2/R) + ¢n (R, &, B) 22P" (2 ) (2.11)

Also, for |z| =1

|B[P* 0 0](2) + ¢n (R, a, B) B[P*](2)|

= |B[P* 0 0]*(2) + 60 (R, &, B) BIP*]*(2)|.
Using this in (2.10), we get for [z =1and R >1r > 1,

|B[P o ol(2) + ¢n (R, a, B) B[P](z)]

< |B[P* 0 0]*(2) + ¢n (R, @, B) B[P*]*(2)].

Since all the zeros of P*(z) lie in |z| < 1, as before, all the zeros of P*(Rz) +
dn(R,, B)P*(2) lie in |z| < 1 for all real or complex numbers «, 3 with
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la] <1, |8] <1 and R > 1. Hence by Lemma 2.2, all the zeros of B[P* o
o(z) + ¢n(R, a, B)B[P*](2) lie in |z| < 1, therefore, all the zeros of B[P* o

o|*(z) + ¢n(R, &, f) B[P*]*(z) lie in |z| > 1. Hence by the maximum modulus
principle,

|B[P oo](z) + ¢n (R, a, B) B[P"](2)]
< |B[P* o 0]*(2) + ¢n (R,@,B) B[P*|*(z)| for |z| < 1. (2.12)
A direct application of Rouche’s theorem shows that
Cy P(2) =(B[P 0 0)(2) + ¢u(R, a, B) B[P](2)) "
+ (B[P* 0 0]*(2) + dn(R, &, B)BIP*]*(2))
={(R" + ¢n(R, a0, B)r")Ape" + (1 + ¢n(R, &, B)) Ao } anz"
+ o+ {(R" + 6n(R, &, B))An + €7 (1 + 6n(R, 0, 8)) Mo} ag

does not vanish in |z| < 1. Therefore, C, is an admissible operator. Applying
(2.9) of Lemma 2.5, the desired result follows immediately for each p > 0. O

From Lemma 2.6, we deduce the following more general result.

Lemma 2.7. If P € P, then for everyp >0, R> 1 and n real, 0 <n < 27,

27
/0 (BIP 0 0)(c) + éu(R, a, ) B[P)(c)) "
4 (BIP* 0 0]*(€) + éu(R, @ B)B[P*]* () |Pd6

P(e?) )p 4o,

27
gmm+%m@mmwwﬂ+%m@mwwé

where B € B,, o(z) = Rz, B[P* o o|*(z) = (B[P* o 0](2))*, A, and
¢n (R, 0, B) are defined by (1.10) and (1.13) respectively.

Proof. 1If all the zeros of P(z) lie in |z| > 1, then the result follows by Lemma
2.6. Henceforth, we assume that P(z) has at least one zero in |z] < 1 so that
we can write

k n
P(z):Pl(z)Pg(z):aH(z—zj) H (z—2), 0<k<n—-1, a#0
j=1 j=k+1

where all the zeros of Pj(z) lie in |z| > 1 and all the zeros of Py(z) lie in
|z| < 1. First we assume that P;(z) has no zero on |z| = 1 so that all the zeros

of Pi(2) lie in |z| > 1. Let Pj(z) = 2" ¥P,(1/Z), then all the zeros of Pj(2)
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lie in |z| > 1 and | Py (z)| = |P2(z)| for |z| = 1. Now consider the polynomial

k
f(z) =P HZ_ZJ H (1= 22),

then all the zeros of f(z) lie in |z| > 1 and for |z| =1,

[f () = [PL(2)[ [Py (2)] = [PL(2)] [ P2(2)] = [ P(2)] . (2.13)

Therefore, it follows by Rouche’s theorem that the polynomial g(z) = P(z) +
pf(z) does not vanish in |z| < 1 for every p with |u| > 1, so that all the zeros
of g(z) lie in |z| > ¢ for some § > 1 and hence all the zeros of T'(z) = ¢(dz)
lie in |z| > 1. Applying (2.12) and (2.11) to the polynomial T'(z), we get for
R>1and |z| <1,

|B[T' 0 0](2) + ¢n (R, , B) B[T](2)|
<|B[T" o 0]*(2) + ¢n (R, &, B) B[T"]"(2)]

n? n3(n —1) -
‘ <)\0 + )\1* + )\28> (RnT(Z/R) + on (R, Q, ﬁ) T(z))

