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Abstract. For a polynomial P (z) of degree n having no zero in |z| < 1, it was recently
asserted by Shah and Liman [17] that for every R ≥ 1, p ≥ 1,

‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p ,

where B is a Bn-operator, σ(z) = Rz, R ≥ 1 and Λn := λ0 + λ1
n2

2
+ λ2

n3(n−1)
8

with pa-

rameters λ0, λ1, λ2 in the sense of Rahman [13]. The proof of this result is incorrect. In this

paper, we present certain new Lp inequalities for Bn-operators which not only provide a cor-

rect proof of the above inequality and other related results but also extend these inequalities

for 0 ≤ p < 1 as well.

1. Introduction

Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of

degree n. For P ∈ Pn, define

‖P (z)‖0 := exp

{
1

2π

∫ 2π

0
log
∣∣∣P (eiθ)

∣∣∣ dθ} ,
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‖P (z)‖p :=

{
1

2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p}1/p

, 1 ≤ p <∞,

‖P (z)‖∞ := max
|z|=1

|P (z)|

and denote for any complex function ψ : C→ C the composite function of
P and ψ, defined by (P ◦ ψ) (z) := P (ψ(z)) (z ∈ C), as P ◦ ψ.

If P ∈ Pn, then ∥∥P ′(z)∥∥
p
≤ n ‖P (z)‖p , p ≥ 1 (1.1)

and

‖P (Rz)‖p ≤ R
n ‖P (z)‖p , R > 1, p > 0. (1.2)

Inequality (1.1) was found out by Zygmund [18] whereas inequality (1.2) is
a simple consequence of a result of Hardy [8]. Arestov [2] proved that (1.1)
remains true for 0 < p < 1 as well. For p = ∞, the inequality (1.1) is
due to Bernstein (for reference, see [11, 15, 16]) whereas the case p = ∞ of
inequality (1.2) is a simple consequence of the maximum modulus principle (
see [11, 12, 15]). Both the inequalities (1.1) and (1.2) can be sharpened if we
restrict ourselves to the class of polynomials having no zero in |z| < 1. In fact,
if P ∈ Pn and P (z) 6= 0 in |z| < 1, then inequalities (1.1) and (1.2) can be
respectively replaced by∥∥P ′(z)∥∥

p
≤ n
‖P (z)‖p
‖1 + z‖p

, p ≥ 0 (1.3)

and

‖P (Rz)‖p ≤
‖Rnz + 1‖p
‖1 + z‖p

‖P (z)‖p , R > 1, p > 0. (1.4)

Inequality (1.3) is due to De-Bruijn [6](see also [3]) for p ≥ 1. Rahman and
Schmeisser [14] extended it for 0 < p < 1 whereas the inequality (1.4) was
proved by Boas and Rahman [5] for p ≥ 1 and later it was extended for
0 < p < 1 by Rahman and Schmeisser [14]. For p = ∞, the inequality (1.3)
was conjectured by Erdös and later verified by Lax [9] whereas inequality (1.4)
was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1.1) and (1.2), Aziz and Rather
[4] proved that if P ∈ Pn, then for every real or complex number α with |α| ≤ 1,
R ≥ 1, and p > 0,

‖P (Rz)− αP (z)‖p ≤ |R
n − α| ‖P (z)‖p . (1.5)
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and if P ∈ Pn and P (z) 6= 0 in |z| < 1, then for every real or complex number
α with |α| ≤ 1, R ≥ 1, and p > 0,

‖P (Rz)− αP (z)‖p ≤
‖(Rn − α)z + (1− α)‖p

‖1 + z‖p
‖P (z)‖p . (1.6)

Inequality (1.6) is the corresponding compact generalization of inequalities
(1.3) and (1.4).

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a
class Bn of operators B that maps P ∈ Pn into itself. That is, the operator B
carries P ∈ Pn into

B[P ](z) := λ0P (z) + λ1

(nz
2

) P ′(z)
1!

