Nonlinear Functional Analysis and Applications Vol. 18, No. 2 (2013), pp. 227-251

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2013 Kyungnam University Press

NEW OPERATOR PRESERVING INTEGRAL INEQUALITIES BETWEEN POLYNOMIALS

Nisar A. Rather¹, Suhail Gulzar² and S. Saheel³

¹P. G. Department of Mathematics, Kashmir University Hazratbal, Srinagar-190006, India e-mail: dr.narather@gmail.com

 ^{2}P . G. Department of Mathematics, Kashmir University Hazratbal, Srinagar-190006, India e-mail: sgmattoo@gmail.com

> 3 ICSC, Srinagar-190002, India e-mail: ssaheel@gmail.com

Abstract. For a polynomial $P(z)$ of degree n having no zero in $|z| < 1$, it was recently asserted by Shah and Liman [17] that for every $R \geq 1$, $p \geq 1$,

$$
||B[P \circ \sigma](z)||_p \leq \frac{R^n |\Lambda_n| + |\lambda_0|}{||1 + z||_p} ||P(z)||_p,
$$

where B is a B_n -operator, $\sigma(z) = Rz$, $R \geq 1$ and $\Lambda_n := \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}$ with parameters $\lambda_0, \lambda_1, \lambda_2$ in the sense of Rahman [13]. The proof of this result is incorrect. In this paper, we present certain new L_p inequalities for \mathcal{B}_n -operators which not only provide a correct proof of the above inequality and other related results but also extend these inequalities for $0 \leq p < 1$ as well.

1. INTRODUCTION

Let P_n denote the space of all complex polynomials $P(z) = \sum_{j=0}^n a_j z^j$ of degree *n*. For $P \in \mathcal{P}_n$, define

$$
||P(z)||_0 := \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| d\theta\right\},\,
$$

⁰Received November 10, 2012. Revised January 25, 2013.

⁰ 2000 Mathematics Subject Classification: 26D10, 41A17.

⁰Keywords: L^p inequalities, \mathcal{B}_n -operators, polynomials.

$$
||P(z)||_p := \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p \right\}^{1/p}, \ 1 \le p < \infty,
$$

$$
||P(z)||_{\infty} := \max_{|z|=1} |P(z)|
$$

and denote for any complex function $\psi : \mathbb{C} \to \mathbb{C}$ the composite function of P and ψ , defined by $(P \circ \psi)(z) := P(\psi(z))$ $(z \in \mathbb{C})$, as $P \circ \psi$.

If $P \in \mathcal{P}_n$, then

$$
||P'(z)||_{p} \le n ||P(z)||_{p}, \quad p \ge 1
$$
\n(1.1)

and

$$
||P(Rz)||_p \le R^n ||P(z)||_p, \ R > 1, \ p > 0.
$$
 (1.2)

Inequality (1.1) was found out by Zygmund [18] whereas inequality (1.2) is a simple consequence of a result of Hardy [8]. Arestov [2] proved that (1.1) remains true for $0 < p < 1$ as well. For $p = \infty$, the inequality (1.1) is due to Bernstein (for reference, see [11, 15, 16]) whereas the case $p = \infty$ of inequality (1.2) is a simple consequence of the maximum modulus principle (see $[11, 12, 15]$. Both the inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to the class of polynomials having no zero in $|z| < 1$. In fact, if $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in $|z| < 1$, then inequalities (1.1) and (1.2) can be respectively replaced by

$$
||P'(z)||_{p} \le n \frac{||P(z)||_{p}}{||1+z||_{p}}, \quad p \ge 0
$$
\n(1.3)

and

$$
||P(Rz)||_{p} \le \frac{||R^{n}z + 1||_{p}}{||1 + z||_{p}} ||P(z)||_{p}, \ R > 1, \ p > 0.
$$
 (1.4)

Inequality (1.3) is due to De-Bruijn [6](see also [3]) for $p \ge 1$. Rahman and Schmeisser [14] extended it for $0 < p < 1$ whereas the inequality (1.4) was proved by Boas and Rahman [5] for $p \geq 1$ and later it was extended for $0 < p < 1$ by Rahman and Schmeisser [14]. For $p = \infty$, the inequality (1.3) was conjectured by Erdös and later verified by Lax $[9]$ whereas inequality (1.4) was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1.1) and (1.2), Aziz and Rather [4] proved that if $P \in \mathcal{P}_n$, then for every real or complex number α with $|\alpha| \leq 1$, $R > 1$, and $p > 0$,

$$
||P(Rz) - \alpha P(z)||_p \le |R^n - \alpha| ||P(z)||_p.
$$
 (1.5)

and if $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in $|z| < 1$, then for every real or complex number α with $|\alpha| \leq 1$, $R \geq 1$, and $p > 0$,

$$
||P(Rz) - \alpha P(z)||_p \le \frac{||(R^n - \alpha)z + (1 - \alpha)||_p}{||1 + z||_p} ||P(z)||_p.
$$
 (1.6)

Inequality (1.6) is the corresponding compact generalization of inequalities (1.3) and (1.4).

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a class \mathcal{B}_n of operators B that maps $P \in \mathcal{P}_n$ into itself. That is, the operator B carries $P \in \mathcal{P}_n$ into

$$
B[P](z) := \lambda_0 P(z) + \lambda_1 \left(\frac{nz}{2}\right) \frac{P'(z)}{1!} + \lambda_2 \left(\frac{nz}{2}\right)^2 \frac{P''(z)}{2!}
$$
(1.7)

where λ_0, λ_1 and λ_2 are such that all the zeros of

 $u(z) := \lambda_0 + C(n, 1)\lambda_1 z + C(n, 2)\lambda_2 z^2$, $C(n, r) = n!/r!(n-r)!$, lie in the half plane

$$
|z| \le |z - n/2|
$$

and proved that if $P \in \mathcal{P}_n$, then

$$
|B[P \circ \sigma](z)| \le R^n \left|\Lambda_n\right| \|P(z)\|_{\infty} \quad \text{for} \quad |z| = 1. \tag{1.8}
$$

And if $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then

$$
\frac{1}{1}
$$

$$
|B[P \circ \sigma](z)| \le \frac{1}{2} \{ R^n \, |\Lambda_n| + |\lambda_0| \} \, ||P(z)||_{\infty} \quad \text{for} \quad |z| = 1,\tag{1.9}
$$

(see [13, Inequality (5.2) and (5.3)] where $\sigma(z) = Rz, R \ge 1$ and

$$
\Lambda_n := \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}.
$$
\n(1.10)

As an extension of inequality (1.8) to L_p -norm, recently W. M. Shah and A. Liman [17, Theorem 1] proved that if $P \in \mathcal{P}_n$, then for every $R \ge 1$ and $p \ge 1$, n

$$
||B[P \circ \sigma](z)||_{p} \le R^{n} |\Lambda_{n}| ||P(z)||_{p}, \qquad (1.11)
$$

where $B \in \mathcal{B}_n$ and $\sigma(z) = Rz$ and Λ_n is defined by (1.10).

While seeking the desired extension of inequality (1.9) to L_p -norm, they [17, Theorem 2] have made an incomplete attempt by claiming to have proved that if $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for each $R \ge 1$ and $p \geq 1$,

$$
||B[P \circ \sigma](z)||_p \le \frac{R^n |\Lambda_n| + |\lambda_0|}{||1 + z||_p} ||P(z)||_p, \qquad (1.12)
$$

where $B \in \mathcal{B}_n$ and $\sigma(z) = Rz$ and Λ_n is defined by (1.10).

Further, it has been claimed in [17] to have proved the inequality (1.12) for self-inversive polynomials as well.