- (x\ln + /\2712(714—1)) (R”flzT’(z/R) + ¢n (R, &, B) zT’(z))

T %(R” 227"(2/R) + ¢n (R, &, B) 2T”(z))

)

that is,

|B[T 0 0](2) + ¢n (R, a, 8) BIT)(2)]

2 n3(n — ~
R e (G PR AN PICS)

_ <x g 4 AQZ(714_1)> <R"—15zg’(5z/R) + ¢ (R, &, B) 529’(5Z/7“)>
2

for |z| < 1. If z = €% /5,0 < 6 < 27, then |z| = (1/§) < 1 as 6 > 1 and we get
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BT 0 01(/5) + b (R, 0, B)BITI(/0)|
2 n3(n — , - .
O (ot 1)+ 00 (o, 5) o))

‘<A0+)\1n+>\2 3
B <XIZ+X2 2(n4— 1)) (Rn 1,0 J(e ZG/R)+¢7L(R 04,5) i0 (e ))

+>\2 (Rn 2 219 //( 10/R)+¢n( ’ )/8) 210 //( 19))’

=|Blg" 0 o]*(¢") + ¢u(R. @, B)Blg"T"(¢”).
Equivalently for |z| = 1,
|Blg 0 0](2)] + én (R, o, B) Blg](2)|
<|Blg* 0 0]"(2) + ¢n (R, @, B) Blg"]"()|-
Since all the zeros of g(z) lie in |z| > 1, all the zeros of g*(z) =
|z| < 1 and hence as before, all the zeros of g*(Rz) + ¢, (R, a, B
|z| < 1. By Lemma 2.2, all the zeros of Blg* o g](z) + ¢,

(

(R, a,
in |z| <1 and therefore, all the zeros of Blg* o 0]*(2) + ¢n(R, &,
lie in |z > 1. Thus

Blg* o 0]*(2) + ¢n(R, &, B)Blg*]*(z) # 0 for |z| < 1.
An application of Rouche’s theorem shows that the polynomial
M(z) = (Blg o 0](2) + ¢n(R, , B)Blg](2)) "
+ Blg" o o]*(2) + én(R, @, B)Blg"]"(2) (2.14)

does not vanish in |z| < 1. Replacing ¢g(z) by P(z) + uf(z) and noting that B
is a linear operator, it follows that the polynomial

M(z) = (B[P o 0](2) + éu(R, v, B) B[P)(2)) "
+ (B[P" o o]"(2) + ¢n(R, &, B)BIP*]*(2))
+ u((BIf 0 0)(2) + ¢n(R, @, B) B[f] (2)) e
+ (B[f* 0 0]*(2) + dn(R, @, B)B[f*]*(2))) (2.15)
does not vanish in |z| <1 for every p with |u| > 1. We claim
(BP0 0](2) + ¢n(R, o, B) B[P](2))e™
+ B[P o0]"(z )+d>n(R aaﬁ)B[ T (2)]
< |(BIf 0 0](2) + ¢n(R, @, B) B[f)(2)) "
+ B[f* 0 a]*(2) + dn(R, &, B)B[f]* ()| (2.16)
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for |z| < 1. If inequality (2.16) is not true, then there a point z = zy with
|z0] <1 such that

(B[P 0 0](20) + én(R, &, B)B[P](20)) "

+ B[P" 0 0]"(20) + ¢n(R, &, B) B[P*]"(20)|
> |(BIf o 0](20) + én(R, a, ) B[f](z0)) "

+ B[f* 0 0]"(20) + dn(R, & B)BLf T (20)].