+ λ2

(nz
2

)2 P ′′(z)

2!
(1.7)

where λ0, λ1 and λ2 are such that all the zeros of

u(z) := λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2, C(n, r) = n!/r!(n− r)!,

lie in the half plane

|z| ≤ |z − n/2|
and proved that if P ∈ Pn, then

|B[P ◦ σ](z)| ≤ Rn |Λn| ‖P (z)‖∞ for |z| = 1. (1.8)

And if P ∈ Pn and P (z) does not vanish in |z| < 1, then

|B[P ◦ σ](z)| ≤ 1

2
{Rn |Λn|+ |λ0|} ‖P (z)‖∞ for |z| = 1, (1.9)

(see [13, Inequality (5.2) and (5.3)] where σ(z) = Rz, R ≥ 1 and

Λn := λ0 + λ1
n2

2
+ λ2

n3(n− 1)

8
. (1.10)

As an extension of inequality (1.8) to Lp-norm, recently W. M. Shah and A.
Liman [17, Theorem 1] proved that if P ∈ Pn, then for every R ≥ 1 and p ≥ 1,

‖B[P ◦ σ](z)‖p ≤ R
n |Λn| ‖P (z)‖p , (1.11)

where B ∈ Bn and σ(z) = Rz and Λn is defined by (1.10).
While seeking the desired extension of inequality (1.9) to Lp-norm, they

[17, Theorem 2] have made an incomplete attempt by claiming to have proved
that if P ∈ Pn and P (z) does not vanish in |z| < 1, then for each R ≥ 1 and
p ≥ 1,

‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p , (1.12)
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where B ∈ Bn and σ(z) = Rz and Λn is defined by (1.10).
Further, it has been claimed in [17] to have proved the inequality (1.12) for

self-inversive polynomials as well.

The proof of inequality (1.12) and other related results including the Lemma
4 in [17] given by Shah and Liman is not correct. The reason being that the
authors in [17] deduce line 10 from line 7 on page 84, line 19 on page 85 from
Lemma 3 [17] and line 16 from line 14 on page 86 by using the fact that if

P ∗(z) := znP (1/z), then for σ(z) = Rz, R ≥ 1 and |z| = 1,

|B[P ∗ ◦ σ](z)| = |B[(P ∗ ◦ σ)∗](z)|,

which is not true, in general, for every R ≥ 1 and |z| = 1. To see this, let

P (z) = anz
n + · · ·+ akz

k + · · ·+ a1z + a0

be an arbitrary polynomial of degree n, then

P ?(z) =: znP (1/z) = ā0z
n + ā1z

n−1 + · · ·+ ākz
n−k + · · ·+ ān.

Now with µ1 := λ1n/2 and µ2 := λ2n
2/8, we have

B[P ? ◦ ρ](z) =

n∑
k=0

(λ0 + µ1(n− k) + µ2(n− k)(n− k − 1)) ākz
n−kRn−k,

and in particular for |z| = 1, we get

B[P ? ◦ ρ](z) = Rnzn
n∑
k=0

(λ0 + µ1(n− k) + µ2(n− k)(n− k − 1)) ak

( z
R

)k
,

whence

|B[P ? ◦ ρ](z)| = Rn

∣∣∣∣∣
n∑
k=0

(λ0 + µ1(n− k) + µ2(n− k)(n− k − 1))ak

( z
R

)k∣∣∣∣∣ .
But

|B[(P ? ◦ ρ)?](z)| = Rn

∣∣∣∣∣
n∑
k=0

(λ0 + µ1k + µ2k(k − 1)) ak

( z
R

)k∣∣∣∣∣ ,
so the asserted identity does not hold in general for every R ≥ 1 and |z| = 1
as e.g. the immediate counterexample of P (z) := zn demonstrates in view of
P ?(z) = 1, |B[P ? ◦ ρ](z)| = |λ0| and

|B[(P ? ◦ ρ)?](z)| = |λ0 + λ1(n2/2) + λ2n
3(n− 1)/8|, |z| = 1.
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The main aim of this paper is to present correct proofs of the results mentioned
in [17] by investigating the dependence of

‖B[P ◦ σ](z) + φn (R,α, β)B[P ](z)‖p

on ‖P (z)‖p for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1,

R > 1, 0 ≤ p <∞, σ(z) := Rz,

φn (R,α, β) := β

{(
R+ 1

2

)n
− |α|

}
− α, (1.13)

and establish certain generalized Lp-mean extensions of the inequalities (1.8)
and (1.9) for 0 ≤ p <∞.