The proof of inequality (1.12) and other related results including the Lemma 4 in [17] given by Shah and Liman is not correct. The reason being that the authors in [17] deduce line 10 from line 7 on page 84, line 19 on page 85 from Lemma 3 [17] and line 16 from line 14 on page 86 by using the fact that if $P^*(z) := z^n \overline{P(1/\overline{z})}$, then for $\sigma(z) = Rz$, $R \ge 1$ and $|z| = 1$,

$$
|B[P^* \circ \sigma](z)| = |B[(P^* \circ \sigma)^*](z)|,
$$

which is not true, in general, for every $R \ge 1$ and $|z| = 1$. To see this, let

$$
P(z) = a_n z^n + \dots + a_k z^k + \dots + a_1 z + a_0
$$

be an arbitrary polynomial of degree n, then

$$
P^{\star}(z) =: z^n \overline{P(1/\overline{z})} = \overline{a_0} z^n + \overline{a_1} z^{n-1} + \cdots + \overline{a_k} z^{n-k} + \cdots + \overline{a_n}.
$$

Now with $\mu_1 := \lambda_1 n/2$ and $\mu_2 := \lambda_2 n^2/8$, we have

$$
B[P^* \circ \rho](z) = \sum_{k=0}^n (\lambda_0 + \mu_1(n-k) + \mu_2(n-k)(n-k-1)) \bar{a_k} z^{n-k} R^{n-k},
$$

and in particular for $|z|=1$, we get

$$
B[P^* \circ \rho](z) = R^n z^n \sum_{k=0}^n (\lambda_0 + \mu_1(n-k) + \mu_2(n-k)(n-k-1)) \overline{a_k \left(\frac{z}{R}\right)^k},
$$

whence

$$
|B[P^* \circ \rho](z)| = R^n \left| \sum_{k=0}^n \overline{(\lambda_0 + \mu_1(n-k) + \mu_2(n-k)(n-k-1))} a_k \left(\frac{z}{R}\right)^k \right|.
$$

But

$$
|B[(P^* \circ \rho)^*](z)| = R^n \left| \sum_{k=0}^n \left(\lambda_0 + \mu_1 k + \mu_2 k(k-1) \right) a_k \left(\frac{z}{R} \right)^k \right|,
$$

so the asserted identity does not hold in general for every $R \ge 1$ and $|z| = 1$ as e.g. the immediate counterexample of $P(z) := z^n$ demonstrates in view of $P^{\star}(z) = 1, |B[P^{\star} \circ \rho](z)| = |\lambda_0|$ and

$$
|B[(P^* \circ \rho)^*](z)| = |\lambda_0 + \lambda_1(n^2/2) + \lambda_2 n^3(n-1)/8|, |z| = 1.
$$

The main aim of this paper is to present correct proofs of the results mentioned in [17] by investigating the dependence of

$$
||B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)||_p
$$

on $||P(z)||_p$ for arbitrary real or complex numbers α , β with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R > 1, 0 \leq p < \infty, \sigma(z) := Rz,$

$$
\phi_n(R, \alpha, \beta) := \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} - \alpha, \tag{1.13}
$$

and establish certain generalized L_p -mean extensions of the inequalities (1.8) and (1.9) for $0 \leq p < \infty$.

2. Lemmas

For the proofs of our main results, we need the following lemmas. The first Lemma is easy to prove.

Lemma 2.1. If $P \in P_n$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every $R \geq 1$ and $|z| = 1$,

$$
|P(Rz)| \ge \left(\frac{R+1}{2}\right)^n |P(z)|.
$$

The following Lemma follows from Corollary 18.3 of [10, p. 65].

Lemma 2.2. If all the zeros of polynomial $P \in \mathcal{P}_n$ lie in $|z| \leq 1$, then all the zeros of the polynomial $B[P](z)$ also lie in $|z| < 1$.

Lemma 2.3. If $F \in P_n$ has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
|P(z)| \leq |F(z)|
$$
 for $|z| = 1$,

then for arbitrary real or complex numbers α, β with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R \geq 1$, and $|z| \geq 1$,

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)|
$$

\n
$$
\leq |B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P^*](z)|
$$
\n(2.1)

where $P^*(z) := z^n \overline{P(1/\overline{z})}$, $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively.

Proof. Since the polynomial $F(z)$ of degree n has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
|P(z)| \le |F(z)| \text{ for } |z| = 1,
$$
\n(2.2)

therefore, if $F(z)$ has a zero of multiplicity s at $z = e^{i\theta_0}$, then $P(z)$ has a zero of multiplicity at least s at $z = e^{i\theta_0}$. If $P(z)/F(z)$ is a constant, then the inequality (2.1) is obvious. We now assume that $P(z)/F(z)$ is not a constant, so that by the maximum modulus principle, it follows that

$$
|P(z)| < |F(z)|
$$
 for $|z| > 1$.

Suppose $F(z)$ has m zeros on $|z|=1$ where $0 \le m \le n$, so that we can write $F(z) = F_1(z)F_2(z),$

where
$$
F_1(z)
$$
 is a polynomial of degree m whose all zeros lie on $|z| = 1$ and

 $F_2(z)$ is a polynomial of degree exactly $n - m$ having all its zeros in $|z| < 1$. This implies with the help of inequality (2.2) that

$$
P(z) = P_1(z)F_1(z),
$$

where $P_1(z)$ is a polynomial of degree at most $n - m$. Now, from inequality (2.2) , we get

$$
|P_1(z)| \le |F_2(z)| \text{ for } |z| = 1,
$$

where $F_2(z) \neq 0$ for $|z| = 1$. Therefore for every real or complex number λ with $|\lambda| > 1$, a direct application of Rouche's theorem shows that the zeros of the polynomial $P_1(z) - \lambda F_2(z)$ of degree $n - m \ge 1$ lie in $|z| < 1$. Hence the polynomial

$$
f(z) = F_1(z) (P_1(z) - \lambda F_2(z)) = P(z) - \lambda F(z)
$$

has all its zeros in $|z| \leq 1$ with at least one zero in $|z| < 1$, so that we can write

$$
f(z) = (z - te^{i\delta})H(z),
$$

where $t < 1$ and $H(z)$ is a polynomial of degree $n - 1$ having all its zeros in $|z| \leq 1$. Applying Lemma 2.1 to the polynomial $f(z)$, we obtain for every $R > 1$ and $0 \leq \theta < 2\pi$,

$$
|f(Re^{i\theta})| = |Re^{i\theta} - te^{i\delta}| |H(Re^{i\theta})|
$$

\n
$$
\geq |Re^{i\theta} - te^{i\delta}| \left(\frac{R+1}{2}\right)^{n-1} |H(e^{i\theta})|
$$

\n
$$
= \left(\frac{R+1}{2}\right)^{n-1} \frac{|Re^{i\theta} - te^{i\delta}|}{|e^{i\theta} - te^{i\delta}|} |(e^{i\theta} - te^{i\delta}) H(e^{i\theta})|
$$

\n
$$
\geq \left(\frac{R+1}{2}\right)^{n-1} \left(\frac{R+t}{1+t}\right) |f(e^{i\theta})|.
$$

This implies for $R > 1$ and $0 \le \theta < 2\pi$,

$$
\left(\frac{1+t}{R+t}\right)|f(Re^{i\theta})| \ge \left(\frac{R+1}{2}\right)^{n-1}|f(e^{i\theta})|.
$$
 (2.3)

Since $R > 1 > t$ so that $f(Re^{i\theta}) \neq 0$ for $0 \leq \theta < 2\pi$ and $\frac{2}{1+R} > \frac{1+t}{R+i}$ $\frac{1+t}{R+t}$, from inequality (2.3), we obtain $R > 1$ and $0 \le \theta < 2\pi$,

$$
|f(Re^{i\theta}| > \left(\frac{R+1}{2}\right)^n |f(e^{i\theta})|.
$$
 (2.4)

Equivalently,

$$
|f(Rz)| > \left(\frac{R+1}{2}\right)^n |f(z)|
$$

for $|z| = 1$ and $R > 1$. Hence for every real or complex number α with $|\alpha| \leq 1$ and $R > 1$, we have

$$
|f(Rz) - \alpha f(z)| \ge |f(Rz)| - |\alpha||f(z)|
$$

>
$$
\left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} |f(z)|, \quad |z| = 1.
$$
 (2.5)