Since f(z) does not vanish in |z| < 1, proceeding similarly as in the proof of
(2.14), it follows that the polynomial

(B[f o 0](z) + én(R, O"ﬁ)B[f](z))em
+ B[f* o a]*(z) + ¢n(R, 5[76)3[}0*]*(2)

does not vanish in |z| < 1. Hence

(B[f 0 0](20) + ¢n(R, ax, B)B[f](20)) €™
+ B[f* o U]*(ZO) + an(R, @’B)B[f*]*(zo) 75 0.
We take

_ _ (B[Poo](20)+¢n (R.a,8) B[P](20))e" + B[P*00]* (20) +én (R.4,8) B[P*]* (20)
H (B[foo](z0)+dn(R,.8) B[f](20))e"+B[f*oa]*(20) +¢n (R,a,8) B[f*]* (20)

so that u is well-defined real or complex number with |u| > 1 and with this
choice of p, from (2.15) , we get M(z9) = 0. This clearly is a contradiction
to the fact that M (z) does not vanish in |z| < 1. Thus (2.16) holds, which in
particular gives for each p > 0 and 7 real,

/
+ B[P 0 0]* (") + ¢n(R, &, B)B[P*]* (") )pda

2
S /

+ B[f* o a]* (") + én(R, &, B)B[f*]*(ew)‘dﬁ. (2.17)

(B[P o ](¢”) + ¢u(R, o, B) B[P] (")) e™

(B[f © 0](e”) + ¢n(R, a, B)B[f] (")) e™
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Using Lemma 2.7 and (2.13), we get for each p > 0,

/27r
0

2
S ’(Rn + ¢n(R7 «, ﬁ))Anem + (1 + ¢n(R’ 077 ﬁ)))‘0|p/0

(B[P o 0](e”) + ¢n(R, a, B) B[P](e”)) "

+ B[P* o o]*(e") + ¢ (R, &, B) B[P*]* (')

‘pde

Fe”)| do

‘ p

27
:4m+%m@mmwwﬂ+%m@mmh4

P(e”)‘p db. (2.18)

Now if Pj(z) has a zero on |z| = 1, then applying (2.18) to the polynomial
Q(z) = Pi(tz)P2(z) where t < 1, we get for each p > 0, R > 1 and 7 real,

27
A (BIQ 0 0](€”) + éu(R. . /) BIQ)(¢)) e
+ (B[Q* o a]*(e) + ¢n(R, &, B)BIQ*]* () [P do

27
SKW+%@w@MMMﬂ+%m@®WWA

Q(ew)‘p . (2.19)

Letting ¢ — 1 in (2.19) and using continuity, the desired result follows imme-
diately and this proves Lemma 2.7. O

Lemma 2.8. If P € P,, and P*(z) = 2" P(1/Z), then for everyp > 0, o, B € C
with |of <1, || <1 and R > 1,

/27r /27r
0 0

+ (BIP* 0 0](¢") + ¢u(R, o, ) B[P*](¢"))

27

S /
27

% /1

where B € By, o(z) == Rz, A, and ¢, (R, o, 3) are defined by (1.10) and
(1.13) respectively. The result is best possible and the extremal polynomial is

P(z)=pz", B#0.

Proof. Since B[P*oc]*(2) + ¢n(R, &, B) B[P*]*(z) is the conjugate polynomial
of B[P* 0 0](2) + ¢n(R, v, B) B[P*](2),

(B[P 0 0)(e) + ¢n(R, a, B) B[P](e™)) e

‘de

(R + dn(R, v, ) Ane™ + (1 + dn(R, a, 5))%(%

P(e?)|" db (2.20)

‘ p
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BP* 0 0]*(¢”) + 6u(R, & A)BIP"]* ()
~ BIP* 0 0)(e) 1 bu(R, 0, B)BIP*)(?)], 0< 0 < 2
and therefore for each p > 0, R > 1 and 0 < 0 < 27, we have
1B o016 + 6o ) BIPI(E) e
+ (BIP 0 0(c™) + 6u(R,0, §)BIP](c)) Py
= [T 1B o ol(e®) + gu(R . HBIPIE) e
FIBIP* 0 0)(c) + 6u(B,0, B)BLP](e) Py
= [T 18P o o1(e) + bR, BIPIE) e
FIBIP o 0] (6) 1 bu(R, . B)BIP ()Pl (2.21)

Integrating both sides of (2.21) with respect to 6 from 0 to 27 and using
Lemma 2.7, we get

27 27
/0 /0 (BIP 0 0](c) + éu(R, a, ) BIP)(c)) "
+ (B[P* o 0(€") + ¢n(R, o, B)B[P*](e")) [Pdndb