2. Lemmas

For the proofs of our main results, we need the following lemmas. The first
Lemma is easy to prove.

Lemma 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for every
R ≥ 1 and |z| = 1,

|P (Rz)| ≥
(
R+ 1

2

)n
|P (z)| .

The following Lemma follows from Corollary 18.3 of [10, p. 65].

Lemma 2.2. If all the zeros of polynomial P ∈ Pn lie in |z| ≤ 1, then all the
zeros of the polynomial B[P ](z) also lie in |z| ≤ 1.

Lemma 2.3. If F ∈ Pn has all its zeros in |z| ≤ 1 and P (z) is a polynomial
of degree at most n such that

|P (z)| ≤ |F (z)| for |z| = 1,

then for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R ≥ 1,
and |z| ≥ 1,

|B[P ◦ σ](z) + φn (R,α, β)B[P ](z)|
≤ |B[P ∗ ◦ σ](z) + φn (R,α, β)B[P ∗](z)| (2.1)

where P ∗(z) := znP (1/z), B ∈ Bn, σ(z) := Rz, Λn and φn (R,α, β) are de-
fined by (1.10) and (1.13) respectively.
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Proof. Since the polynomial F (z) of degree n has all its zeros in |z| ≤ 1 and
P (z) is a polynomial of degree at most n such that

|P (z)| ≤ |F (z)| for |z| = 1, (2.2)

therefore, if F (z) has a zero of multiplicity s at z = eiθ0 , then P (z) has a zero
of multiplicity at least s at z = eiθ0 . If P (z)/F (z) is a constant, then the
inequality (2.1) is obvious. We now assume that P (z)/F (z) is not a constant,
so that by the maximum modulus principle, it follows that

|P (z)| < |F (z)| for |z| > 1 .

Suppose F (z) has m zeros on |z| = 1 where 0 ≤ m ≤ n, so that we can write

F (z) = F1(z)F2(z),

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and
F2(z) is a polynomial of degree exactly n −m having all its zeros in |z| < 1.
This implies with the help of inequality (2.2) that

P (z) = P1(z)F1(z),

where P1(z) is a polynomial of degree at most n −m. Now, from inequality
(2.2), we get

|P1(z)| ≤ |F2(z)| for |z| = 1,

where F2(z) 6= 0 for |z| = 1. Therefore for every real or complex number λ
with |λ| > 1, a direct application of Rouche’s theorem shows that the zeros of
the polynomial P1(z) − λF2(z) of degree n −m ≥ 1 lie in |z| < 1. Hence the
polynomial

f(z) = F1(z) (P1(z)− λF2(z)) = P (z)− λF (z)

has all its zeros in |z| ≤ 1 with at least one zero in |z| < 1, so that we can
write

f(z) = (z − teiδ)H(z),

where t < 1 and H(z) is a polynomial of degree n − 1 having all its zeros in
|z| ≤ 1. Applying Lemma 2.1 to the polynomial f(z), we obtain for every
R > 1 and 0 ≤ θ < 2π,

|f(Reiθ)| =|Reiθ − teiδ||H(Reiθ)|

≥|Reiθ − teiδ|
(
R+ 1

2

)n−1

|H(eiθ)|

=

(
R+ 1

2

)n−1 |Reiθ − teiδ|
|eiθ − teiδ|

|(eiθ − teiδ)H(eiθ)|

≥
(
R+ 1

2

)n−1(R+ t

1 + t

)
|f(eiθ)|.
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This implies for R > 1 and 0 ≤ θ < 2π,(
1 + t

R+ t

)
|f(Reiθ)| ≥

(
R+ 1

2

)n−1

|f(eiθ)|. (2.3)

Since R > 1 > t so that f(Reiθ) 6= 0 for 0 ≤ θ < 2π and 2
1+R > 1+t

R+t , from

inequality (2.3), we obtain R > 1 and 0 ≤ θ < 2π,

|f(Reiθ| >
(
R+ 1

2

)n
|f(eiθ)|. (2.4)