Also, inequality (2.4) can be written in the form

$$
|f(e^{i\theta})| < \left(\frac{2}{R+1}\right)^n |f(Re^{i\theta})| \tag{2.6}
$$

for every $R > 1$ and $0 \le \theta < 2\pi$. Since $f(Re^{i\theta}) \ne 0$ and $\left(\frac{2}{R+1}\right)^n < 1$, from inequality (2.6), we obtain for $0 \le \theta < 2\pi$ and $R > 1$,

$$
|f(e^{i\theta}| < |f(Re^{i\theta})|.
$$

Equivalently,

$$
|f(z)| < |f(Rz)| \text{ for } |z| = 1.
$$

Since all the zeros of $f(Rz)$ lie in $|z| \leq (1/R) < 1$, a direct application of Rouche's theorem shows that the polynomial $f(Rz) - \alpha f(z)$ has all its zeros in $|z|$ < 1 for every real or complex number α with $|\alpha| \leq 1$. Applying Rouche's theorem again, it follows from (2.5) that for arbitrary real or complex numbers α, β with $|\alpha| \leq 1, |\beta| \leq 1$ and $R > 1$, all the zeros of the polynomial

$$
T(z) = f(Rz) - \alpha f(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} f(z)
$$

= $f(Rz) + \phi_n(R, \alpha, \beta) f(z)$
= $(P(Rz) - \lambda F(Rz)) + \phi_n (R, \alpha, \beta) (P(z) - \lambda F(z))$
= $(P(Rz) + \phi_n (R, \alpha, \beta) P(z)) - \lambda (F(Rz) + \phi_n (R, \alpha, \beta) F(z))$

lie in $|z| < 1$ for every λ with $|\lambda| > 1$. Using Lemma 2.2 and the fact that B is a linear operator, we conclude that all the zeros of polynomial

$$
W(z) = B[T](z)
$$

= $(B[P \circ \sigma](z) + \phi_n (R, \alpha, \beta) B[F](z))$

also lie in $|z| < 1$ for every λ with $|\lambda| > 1$. This implies

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)|
$$

\n
$$
\leq |B[F \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[F](z)|
$$
\n(2.7)

for $|z| \ge 1$ and $R > 1$. If inequality (2.7) is not true, then exist a point $z = z_0$ with $|z_0| \geq 1$ such that

$$
|B[P \circ \sigma](z_0) + \phi_n(R, \alpha, \beta) B[P](z_0)|
$$

>
$$
|B[F \circ \sigma](z_0) + \phi_n(R, \alpha, \beta) B[F](z_0)|.
$$

But all the zeros of $F(Rz)$ lie in $|z| < 1$, therefore, it follows (as in case of $f(z)$) that all the zeros of $F(Rz) + \phi_n(R, \alpha, \beta)F(z)$ lie in $|z| < 1$. Hence by Lemma 2.2, all the zeros of $B[F \circ \sigma](z) + \phi_n (R, \alpha, \beta) B[F](z)$ also lie in $|z| < 1$, which shows that

$$
B[F \circ \sigma](z_0) + \phi_n (R, \alpha, \beta) B[F](z_0) \neq 0.
$$

We take

$$
\lambda = \frac{B[P \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[P](z_0)}{B[F \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[F](z_0)},
$$

then λ is a well defined real or complex number with $|\lambda| > 1$ and with this choice of λ , we obtain $W(z_0) = 0$. This contradicts the fact that all the zeros of $W(z)$ lie in $|z| < 1$. Thus (2.7) holds and this completes the proof of Lemma 2.3.

Lemma 2.4. If $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for arbitrary real or complex numbers α , β with $|\alpha| \leq 1, |\beta| \leq 1, R > 1$ and $|z| \geq 1$,

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)|
$$

\n
$$
\leq |B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P^*](z)|
$$
\n(2.8)

where $P^*(z) := z^n \overline{P(1/\overline{z})}$, $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and $\phi_n(R, \alpha, \beta)$ is defined by $(1.13).$

Proof. By hypothesis the polynomial $P(z)$ of degree n does not vanish in $|z| < 1$, therefore, all the zeros of the polynomial $P^*(z) = z^n \overline{P(1/\overline{z})}$ of degree *n* lie in $|z| \leq 1$. Applying Lemma 2.3 with $F(z)$ replaced by $P^*(z)$, it follows that

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)|
$$

\n
$$
\leq |B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P^*](z)|
$$

for $|z| \geq 1, |\alpha| \leq 1, |\beta| \leq 1$ and $R > 1$. This proves the Lemma 2.4.

Next we describe a result of Arestov [2].

For
$$
\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n) \in \mathbb{C}^{n+1}
$$
 and $P(z) = \sum_{j=0}^n a_j z^j$, we define

$$
C_{\gamma}P(z) = \sum_{j=0}^n \gamma_j a_j z^j.
$$

The operator C_{γ} is said to be admissible if it preserves one of the following properties:

(i) $P(z)$ has all its zeros in $\{z \in \mathbb{C} : |z| \leq 1\},\$

(ii) $P(z)$ has all its zeros in $\{z \in \mathbb{C} : |z| \geq 1\}.$

The result of Arestov may now be stated as follows.

Lemma 2.5. ([2, Th. 2]) Let $\phi(x) = \psi(\log x)$ where ψ is a convex non decreasing function on R. Then for all $P \in \mathcal{P}_n$ and each admissible operator Λ_{γ} ,

$$
\int_0^{2\pi} \phi\left(|C_\gamma P(e^{i\theta})|\right) d\theta \le \int_0^{2\pi} \phi\left(c(\gamma, n) |P(e^{i\theta})|\right) d\theta,
$$

where $c(\gamma, n) = max(|\gamma_0|, |\gamma_n|)$.

In particular Lemma 2.5 applies with $\phi: x \to x^p$ for every $p \in (0, \infty)$ and $\phi: x \to \log x$ as well. Therefore, we have for $0 \leq p < \infty$,

$$
\left\{ \int_0^{2\pi} \phi \left(|C_\gamma P(e^{i\theta})|^p \right) d\theta \right\}^{1/p} \le c(\gamma, n) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta \right\}^{1/p}.
$$
 (2.9)

From Lemma 2.5, we deduce the following result.

Lemma 2.6. If $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for each $p > 0$, $R > 1$ and η real, $0 \leq \eta < 2\pi$,

$$
\int_0^{2\pi} \left| (B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})) e^{i\eta} \right|
$$

+
$$
(B[P^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(e^{i\theta})) \Big|^p d\theta
$$

$$
\leq \left| (R^n + \phi_n(R, \alpha, \beta)) \Lambda_n e^{i\eta} + (1 + \phi_n(R, \bar{\alpha}, \bar{\beta})) \bar{\lambda_0} \right|^p \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta,
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, $B[P^* \circ \sigma]^*(z) := (B[P^* \circ \sigma](z))^*$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively.