2w 2
= /0 /0 HB[Poo'](ei@) + qbn(R,a,B)B[P](ewﬂei”
+ ‘B[P* oo-]*(ew) + ¢n(R7d,B)B[P*]*(ew)deT]de

27 27

= /0 </0 (B[P o a](ew) + on(R, v, B)B[P](ei‘g))e“7
(BP0 o' (e") 4 on(R, HYBLPT () Pt )
27

< /0 (R™ + (R, s B))Ane™ + (14 dn(R, &, B)) o |dn

27
X/
0

27 )
< /0 (R + du(R, v, B) A + (1 + (R, v, B)) Aol

P(e?) .

2
< / ()P df.
0
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This completes the proof of Lemma 2.8. U

3. MAIN RESULTS

We first present the following result which is a compact generalization of
the inequalities (1.1),(1.2), (1.5) and (1.8) and extends inequality (1.11) for
0<p<1as well.

Theorem 3.1. If P € Py, then for arbitrary real or compler numbers o, B
with |a| <1, || <1, R>1 and 0 < p < o0,
|B[P o 0](z) + ¢n(R, o, B) B[P](2)||
SR+ dn (R, 0, B) [[An] [|P(2)]l,,
where B € By, o(z) == Rz, A, and ¢, (R, o, 3) are defined by (1.10) and

(1.13) respectively. The result is best possible and equality in (3.1) holds for
P(z) =az",a #0.

P (3.1)

Proof. By hypothesis P € P,,, we can write

k n
P(z2)=Pi(2)Pa(2) =c|J(z— %) [] (z—2), k=1 c#0,
j=1 j=k+1

where all the zeros of Pi(z) lie in |z| < 1 and all the zeros of P(z) lie in
|z| > 1. First we suppose that all the zeros of P;(z) liein |z| < 1. Let Py (z) =
2"k P,y(1/Z), then all the zeros of Py(z) lie in |2| < 1 and |Py(2)| = |P2(2)]
for |z] = 1. Now consider the polynomial
k n
F(z) = P(2)P5(2) = ][ (= —2) ][ (1-2%),
Jj=1 j=k+1

then all the zeros of F'(z) lie in |z| < 1 and for |2| =1,

[F(2)] = [PL(2)[ [P5 ()] = [PL(z)[ [Pa(2)] = [P(2)] . (3-2)

Observe that P(z)/F(z) — 1/ [} 1(—%;) when z — oo, so it is regular even
at oo and thus from (3.2) and by the maximum modulus principle, it follows
that

|P(2)| < |F(z)| for |z| > 1.
Since F(z) # 0 for |z| > 1, a direct application of Rouche’s theorem shows that
the polynomial H(z) = P(z)+AF(z) has all its zeros in |z| < 1 for every A\ with

|A| > 1. Therefore, for all real or complex numbers «, 5 with |o| < 1,|8] < 1
and R > 1, it follows that all the zeros of h(z) = H(Rz) + ¢n(R, o, B)H(2) lie
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in |z| < 1. Applying Lemma 2.2 to the polynomial h(z) and noting that B is
a linear operator, it follows that all the zeros of

B[h](z) = B[H o 0](2) + ¢n(R, o, B) B[H](2)

— B[P o0](2) + én(R, 0, /) BP](»
+ A(B[F 0 0](2) + ¢n(R, o, B) B[F](2))
lie in |z| < 1 for every A with |[A] > 1. This implies
[BIP 0 0](2) + 6u(R, @, B)BIP|(2)| < |BIF 0 0](2) + 6u(R, @, B) BIF(2)

for |z| > 1, which, in particular, gives for each p >0, R > 1 and 0 < 0 < 27,

27
/0 B[P o 5](e”) + ¢n(R, v, B)B[P](e")[Pdb

27
< /0 B[F o 0](¢™) + én(R, o, B) B[F](c)|Pdo. (3.3)