Equivalently,

|f(Rz)| >
(
R+ 1

2

)n
|f(z)|

for |z| = 1 and R > 1. Hence for every real or complex number α with |α| ≤ 1
and R > 1, we have

|f(Rz)− αf(z)| ≥ |f(Rz)| − |α||f(z)|

>

{(
R+ 1

2

)n
− |α|

}
|f(z)|, |z| = 1. (2.5)

Also, inequality (2.4) can be written in the form

|f(eiθ)| <
(

2

R+ 1

)n
|f(Reiθ)| (2.6)

for every R > 1 and 0 ≤ θ < 2π. Since f(Reiθ) 6= 0 and
(

2
R+1

)n
< 1, from

inequality (2.6), we obtain for 0 ≤ θ < 2π and R > 1,

|f(eiθ| < |f(Reiθ)|.

Equivalently,

|f(z)| < |f(Rz)| for |z| = 1.

Since all the zeros of f(Rz) lie in |z| ≤ (1/R) < 1, a direct application of
Rouche’s theorem shows that the polynomial f(Rz) − αf(z) has all its zeros
in |z| < 1 for every real or complex number α with |α| ≤ 1. Applying Rouche’s
theorem again, it follows from (2.5) that for arbitrary real or complex numbers
α, β with |α| ≤ 1, |β| ≤ 1 and R > 1, all the zeros of the polynomial

T (z) = f(Rz)− αf(z) + β

{(
R+ 1

2

)n
− |α|

}
f(z)

= f(Rz) + φn(R,α, β)f(z)

=
(
P (Rz)− λF (Rz)

)
+ φn (R,α, β)

(
P (z)− λF (z)

)
=
(
P (Rz) + φn (R,α, β)P (z)

)
− λ

(
F (Rz) + φn (R,α, β)F (z)

)
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lie in |z| < 1 for every λ with |λ| > 1. Using Lemma 2.2 and the fact that B
is a linear operator, we conclude that all the zeros of polynomial

W (z) = B[T ](z)

= (B[P ◦ σ](z) + φn (R,α, β)B[F ](z))

also lie in |z| < 1 for every λ with |λ| > 1. This implies

|B[P ◦ σ](z) + φn (R,α, β)B[P ](z)|
≤ |B[F ◦ σ](z) + φn (R,α, β)B[F ](z)|

(2.7)

for |z| ≥ 1 and R > 1. If inequality (2.7) is not true, then exist a point z = z0

with |z0| ≥ 1 such that

|B[P ◦ σ](z0) + φn (R,α, β)B[P ](z0)|
> |B[F ◦ σ](z0) + φn (R,α, β)B[F ](z0)|.

But all the zeros of F (Rz) lie in |z| < 1, therefore, it follows (as in case of
f(z)) that all the zeros of F (Rz) + φn(R,α, β)F (z) lie in |z| < 1. Hence by
Lemma 2.2, all the zeros of B[F ◦σ](z)+φn (R,α, β)B[F ](z) also lie in |z| < 1,
which shows that

B[F ◦ σ](z0) + φn (R,α, β)B[F ](z0) 6= 0.

We take

λ =
B[P ◦ σ](z0) + φn(R,α, β)B[P ](z0)

B[F ◦ σ](z0) + φn(R,α, β)B[F ](z0)
,

then λ is a well defined real or complex number with |λ| > 1 and with this
choice of λ, we obtain W (z0) = 0. This contradicts the fact that all the zeros
of W (z) lie in |z| < 1. Thus (2.7) holds and this completes the proof of Lemma
2.3. �

Lemma 2.4. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for arbitrary
real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > 1 and |z| ≥ 1,

|B[P ◦ σ](z) + φn (R,α, β)B[P ](z)|
≤ |B[P ∗ ◦ σ](z) + φn (R,α, β)B[P ∗](z)| (2.8)

where P ∗(z) := znP (1/z), B ∈ Bn, σ(z) := Rz and φn (R,α, β) is defined by
(1.13).