Proof. Since $P(z)$ does not vanish in $|z| < 1$ and $P^*(z) = z^n \overline{P(1/\overline{z})}$, by Lemma 2.3, we have for $R > 1$,

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)
$$

\n
$$
\leq |B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P^*](z)| \qquad (2.10)
$$

Also, since

$$
P^*(Rz) + \phi_n(R, \alpha, \beta) P^*(z) = R^n z^n \overline{P(1/R\overline{z})} + \phi_n(R, \alpha, \beta) z^n \overline{P(1/\overline{z})},
$$

therefore,

$$
B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P^*](z)
$$

= $\lambda_0(R^n z^n \overline{P(1/R\overline{z})} + \phi_n(R, \alpha, \beta) z^n \overline{P(1/\overline{z})}) + \lambda_1 \left(\frac{nz}{2}\right) \left(nR^n z^{n-1} \overline{P(1/R\overline{z})} - R^{n-1} z^{n-2} \overline{P'(1/R\overline{z})} + \phi_n(R, \alpha, \beta) \left(nz^{n-1} \overline{P(1/\overline{z})} - z^{n-2} \overline{P'(1/\overline{z})}\right)\right)$
+ $\frac{\lambda_2}{2!} \left(\frac{nz}{2}\right)^2 \left(n(n-1)R^n z^{n-2} \overline{P(1/R\overline{z})} - 2(n-1)R^{n-1} z^{n-3} \overline{P'(1/R\overline{z})} + R^{n-2} z^{n-4} \overline{P''(1/R\overline{z})} + \phi_n(R, \alpha, \beta) \left(n(n-1)z^{n-2} \overline{P(1/\overline{z})}\right) - 2(n-1) z^{n-3} \overline{P'(1/\overline{z})} + z^{n-4} \overline{P''(1/\overline{z})})$

and hence,

$$
B[P^* \circ \sigma]^*(z) + \phi_n (R, \bar{\alpha}, \bar{\beta}) B[P^*]^*(z)
$$

= $(B[P^* \circ \sigma](z) + \phi_n (R, \alpha, \beta) B[P^*](z))^*$
= $(\bar{\lambda}_0 + \bar{\lambda}_1 \frac{n^2}{2} + \bar{\lambda}_2 \frac{n^3(n-1)}{8}) (R^n P(z/R) + \phi_n (R, \bar{\alpha}, \bar{\beta}) P(z))$
 $- (\bar{\lambda}_1 \frac{n}{2} + \bar{\lambda}_2 \frac{n^2(n-1)}{4}) (R^{n-1} z P'(z/R) + \phi_n (R, \bar{\alpha}, \bar{\beta}) z P'(z))$
 $+ \bar{\lambda}_2 \frac{n^2}{8} (R^{n-2} z^2 P''(z/R) + \phi_n (R, \bar{\alpha}, \bar{\beta}) z^2 P''(z)).$ (2.11)

Also, for $|z|=1$

$$
|B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P^*](z)|
$$

= |B[P^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta}) B[P^*]^*(z)|.

Using this in (2.10), we get for $|z| = 1$ and $R > r \ge 1$,

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[P](z)|
$$

\n
$$
\leq |B[P^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta}) B[P^*]^*(z)|.
$$

Since all the zeros of $P^*(z)$ lie in $|z| \leq 1$, as before, all the zeros of $P^*(Rz)$ + $\phi_n(R, \alpha, \beta)P^*(z)$ lie in $|z| < 1$ for all real or complex numbers α, β with

 $|\alpha| \leq 1$, $|\beta| \leq 1$ and $R > 1$. Hence by Lemma 2.2, all the zeros of $B[P^* \circ$ $\sigma(x) + \phi_n(R, \alpha, \beta)B[P^*](z)$ lie in $|z| < 1$, therefore, all the zeros of $B[P^* \circ \beta]$ σ ^{$\vec{p}(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z)$ lie in $|z| > 1$. Hence by the maximum modulus} principle,

$$
|B[P \circ \sigma](z) + \phi_n (R, \alpha, \beta) B[P^*](z)|
$$

< $|B[P^* \circ \sigma]^*(z) + \phi_n (R, \bar{\alpha}, \bar{\beta}) B[P^*]^*(z)| \text{ for } |z| < 1.$ (2.12)

A direct application of Rouche's theorem shows that

$$
C_{\gamma}P(z) = (B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z))e^{i\eta}
$$

+
$$
(B[P^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z))
$$

=
$$
\{(R^n + \phi_n(R, \alpha, \beta)r^n)\Lambda_n e^{i\eta} + (1 + \phi_n(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_0}\} a_n z^n
$$

+
$$
\cdots + \{(R^n + \phi_n(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_n} + e^{i\eta}(1 + \phi_n(R, \alpha, \beta))\lambda_0\} a_0
$$

does not vanish in $|z| < 1$. Therefore, C_{γ} is an admissible operator. Applying (2.9) of Lemma 2.5, the desired result follows immediately for each $p > 0$. \Box

From Lemma 2.6, we deduce the following more general result.

Lemma 2.7. If $P \in P_n$, then for every $p > 0$, $R > 1$ and η real, $0 \leq \eta < 2\pi$,

$$
\int_0^{2\pi} |(B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta}
$$

+
$$
(B[P^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(e^{i\theta}))|^p d\theta
$$

$$
\leq |(R^n + \phi_n(R, \alpha, \beta))\Lambda_n e^{i\eta} + (1 + \phi_n(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_0}|^p \int_0^{2\pi} |P(e^{i\theta})|^{p} d\theta,
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, $B[P^* \circ \sigma]^*(z) := (B[P^* \circ \sigma](z))^*$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively.

Proof. If all the zeros of $P(z)$ lie in $|z| > 1$, then the result follows by Lemma 2.6. Henceforth, we assume that $P(z)$ has at least one zero in $|z| < 1$ so that we can write

$$
P(z) = P_1(z)P_2(z) = a \prod_{j=1}^k (z - z_j) \prod_{j=k+1}^n (z - z_j), \ \ 0 \le k \le n-1, \ \ a \ne 0
$$

where all the zeros of $P_1(z)$ lie in $|z| \geq 1$ and all the zeros of $P_2(z)$ lie in $|z|$ < 1. First we assume that $P_1(z)$ has no zero on $|z|=1$ so that all the zeros of $P_1(z)$ lie in $|z| > 1$. Let $P_2^*(z) = z^{n-k} \overline{P_2(1/\overline{z})}$, then all the zeros of $P_2^*(z)$

lie in $|z| > 1$ and $|P_2^*(z)| = |P_2(z)|$ for $|z| = 1$. Now consider the polynomial

$$
f(z) = P_1(z)P_2^*(z) = a \prod_{j=1}^k (z - z_j) \prod_{j=k+1}^n (1 - z\overline{z_j}),
$$

then all the zeros of $f(z)$ lie in $|z| > 1$ and for $|z| = 1$,

$$
|f(z)| = |P_1(z)| |P_2^*(z)| = |P_1(z)| |P_2(z)| = |P(z)|.
$$
 (2.13)

Therefore, it follows by Rouche's theorem that the polynomial $g(z) = P(z) +$ $\mu f(z)$ does not vanish in $|z| \leq 1$ for every μ with $|\mu| > 1$, so that all the zeros of $g(z)$ lie in $|z| \geq \delta$ for some $\delta > 1$ and hence all the zeros of $T(z) = g(\delta z)$ lie in $|z| \geq 1$. Applying (2.12) and (2.11) to the polynomial $T(z)$, we get for $R > 1$ and $|z| < 1$,

$$
|B[T \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[T](z)|
$$

$$
< |B[T^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta}) B[T^*]^*(z)|
$$

$$
= \left| \left(\bar{\lambda_0} + \bar{\lambda_1} \frac{n^2}{2} + \bar{\lambda_2} \frac{n^3(n-1)}{8} \right) (R^n T(z/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) T(z)) - \left(\bar{\lambda_1} \frac{n}{2} + \bar{\lambda_2} \frac{n^2(n-1)}{4} \right) (R^{n-1} z T'(z/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) z T'(z))
$$

$$
+ \bar{\lambda_2} \frac{n^2}{8} (R^{n-2} z^2 T''(z/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) z^2 T''(z)) \Big|,
$$

that is,

$$
|B[T \circ \sigma](z) + \phi_n(R, \alpha, \beta) B[T](z)|
$$

= $\left| \left(\bar{\lambda}_0 + \bar{\lambda}_1 \frac{n^2}{2} + \bar{\lambda}_2 \frac{n^3(n-1)}{8} \right) (R^n g(\delta z/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) g(\delta z)) - \left(\bar{\lambda}_1 \frac{n}{2} + \bar{\lambda}_2 \frac{n^2(n-1)}{4} \right) (R^{n-1} \delta z g'(\delta z/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) \delta z g'(\delta z/r)) + \bar{\lambda}_2 \frac{n^2}{8} (R^{n-2} \delta^2 z^2 g''(\delta z/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) \delta^2 z^2 g''(\delta z)) \right|$

for $|z| < 1$. If $z = e^{i\theta}/\delta$, $0 \le \theta < 2\pi$, then $|z| = (1/\delta) < 1$ as $\delta > 1$ and we get

$$
|B[T \circ \sigma](e^{i\theta}/\delta) + \phi_n(R, \alpha, \beta)B[T](e^{i\theta}/\delta)|
$$