Again, since all the zeros of F(z) lie in |z| < 1, it follows, as before, that all
the zeros of B[F(Rz)] + ¢n(R, o, 5)F(z) also lie in |z| < 1. Therefore, the
operator C, defined by
C,F(z) = B[F o 0](z) + ¢n(R, o, B) B[F](z)
n? n3(n—1
= (B + 6u(Bo0, ) (o + Mo 2, )

is admissible. Hence by (2.9) of Lemma 2.5, for each p > 0, we have

)bnz”+---+)\0b0

27
/0 BIF 0 0](c%) + én(R, o, B) B[F] ()P0

2 3 —1)p 2w )
< IR + a0 B)lpo + 0%+ 0™ /0 P Pdg.  (3.4)

Combining inequalities (3.3) and (3.4) and noting that |F(e)| = |P(e?)|, we
obtain for each p > 0 and R > 1,

27
/0 BIP 0 0](e”) + én(R, o, ) B[P](e”)"d8

27 )
< IR" + éu(R, @, B)||An] /0 P 6. (3.5)

In case Pi(z) has a zero on |z| = 1, then the inequality (3.5) follows by
continuity. To obtain this result for p = 0, we simply make p — 0+. O

A variety of interesting results can be deduced from Theorem 3.1 as special
cases. Here we mention a few of these.



New operator preserving integral inequalities between polynomials 245

The following result follows from Theorem 3.1 by taking 8 = 0.

Corollary 3.2. If P € P,, then for every real or complex number o with
la| <1, R>1 and 0 < p < oo,

IBIP 0 0](z) = aB[P](2)[l, < |R" = af [Aq| [|P(2) (3.6)

where B € By, 0(z) := Rz and A, is defined by (1.10). The result is best
possible and equality in (3.6) holds for P(z) = az",a # 0.

Hp7

Setting o = 0 in Corollary 3.2, we get the following sharp result.

Corollary 3.3. If P € Py, then for R>1 and 0 < p < o0,
B[P o a](2)]l, < [R"[[An] |P(2)]], , (3.7)

where B € B, o(z) := Rz and A, is defined by (1.10). The result is best
possible and equality in (3.7) holds for P(z) = az™,a # 0.

Remark 3.4. Corollary 3.3 not only includes inequality (1.11) as a special
case but also extends it for 0 < p < 1 as well. Further inequality (1.8) follows
from Corollary 3.3 by letting p — oo in (3.7).

The case B[P](z) = P(z) of Theorem 3.1 yields the following interesting
result which is a compact generalization of inequalities (1.1), (1.2) and (1.5).

Corollary 3.5. If P € Py, then for every real or complex number o with
la| <1, R>1, and p > 0,

1P(Rz) + ¢n (R, a, B) P(2), < [R" + én (R, 0, B) | | P(2) (3.8)

where ¢y, (R, o, B) is defined by (1.13). The result is best possible and equality
in (3.8) holds for P(z) = az",a # 0.

||p ||p7

Remark 3.6. If we divide the two sides of (3.8) by R — 1 with @ = 1 and
then let R — 1, we get for P € P,,, |f| <1 and 0 < p < o0,

B

2P'(2) + %P(z) <n

p
The result is best possible and equality in (3.9) holds for P(z) = az",a # 0.

1+ g’ 1P, (3.9)

Taking a = 0 in (3.1), we obtain:

Corollary 3.7. If P € P, then for every real or complex number 3 with
1Bl <1, R>1and 0<p< oo,
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|pipa)+ 5 (2E1) Bl
g P (3.10)
<|ws (F50) [nddiee,.

where B € By, and ¢, (R, «, B) is defined by (1.13).The result is best possible
and equality in (3.10) holds for P(z) = Az", X # 0.

Theorem 3.1 can be sharpened if we restrict ourselves to the class of polyno-
mials P € P, having no zero in |z| < 1. In this direction, we next present the
following result which in particular includes a generalized L, mean extension
of the inequality (1.9) for 0 < p < co and among other things yields a correct
proof of inequality (1.12) for each p > 0 as a special case.