\n
$$
= \left| \left(\bar{\lambda}_0 + \bar{\lambda}_1 \frac{n^2}{2} + \bar{\lambda}_2 \frac{n^3(n-1)}{8} \right) \left(R^n g(e^{i\theta}/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) g(e^{i\theta}) \right) - \left(\bar{\lambda}_1 \frac{n}{2} + \bar{\lambda}_2 \frac{n^2(n-1)}{4} \right) \left(R^{n-1} e^{i\theta} g'(e^{i\theta}/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) e^{i\theta} g'(e^{i\theta}) \right) + \bar{\lambda}_2 \frac{n^2}{8} \left(R^{n-2} e^{2i\theta} g''(e^{i\theta}/R) + \phi_n(R, \bar{\alpha}, \bar{\beta}) e^{2i\theta} g''(e^{i\theta}) \right) \right|
$$

\n
$$
= |B[g^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta}) B[g^*]^*(e^{i\theta})].
$$

Equivalently for $|z|=1$,

$$
|B[g \circ \sigma](z)| + \phi_n(R, \alpha, \beta) B[g](z)|
$$

$$
< |B[g^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta}) B[g^*]^*(z)|.
$$

Since all the zeros of $g(z)$ lie in $|z| \geq 1$, all the zeros of $g^*(z) = z^n \overline{g(1/\overline{z})}$ lie in $|z| \leq 1$ and hence as before, all the zeros of $g^*(Rz) + \phi_n(R, \alpha, \beta) g^*(z)$ lie in |z| < 1. By Lemma 2.2, all the zeros of $B[g^* \circ \sigma](z) + \phi_n (R, \alpha, \beta) B[g^*](z)$ lie in $|z|$ < 1 and therefore, all the zeros of $B[g^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[g^*]^*(z)$ lie in $|z| > 1$. Thus

$$
B[g^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[g^*]^*(z) \neq 0 \text{ for } |z| \leq 1.
$$

An application of Rouche's theorem shows that the polynomial

$$
M(z) = (B[g \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[g](z))e^{i\eta}
$$

+
$$
B[g^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[g^*]^*(z)
$$
(2.14)

does not vanish in $|z| \leq 1$. Replacing $g(z)$ by $P(z) + \mu f(z)$ and noting that B is a linear operator, it follows that the polynomial

$$
M(z) = (B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z))e^{i\eta}
$$

+
$$
(B[P^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z))
$$

+
$$
\mu((B[f \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[f](z))e^{i\eta}
$$

+
$$
(B[f^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(z)))
$$
(2.15)

does not vanish in $|z| \leq 1$ for every μ with $|\mu| > 1$. We claim

$$
|\left(B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z)\right)e^{i\eta} + B[P^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z)| \leq |\left(B[f \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[f](z)\right)e^{i\eta} + B[f^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(z)|
$$
(2.16)

for $|z| \leq 1$. If inequality (2.16) is not true, then there a point $z = z_0$ with $|z_0| \leq 1$ such that

$$
|(B[P \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[P](z_0))e^{i\eta}
$$

+
$$
B[P^* \circ \sigma]^*(z_0) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z_0)|
$$

>
$$
|(B[f \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[f](z_0))e^{i\eta}
$$

+
$$
B[f^* \circ \sigma]^*(z_0) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(z_0)|.
$$

Since $f(z)$ does not vanish in $|z| \leq 1$, proceeding similarly as in the proof of (2.14), it follows that the polynomial

$$
(B[f \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[f](z))e^{i\eta}
$$

+
$$
B[f^* \circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(z)
$$

does not vanish in $|z| \leq 1$. Hence

$$
(B[f \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[f](z_0))e^{i\eta}
$$

+
$$
B[f^* \circ \sigma]^*(z_0) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(z_0) \neq 0.
$$

We take

$$
\mu = -\frac{(B[P \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[P](z_0))e^{i\eta} + B[P^* \circ \sigma]^*(z_0) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z_0)}{(B[f \circ \sigma](z_0) + \phi_n(R, \alpha, \beta)B[f](z_0))e^{i\eta} + B[f^* \circ \sigma]^*(z_0) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(z_0)}
$$

so that μ is well-defined real or complex number with $|\mu| > 1$ and with this choice of μ , from (2.15), we get $M(z_0) = 0$. This clearly is a contradiction to the fact that $M(z)$ does not vanish in $|z| \leq 1$. Thus (2.16) holds, which in particular gives for each $p > 0$ and η real,

$$
\int_0^{2\pi} \left| (B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta} \right|
$$

+
$$
B[P^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(e^{i\theta})\Big|^p d\theta
$$

$$
\leq \int_0^{2\pi} \left| (B[f \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[f](e^{i\theta}))e^{i\eta} \right|
$$

+
$$
B[f^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[f^*]^*(e^{i\theta}) \Big| d\theta.
$$
 (2.17)

Using Lemma 2.7 and (2.13), we get for each $p > 0$,

$$
\int_0^{2\pi} \left| (B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta} \right|
$$

+
$$
B[P^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(e^{i\theta}) \Big|^p d\theta
$$

$$
\leq |(R^n + \phi_n(R, \alpha, \beta))\Lambda_n e^{i\eta} + (1 + \phi_n(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_0}|^p \int_0^{2\pi} \left| f(e^{i\theta}) \right|^p d\theta
$$

=
$$
|(R^n + \phi_n(R, \alpha, \beta))\Lambda_n e^{i\eta} + (1 + \phi_n(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_0}|^p \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta.
$$
 (2.18)

Now if $P_1(z)$ has a zero on $|z|=1$, then applying (2.18) to the polynomial $Q(z) = P_1(tz)P_2(z)$ where $t < 1$, we get for each $p > 0$, $R > 1$ and η real,

$$
\int_0^{2\pi} |(B[Q \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[Q](e^{i\theta}))e^{i\eta}
$$

+
$$
(B[Q^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[Q^*]^*(e^{i\theta}))|^p d\theta
$$

$$
\leq |(R^n + \phi_n(R, \alpha, \beta))\Lambda_n e^{i\eta} + (1 + \phi_n(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_0}|^p \int_0^{2\pi} |Q(e^{i\theta})|^{p} d\theta. \quad (2.19)
$$

Letting $t \to 1$ in (2.19) and using continuity, the desired result follows immediately and this proves Lemma 2.7.

Lemma 2.8. If $P \in P_n$ and $P^*(z) = z^n \overline{P(1/\bar{z})}$, then for every $p > 0$, $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1$, $|\beta| \leq 1$ and $R > 1$,

$$
\int_0^{2\pi} \int_0^{2\pi} \left| (B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})) e^{i\eta} \right|
$$

+
$$
(B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})) \Big|^p d\theta
$$

$$
\leq \int_0^{2\pi} \left| (R^n + \phi_n(R, \alpha, \beta)) \Lambda_n e^{i\eta} + (1 + \phi_n(R, \alpha, \beta)) \lambda_0 \right|^p d\eta
$$

$$
\times \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta
$$
 (2.20)

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively. The result is best possible and the extremal polynomial is $P(z) = \beta z^n, \ \beta \neq 0.$

Proof. Since $B[P^*\circ \sigma]^*(z) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(z)$ is the conjugate polynomial of $B[P^* \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P^*](z)$,

$$
|B[P^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(e^{i\theta})|
$$

= |B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})|, 0 \le \theta < 2\pi

and therefore for each $p > 0$, $R > 1$ and $0 \le \theta < 2\pi$, we have

$$
\int_0^{2\pi} |(B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta}
$$

+
$$
(B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta}))|^p d\eta
$$

=
$$
\int_0^{2\pi} ||B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|e^{i\eta}
$$

+
$$
|B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})||^p d\eta
$$

=
$$
\int_0^{2\pi} ||B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|e^{i\eta}
$$

+
$$
|B[P^* \circ \sigma]^*(e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P^*]^*(e^{i\theta})||^p d\eta.
$$
 (2.21)

Integrating both sides of (2.21) with respect to θ from 0 to 2π and using Lemma 2.7, we get

$$
\int_{0}^{2\pi} \int_{0}^{2\pi} |(B[P \circ \sigma](e^{i\theta}) + \phi_{n}(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta}
$$

+
$$
(B[P^{*} \circ \sigma](e^{i\theta}) + \phi_{n}(R, \alpha, \beta)B[P^{*}](e^{i\theta}))|^{p}d\eta d\theta
$$

=
$$
\int_{0}^{2\pi} \int_{0}^{2\pi} |[B[P \circ \sigma](e^{i\theta}) + \phi_{n}(R, \alpha, \beta)B[P](e^{i\theta})|e^{i\eta}
$$

+
$$
|B[P^{*} \circ \sigma]^{*}(e^{i\theta}) + \phi_{n}(R, \bar{\alpha}, \bar{\beta})B[P^{*}]^{*}(e^{i\theta})||^{p}d\eta d\theta
$$

=
$$
\int_{0}^{2\pi} \left(\int_{0}^{2\pi} (B[P \circ \sigma](e^{i\theta}) + \phi_{n}(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta}
$$

+
$$
(B[P^{*} \circ \sigma]^{*}(e^{i\theta}) + \phi_{n}(R, \bar{\alpha}, \bar{\beta})B[P^{*}]^{*}(e^{i\theta}))|^{p}d\theta \right) d\eta
$$

$$
\leq \int_{0}^{2\pi} |(R^{n} + \phi_{n}(R, \alpha, \beta))\Lambda_{n}e^{i\eta} + (1 + \phi_{n}(R, \bar{\alpha}, \bar{\beta}))\bar{\lambda_{0}}|^{p}d\eta
$$

$$
\times \int_{0}^{2\pi} |P(e^{i\theta})|^{p}d\theta
$$

$$
\leq \int_{0}^{2\pi} |(R^{n} + \phi_{n}(R, \alpha, \beta))\Lambda_{n}e^{i\eta} + (1 + \phi_{n}(R, \alpha, \beta))\lambda_{0}|^{p}d\eta
$$

$$
\times \int_{0}^{2\pi} |P(e^{i\theta})|^{p}d\theta.
$$

This completes the proof of Lemma 2.8.

3. Main Results

We first present the following result which is a compact generalization of the inequalities $(1.1), (1.2), (1.5)$ and (1.8) and extends inequality (1.11) for $0 \leq p < 1$ as well.

Theorem 3.1. If $P \in \mathcal{P}_n$, then for arbitrary real or complex numbers α , β with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

$$
||B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z)||_p
$$

\n
$$
\leq |R^n + \phi_n(R, \alpha, \beta)| |\Lambda_n| ||P(z)||_p,
$$
\n(3.1)

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively. The result is best possible and equality in (3.1) holds for $P(z) = az^n, a \neq 0.$

Proof. By hypothesis $P \in \mathcal{P}_n$, we can write

$$
P(z) = P_1(z)P_2(z) = c \prod_{j=1}^k (z - z_j) \prod_{j=k+1}^n (z - z_j), \ \ k \ge 1, \ c \ne 0,
$$

where all the zeros of $P_1(z)$ lie in $|z| \leq 1$ and all the zeros of $P_2(z)$ lie in $|z| > 1$. First we suppose that all the zeros of $P_1(z)$ lie in $|z| < 1$. Let $P_2^*(z) =$ $z^{n-k}\overline{P_2(1/\overline{z})}$, then all the zeros of $P_2^*(z)$ lie in $|z| < 1$ and $|P_2^*(z)| = |P_2(z)|$ for $|z|=1$. Now consider the polynomial

$$
F(z) = P_1(z)P_2^*(z) = c \prod_{j=1}^k (z - z_j) \prod_{j=k+1}^n (1 - z\overline{z_j}),
$$

then all the zeros of $F(z)$ lie in $|z| < 1$ and for $|z| = 1$,

$$
|F(z)| = |P_1(z)| |P_2^*(z)| = |P_1(z)| |P_2(z)| = |P(z)|.
$$
 (3.2)

Observe that $P(z)/F(z) \to 1/\prod_{j=k+1}^{n} (-\bar{z}_j)$ when $z \to \infty$, so it is regular even at ∞ and thus from (3.2) and by the maximum modulus principle, it follows that

$$
|P(z)| \le |F(z)| \text{ for } |z| \ge 1.
$$

Since $F(z) \neq 0$ for $|z| \geq 1$, a direct application of Rouche's theorem shows that the polynomial $H(z) = P(z)+\lambda F(z)$ has all its zeros in $|z| < 1$ for every λ with $|\lambda| > 1$. Therefore, for all real or complex numbers α, β with $|\alpha| \leq 1, |\beta| \leq 1$ and $R > 1$, it follows that all the zeros of $h(z) = H(Rz) + \phi_n(R, \alpha, \beta)H(z)$ lie

in $|z|$ < 1. Applying Lemma 2.2 to the polynomial $h(z)$ and noting that B is a linear operator, it follows that all the zeros of

$$
B[h](z) = B[H \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[H](z)
$$

=
$$
B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z)
$$

+
$$
\lambda(B[F \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[F](z))
$$

lie in $|z|$ < 1 for every λ with $|\lambda| > 1$. This implies

$$
|B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z)| \leq |B[F \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[F](z)|
$$

for $|z| \geq 1$, which, in particular, gives for each $p > 0$, $R > 1$ and $0 \leq \theta < 2\pi$,

$$
\int_0^{2\pi} |B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|^p d\theta
$$

$$
\leq \int_0^{2\pi} |B[F \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[F](e^{i\theta})|^p d\theta.
$$
 (3.3)

Again, since all the zeros of $F(z)$ lie in $|z| < 1$, it follows, as before, that all the zeros of $B[F(Rz)] + \phi_n(R, \alpha, \beta)F(z)$ also lie in $|z| < 1$. Therefore, the operator C_{γ} defined by

$$
C_{\gamma}F(z) = B[F \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[F](z)
$$

=
$$
(R^n + \phi_n(R, \alpha, \beta))\left(\lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}\right)b_n z^n + \dots + \lambda_0 b_0
$$

is admissible. Hence by (2.9) of Lemma 2.5, for each $p > 0$, we have

$$
\int_0^{2\pi} |B[F \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[F](e^{i\theta})|^p d\theta
$$

\n
$$
\leq |R^n + \phi_n(R, \alpha, \beta)| \left| \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8} \right|^p \int_0^{2\pi} |F(e^{i\theta})|^p d\theta. \tag{3.4}
$$

Combining inequalities (3.3) and (3.4) and noting that $|F(e^{i\theta})| = |P(e^{i\theta})|$, we obtain for each $p > 0$ and $R > 1$,

$$
\int_0^{2\pi} |B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|^p d\theta
$$

$$
\leq |R^n + \phi_n(R, \alpha, \beta)||\Lambda_n| \int_0^{2\pi} |P(e^{i\theta})|^p d\theta.
$$
 (3.5)

In case $P_1(z)$ has a zero on $|z|=1$, then the inequality (3.5) follows by continuity. To obtain this result for $p = 0$, we simply make $p \to 0^+$.

A variety of interesting results can be deduced from Theorem 3.1 as special cases. Here we mention a few of these.

The following result follows from Theorem 3.1 by taking $\beta = 0$.

Corollary 3.2. If $P \in \mathcal{P}_n$, then for every real or complex number α with $|\alpha| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

$$
||B[P \circ \sigma](z) - \alpha B[P](z)||_p \le |R^n - \alpha| |\Lambda_n| ||P(z)||_p, \qquad (3.6)
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and Λ_n is defined by (1.10). The result is best possible and equality in (3.6) holds for $P(z) = az^n, a \neq 0$.