Theorem 3.8. If P € P,, and P(z) does not vanish in |z| < 1, then for then
for arbitrary real or complex numbers o, f with |a] <1, || <1, R > 1 and
0<p<oo,
| B[P o 0](2) + ¢n(R, o, B)B[P(2)],,
(R" + ¢n(R,, B)) Anz + (1 + ¢n(R, a, B)) Aol
11+ 2],

where B € By, o(z) := Rz, A, and ¢, (R,, 3) are defined by (1.10) and
(1.13) respectively. The result is best possible and equality in (3.11) holds for
P(z) =az" +b,|a| = |b] # 0.

Proof. By hypothesis P € P,, does not vanish in |z| < 1, o(z) = Rz, therefore,
if P*(z) = 2"P(1/Z), then by Lemma 2.3, we have for 0 < 6 < 2,

|B[P 0 0](e”) + ¢n(R, a, B) B[P](e"))|
< |B[P* 0 0)(”) + ¢n(R, a, B) B[P*](")]. (3.12)
Also, by Lemma 2.8, for each p > 0 and 7 real and R > 1,
21 2w . .
[ [ 1B ol + ouR o BRI
+ (B[P* 0 6](e") + ¢u(R, o, B) B[P*|(e")) [PdOdn

- | (3.11)

SR,

2 )
< / (R + ¢n(R, a, 8)) Ape™
0

27
(14 6u(Ry v B) Aol /0

Now it can be easily verified that for every real number o and r > 1,

‘r+eio‘| > ‘1—1—@”!.

P(ew)‘p do.
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This implies for each p > 0,

2 ) 2w )
/ |r+em\pda2/ 1+ ¢ ? o (3.13)
0 0
If B[P o c](e”) + ¢n(R, &, 3)B[P](e?) # 0, we take

_ |B[P*00](e"”) + ¢u(R, , B)BIP*](e”))]
B[P o 0](e) + ¢n(R, o, B) B[P)(e)]
then by (3.12), » > 1 and from (3.13), we get

2
/0 B[P oo]( 10)+¢H(R7O‘7,8)B[P](ei9))ein

+ (BIP* 0 0)(e™) + (R, o, B)B[P*](e)) [Py
— |B[P o 0](¢"®) + (R, v, B) BIP]() [P
2| . B[P* o a](e?) + ¢n(R, a, B)B[P*](e?) |
/0 " BPoo)(®) 1 gu(R.a. BB ()
=|B[P o 0](e"”) + ¢n(R, a, B)B[P] ()P

TN L | BP0 a](€) + ¢n(R, o, B)BIP*](e*) | "
X/o e”—i—) B[P o o(e®) + ¢n(R, v, B) B[P](e™)

dn

27
> | B[P o o](c) + ¢n(R,a,ﬁ)B[P](e“9)]p/ 11+ ¢,

For B[P o 0](¢) + ¢n(R, o, B) B[P](e?) = 0, this inequality is trivially true.
Using this in (2.20), we conclude that for each p > 0,

/27r
0

2 )
= / |(R" + ¢n(R, a, ) Ape™
0

P 2w .
B[Poa](ew)+qbn(R,a,ﬁ)B[P](ei9)‘ dg/o 14 e[? dy

27
(14 6u(Rya, B))NolPdn /0 P(e)Pdo,

from which theorem 3.8 follows for p > 0. To establish this result for p = 0,
we simply let p — 04. This completes the proof of Theorem 3.8. O

For 8 = 0, inequality (3.11) reduces to the following result.

Corollary 3.9. If P € P,, and P(z) does not vanish in |z| < 1, then for every
real or complex number o with |a] <1, R > 1 and 0 < p < oo,
|(R™ — a)Apz + (1 — a) Ao

B[P o 0](z) — aB[P](2)]|, < TR

FlPG)

(3.14)

P )
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where B € By, 0(z) := Rz, and A, is defined by (1.10). The result is best
possible and equality in (3.14) holds for P(z) = az"™ + b, |a| = |b| # 0.

For a = 0, Corollary 3.9 yields the following interesting result.

Corollary 3.10. If P € P,, and P(z) does not vanish in |z| < 1, then for
R>1and0<p< oo,

|R"Apnz + Xol|
P+,
where B € By, 0(z) := Rz and A, is defined by (1.10). The result is best
possible and equality in (3.15) holds for P(z) = az™ + b, |a| =|b] # 0.

I1B[P o a](z)]| ElPG) (3.15)

P Y

Remark 3.11. If we choose a = Ao = A2 = 0 in (3.15), we get for R > 1 and
0<p<x
an—l

S -
P+,
which in particular yields inequality (1.3).

|P/(R2)] 1P(:)ll, (3.16)

By the triangle inequality, the following result immediately follows from
Corollary 3.10.

Corollary 3.12. If P € P, and P(z) does not vanish in |z| < 1, then for
0<p<ooand R>1,

B8] + ol
L Pl TR0 p , 3.17
b < S P (3.17)

where B € By, 0(z) := Rz, A, is defined by (1.10).

B[P o o] ()]

Remark 3.13. Corollary 3.12 not only validates the inequality (1.12) for
p > 1 but also extends it for 0 < p < 1 as well.

A polynomial P € P, is said be self-inversive if P(z) = uP*(z) where
lu] = 1 and P*(z) is the conjugate polynomial of P(z), that is, P*(z) =
2"P(1/Zz). Finally in this paper, we establish the following result for self-
inversive polynomials which includes a correct proof of another result of Shah
and Liman [17, Theorem 3] as a special case.

Theorem 3.14. If P € P, is a self-inversive polynomial, then for arbitrary

real or complex numbers o, § with |a] <1, |B] <1, R>1 and 0 < p < o0,
| B[P o o](2) + ¢n(R, o, B)B[P](2)],,
(B" + ¢n(R, o, B)) Anz + (1 + dn(R, v, B)) Ao

11+ =],

- | (3.18)
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where B € By, o(z) :== Rz, Ay, and ¢, (R,a, ) are defined by (1.10) and
(1.13) respectively. The result is best possible and equality in (3.18) holds for
P(z)=2"+1.

Proof. Since P € P, is self-inversive polynomial, we have for some u with

u=1, P*(z) = uP(z) for all z € C where P*(z) = 2"P(1/z). This gives for
0<6<2m,

|B[P o 0](¢") + ¢n(R, o, B) B[P] ()]
< |B[P* 0 0](e") + ¢n(R, a, B) BIP*](e”)].

Using this in (2.20) and proceeding similarly as in the proof of Theorem 3.8,
we get the desired result for each p > 0. To extension to p = 0 is obtains by
letting p — 0—+. O

The following result is an immediate consequence of Theorem 3.14.

Corollary 3.15. If P € P, is a self-inversive polynomial, then for 0 < p < oo
and R > 1,

HB[P oo|(z) — OéB[P](Z)Hp
I(R" — ar™Anz + (1 — a)Nol|
= 1+ =],

where B € By, and o(z) := Rz, and A,, is defined by (1.10). The result is
sharp and equality in (3.19) holds for P(z) = 2" + 1.

=P, (3.19)

For a = 0, Corollary 3.15 reduces to the following interesting result.

Corollary 3.16. If P € P, is a self-inversive polynomial, then for 0 < p < oo
and R > 1,

| R"Anz + Aol|
P+,
where B € By, 0(z) := Rz and A, is defined by (1.10). The result is best
possible and equality in (3.20) holds for P(z) = 2" + 1.

B[P o a](z)]| =P (3.20)

P Y

By the triangle inequality, the following result follows immediately from
Corollary 3.16.

Corollary 3.17. If P € P, is a self-inversive polynomial, then for 0 < p < oo
and R > 1,
Rn‘An| + ‘)\0|

IBLP 0 ol@)l, = =57

1P, » (3.21)
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where B € By, 0(z) :== Rz and A, is defined by (1.10). The result is sharp
and equality in (3.21) holds for P(z) = 2" + 1.

Remark 3.18. Corollary 3.17 establishes a correct proof of a result due to
Shah and Liman [17, Theorem 3] for p > 1 and also extends it for 0 < p < 1
as well.

Lastly letting p — oo and setting « = § = 0 in (3.18), we obtain the
following result.

Corollary 3.19. If P € P, is a self-inversive polynomial, then for |z| = 1
and R > 1,

1 n
B[P o al(2)] < 5 {R" [An] + [Aol} [P (2)l] »
where B € By, 0(z) := Rz and A,, is defined by (1.10). The result is sharp.
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