Setting $\alpha = 0$ in Corollary 3.2, we get the following sharp result.

Corollary 3.3. If $P \in \mathcal{P}_n$, then for $R > 1$ and $0 \le p < \infty$,

$$
||B[P \circ \sigma](z)||_{p} \le |R^{n}| |\Lambda_{n}| \, ||P(z)||_{p}, \qquad (3.7)
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and Λ_n is defined by (1.10). The result is best possible and equality in (3.7) holds for $P(z) = az^n, a \neq 0$.

Remark 3.4. Corollary 3.3 not only includes inequality (1.11) as a special case but also extends it for $0 \leq p < 1$ as well. Further inequality (1.8) follows from Corollary 3.3 by letting $p \to \infty$ in (3.7).

The case $B[P](z) = P(z)$ of Theorem 3.1 yields the following interesting result which is a compact generalization of inequalities (1.1) , (1.2) and (1.5) .

Corollary 3.5. If $P \in \mathcal{P}_n$, then for every real or complex number α with $|\alpha| \leq 1$, $R > 1$, and $p > 0$,

$$
||P(Rz) + \phi_n (R, \alpha, \beta) P(z)||_p \le |R^n + \phi_n (R, \alpha, \beta) | ||P(z)||_p, \qquad (3.8)
$$

where $\phi_n(R, \alpha, \beta)$ is defined by (1.13). The result is best possible and equality in (3.8) holds for $P(z) = az^n, a \neq 0$.

Remark 3.6. If we divide the two sides of (3.8) by $R-1$ with $\alpha = 1$ and then let $R \to 1$, we get for $P \in \mathcal{P}_n$, $|\beta| \leq 1$ and $0 \leq p < \infty$,

$$
\left\| zP'(z) + \frac{n\beta}{2}P(z) \right\|_p \le n \left| 1 + \frac{\beta}{2} \right| \|P(z)\|_p.
$$
 (3.9)

The result is best possible and equality in (3.9) holds for $P(z) = az^n, a \neq 0$.

Taking $\alpha = 0$ in (3.1), we obtain:

Corollary 3.7. If $P \in \mathcal{P}_n$, then for every real or complex number β with $|\beta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

246 Nisar A. Rather, Suhail Gulzar and S. Saheel

$$
\|B[P(Rz)] + \beta \left(\frac{R+1}{2}\right)^n B[P(z)]\|_p
$$

\n
$$
\leq \left|R^n + \beta \left(\frac{R+1}{2}\right)^n \right| |\Lambda_n| \|P(z)\|_p,
$$
\n(3.10)

where $B \in \mathcal{B}_n$ and $\phi_n(R, \alpha, \beta)$ is defined by (1.13). The result is best possible and equality in (3.10) holds for $P(z) = \lambda z^n, \lambda \neq 0$.

Theorem 3.1 can be sharpened if we restrict ourselves to the class of polynomials $P \in P_n$ having no zero in $|z| < 1$. In this direction, we next present the following result which in particular includes a generalized L_p mean extension of the inequality (1.9) for $0 \leq p < \infty$ and among other things yields a correct proof of inequality (1.12) for each $p \geq 0$ as a special case.

Theorem 3.8. If $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for then for arbitrary real or complex numbers α , β with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

$$
||B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z)||_p
$$

\n
$$
\leq \frac{||(R^n + \phi_n(R, \alpha, \beta))\Lambda_n z + (1 + \phi_n(R, \alpha, \beta))\lambda_0||_p}{||1 + z||_p} ||P(z)||_p, \qquad (3.11)
$$

where $B \in B_n$, $\sigma(z) := Rz$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively. The result is best possible and equality in (3.11) holds for $P(z) = az^{n} + b, |a| = |b| \neq 0.$

Proof. By hypothesis $P \in P_n$ does not vanish in $|z| < 1$, $\sigma(z) = Rz$, therefore, if $P^*(z) = z^n \overline{P(1/\overline{z})}$, then by Lemma 2.3, we have for $0 \le \theta < 2\pi$,

$$
|B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|
$$

\n
$$
\leq |B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})|.
$$
\n(3.12)

Also, by Lemma 2.8, for each $p > 0$ and η real and $R > 1$,

$$
\int_0^{2\pi} \int_0^{2\pi} |(B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta}))e^{i\eta}
$$

+
$$
(B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta}))|^p d\theta d\eta
$$

$$
\leq \int_0^{2\pi} |(R^n + \phi_n(R, \alpha, \beta))\Lambda_n e^{i\eta}
$$

+
$$
(1 + \phi_n(R, \alpha, \beta))\lambda_0|^p d\eta \int_0^{2\pi} |P(e^{i\theta})|^p d\theta.
$$

Now it can be easily verified that for every real number α and $r \geq 1$,

$$
|r + e^{i\alpha}| \ge |1 + e^{i\alpha}|.
$$

This implies for each $p > 0$,

$$
\int_0^{2\pi} \left| r + e^{i\alpha} \right|^p d\alpha \ge \int_0^{2\pi} \left| 1 + e^{i\alpha} \right|^p d\alpha. \tag{3.13}
$$

If
$$
B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \bar{\alpha}, \bar{\beta})B[P](e^{i\theta}) \neq 0
$$
, we take

$$
r = \frac{|B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})|}{|B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|},
$$

then by (3.12), $r \ge 1$ and from (3.13), we get

$$
\int_{0}^{2\pi} |(B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})e^{i\eta} \n+ (B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta}))|^p d\eta \n= |B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|^p \n\times \int_{0}^{2\pi} |e^{i\eta} + \frac{B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})}{B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})} |^p d\eta \n= |B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|^p \n\times \int_{0}^{2\pi} |e^{i\eta} + \left| \frac{B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})}{B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})} \right|^p d\eta \n\geq |B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|^p \int_{0}^{2\pi} |1 + e^{i\eta}|^p d\eta.
$$

For $B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta}) = 0$, this inequality is trivially true. Using this in (2.20), we conclude that for each $p > 0$,

$$
\int_0^{2\pi} \left| B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta) B[P](e^{i\theta}) \right|^p d\theta \int_0^{2\pi} \left| 1 + e^{i\eta} \right|^p d\eta
$$

$$
\leq \int_0^{2\pi} |(R^n + \phi_n(R, \alpha, \beta)) \Lambda_n e^{i\eta}
$$

$$
+ (1 + \phi_n(R, \alpha, \beta)) \lambda_0|^p d\eta \int_0^{2\pi} |P(e^{i\theta})|^p d\theta,
$$

from which theorem 3.8 follows for $p > 0$. To establish this result for $p = 0$, we simply let $p \to 0+$. This completes the proof of Theorem 3.8.

For $\beta = 0$, inequality (3.11) reduces to the following result.

Corollary 3.9. If $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for every real or complex number α with $|\alpha| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

$$
||B[P \circ \sigma](z) - \alpha B[P](z)||_p \le \frac{||(R^n - \alpha)\Lambda_n z + (1 - \alpha)\lambda_0||_p}{||1 + z||_p} ||P(z)||_p, (3.14)
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, and Λ_n is defined by (1.10). The result is best possible and equality in (3.14) holds for $P(z) = az^n + b$, $|a| = |b| \neq 0$.

For $\alpha = 0$, Corollary 3.9 yields the following interesting result.

Corollary 3.10. If $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for $R > 1$ and $0 \leq p < \infty$,

$$
||B[P \circ \sigma](z)||_p \le \frac{||R^n \Lambda_n z + \lambda_0||_p}{||1 + z||_p} ||P(z)||_p, \tag{3.15}
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and Λ_n is defined by (1.10). The result is best possible and equality in (3.15) holds for $P(z) = az^n + b$, $|a| = |b| \neq 0$.

Remark 3.11. If we choose $\alpha = \lambda_0 = \lambda_2 = 0$ in (3.15), we get for $R > 1$ and $0 \leq p < \infty$

$$
\left\|P'(Rz)\right\|_p \le \frac{nR^{n-1}}{\left\|1+z\right\|_p} \left\|P(z)\right\|_p \tag{3.16}
$$

which in particular yields inequality (1.3) .

By the triangle inequality, the following result immediately follows from Corollary 3.10.

Corollary 3.12. If $P \in \mathcal{P}_n$ and $P(z)$ does not vanish in $|z| < 1$, then for $0 \leq p < \infty$ and $R > 1$,

$$
||B[P \circ \sigma](z)||_p \le \frac{R^n |\Lambda_n| + |\lambda_0|}{||1 + z||_p} ||P(z)||_p, \qquad (3.17)
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, Λ_n is defined by (1.10).

Remark 3.13. Corollary 3.12 not only validates the inequality (1.12) for $p \geq 1$ but also extends it for $0 \leq p < 1$ as well.

A polynomial $P \in \mathcal{P}_n$ is said be self-inversive if $P(z) = u P^*(z)$ where $|u| = 1$ and $P^*(z)$ is the conjugate polynomial of $P(z)$, that is, $P^*(z) =$ $z^{n}\overline{P(1/\overline{z})}$. Finally in this paper, we establish the following result for selfinversive polynomials which includes a correct proof of another result of Shah and Liman [17, Theorem 3] as a special case.

Theorem 3.14. If $P \in \mathcal{P}_n$ is a self-inversive polynomial, then for arbitrary real or complex numbers α , β with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

$$
||B[P \circ \sigma](z) + \phi_n(R, \alpha, \beta)B[P](z)||_p
$$

\n
$$
\leq \frac{||(R^n + \phi_n(R, \alpha, \beta))\Lambda_n z + (1 + \phi_n(R, \alpha, \beta))\lambda_0||_p}{||1 + z||_p} ||P(z)||_p, \qquad (3.18)
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$, Λ_n and $\phi_n(R, \alpha, \beta)$ are defined by (1.10) and (1.13) respectively. The result is best possible and equality in (3.18) holds for $P(z) = z^{n} + 1.$

Proof. Since $P \in P_n$ is self-inversive polynomial, we have for some u with $u=1, P^*(z) = uP(z)$ for all $z \in \mathbb{C}$ where $P^*(z) = z^n \overline{P(1/\overline{z})}$. This gives for $0 \leq \theta < 2\pi$,

$$
|B[P \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P](e^{i\theta})|
$$

\n
$$
\leq |B[P^* \circ \sigma](e^{i\theta}) + \phi_n(R, \alpha, \beta)B[P^*](e^{i\theta})|.
$$

Using this in (2.20) and proceeding similarly as in the proof of Theorem 3.8, we get the desired result for each $p > 0$. To extension to $p = 0$ is obtains by letting $p \to 0^+$.

The following result is an immediate consequence of Theorem 3.14.

Corollary 3.15. If $P \in \mathcal{P}_n$ is a self-inversive polynomial, then for $0 \leq p < \infty$ and $R > 1$,

$$
\|B[P \circ \sigma](z) - \alpha B[P](z)\|_p
$$

\n
$$
\leq \frac{\left\|(R^n - \alpha r^n)\Lambda_n z + (1 - \alpha)\lambda_0\right\|_p}{\left\|1 + z\right\|_p} \|P(z)\|_p, \tag{3.19}
$$

where $B \in \mathcal{B}_n$ and $\sigma(z) := Rz$, and Λ_n is defined by (1.10). The result is sharp and equality in (3.19) holds for $P(z) = z^n + 1$.

For $\alpha = 0$, Corollary 3.15 reduces to the following interesting result.

Corollary 3.16. If $P \in \mathcal{P}_n$ is a self-inversive polynomial, then for $0 \leq p < \infty$ and $R > 1$,

$$
||B[P \circ \sigma](z)||_p \le \frac{||R^n \Lambda_n z + \lambda_0||_p}{||1 + z||_p} ||P(z)||_p, \tag{3.20}
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and Λ_n is defined by (1.10). The result is best possible and equality in (3.20) holds for $P(z) = z^n + 1$.

By the triangle inequality, the following result follows immediately from Corollary 3.16.

Corollary 3.17. If $P \in \mathcal{P}_n$ is a self-inversive polynomial, then for $0 \leq p < \infty$ and $R > 1$,

$$
||B[P \circ \sigma](z)||_p \le \frac{R^n |\Lambda_n| + |\lambda_0|}{||1 + z||_p} ||P(z)||_p, \qquad (3.21)
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and Λ_n is defined by (1.10). The result is sharp and equality in (3.21) holds for $P(z) = z^n + 1$.

Remark 3.18. Corollary 3.17 establishes a correct proof of a result due to Shah and Liman [17, Theorem 3] for $p \ge 1$ and also extends it for $0 \le p < 1$ as well.

Lastly letting $p \to \infty$ and setting $\alpha = \beta = 0$ in (3.18), we obtain the following result.

Corollary 3.19. If $P \in \mathcal{P}_n$ is a self-inversive polynomial, then for $|z|=1$ and $R > 1$,

$$
|B[P \circ \sigma](z)| \leq \frac{1}{2} \left\{ R^n \left| \Lambda_n \right| + |\lambda_0| \right\} ||P(z)||_{\infty},
$$

where $B \in \mathcal{B}_n$, $\sigma(z) := Rz$ and Λ_n is defined by (1.10). The result is sharp.

REFERENCES

- [1] N.C. Ankeny and T.J. Rivlin, On a theorm of S.Bernstein, Pacific J. Math., 5 (1955), 849–852.
- [2] V.V. Arestov, On integral inequalities for trigonometric polynimials and their derivatives, Izv. Akad. Nauk. SSSR Ser. Mat., 45 (1981), 3–22 [in Russian]. English translation; Math. USSR-Izv., 18 (1982), 1–17.
- [3] A. Aziz, A new proof and a generalization of a theorem of De Bruijn, proc. Amer. Math. Soc., 106 (1989), 345–350.
- [4] A. Aziz and N. A. Rather, Some compact generalizations of Zygmund-type inequalities for polynomials, Nonlinear Studies, 6 (1999), 241-255.
- [5] R.P. Boas, Jr. and Q.I. Rahman, L^p inequalities for polynomials and entire functions, Arch. Rational Mech. Anal., 11 (1962), 34–39.
- [6] N.G. Bruijn, Inequalities concerning polynomials in the complex domain,Nederal. Akad.Wetensch. Proc., 50 (1947), 1265–1272.
- [7] K.K. Dewan and N.K. Govil, An inequality for self- inversive polynomials, J.Math. Anal. Appl., 45 (1983), 490.
- [8] G.H. Hardy, The mean value of the modulus of an analytic functions, Proc. London Math. Soc., **14** (1915), 269–277.
- [9] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., **50** (1944), 509-513.
- [10] M. Marden, *Geometry of polynomials*, Math. Surveys, No.3, Amer. Math. Soc. Providence, RI, 1949.
- [11] G.V. Milovanovic, D.S. Mitrinovic and Th.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore, (1994).
- [12] G. Polya and G. Szegö, Aufgaben und lehrsätze aus der analysis, Springer-Verlag, Berlin(1925).
- [13] Q.I. Rahman, *Functions of exponential type*, Trans. Amer. Math. Soc., **135** (1969), 295–309.

- [14] Q.I. Rahman and G. Schmeisser, L^p inequalities for polynomials, J. Approx. Theory, 53 (1988), 26–32.
- [15] Q.I. Rahman and G. Schmisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
- [16] A.C. Schaffer, *Inequalities of A.Markov and S.Bernstein for polynomials and related* functions, Bull. Amer. Math. Soc., **47** (1941), 565-579.
- [17] W.M. Shah and A. Liman, Integral estimstes for the family of B-operators, Operators and Matrices, 5 (2011), 79–87.
- [18] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 292– 400.