Proof. By hypothesis the polynomial P (z) of degree n does not vanish in

|z| < 1, therefore, all the zeros of the polynomial P ∗(z) = znP (1/z) of degree
n lie in |z| ≤ 1. Applying Lemma 2.3 with F (z) replaced by P ∗(z), it follows
that

|B[P ◦ σ](z) + φn (R,α, β)B[P ](z)|
≤ |B[P ∗ ◦ σ](z) + φn (R,α, β)B[P ∗](z)|
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for |z| ≥ 1, |α| ≤ 1, |β| ≤ 1 and R > 1. This proves the Lemma 2.4. �

Next we describe a result of Arestov [2].

For γ = (γ0, γ1, · · · , γn) ∈ Cn+1 and P (z) =
∑n

j=0 ajz
j , we define

CγP (z) =

n∑
j=0

γjajz
j .

The operator Cγ is said to be admissible if it preserves one of the following
properties:

(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1},
(ii) P (z) has all its zeros in {z ∈ C : |z| ≥ 1}.

The result of Arestov may now be stated as follows.

Lemma 2.5. ([2, Th. 2]) Let φ(x) = ψ(log x) where ψ is a convex non
decreasing function on R. Then for all P ∈ Pn and each admissible operator
Λγ, ∫ 2π

0
φ
(
|CγP (eiθ)|

)
dθ ≤

∫ 2π

0
φ
(
c(γ, n)|P (eiθ)|

)
dθ,

where c(γ, n) = max (|γ0|, |γn|).

In particular Lemma 2.5 applies with φ : x → xp for every p ∈ (0,∞) and
φ : x→ log x as well. Therefore, we have for 0 ≤ p <∞,{∫ 2π

0
φ
(
|CγP (eiθ)|p

)
dθ

}1/p

≤ c(γ, n)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

. (2.9)

From Lemma 2.5, we deduce the following result.

Lemma 2.6. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for each
p > 0, R > 1 and η real, 0 ≤ η < 2π,∫ 2π

0

∣∣∣(B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)
)
eiη

+
(
B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)

)∣∣∣pdθ
≤
∣∣∣(Rn + φn(R,α, β))Λne

iη + (1 + φn(R, ᾱ, β̄))λ̄0

∣∣∣p ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

where B ∈ Bn, σ(z) := Rz, B[P ∗ ◦ σ]∗(z) := (B[P ∗ ◦ σ](z))∗, Λn and
φn (R,α, β) are defined by (1.10) and (1.13) respectively.
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Proof. Since P (z) does not vanish in |z| < 1 and P ∗(z) = znP (1/z̄), by Lemma
2.3, we have for R > 1,

|B[P ◦ σ](z) + φn (R,α, β)B[P ](z)

≤ |B[P ∗ ◦ σ](z) + φn (R,α, β)B[P ∗](z)| (2.10)

Also, since

P ∗(Rz) + φn (R,α, β)P ∗(z) = RnznP (1/Rz̄) + φn (R,α, β) znP (1/z̄),

therefore,

B[P ∗ ◦ σ](z) + φn(R,α, β)B[P ∗](z)

= λ0

(
RnznP (1/Rz̄) + φn (R,α, β) znP (1/z̄)

)
+ λ1

(nz
2

)(
nRnzn−1P (1/Rz̄)

−Rn−1zn−2P ′(1/Rz̄) + φn (R,α, β)
(
nzn−1P (1/z̄)− zn−2P ′(1/z̄)

))
+
λ2

2!

(nz
2

)2 (
n(n− 1)Rnzn−2P (1/Rz̄)− 2(n− 1)Rn−1zn−3P ′(1/Rz̄)

+Rn−2zn−4P ′′(1/Rz̄) + φn (R,α, β)
(
n(n− 1)zn−2P (1/z̄)

− 2(n− 1)zn−3P ′(1/z̄) + zn−4P ′′(1/z̄)
))

and hence,

B[P ∗ ◦ σ]∗(z) + φn
(
R, ᾱ, β̄

)
B[P ∗]∗(z)

=
(
B[P ∗ ◦ σ](z) + φn (R,α, β)B[P ∗](z)

)∗
=

(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)(
RnP (z/R) + φn

(
R, ᾱ, β̄

)
P (z)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1zP ′(z/R) + φn

(
R, ᾱ, β̄

)
zP ′(z)

)
+ λ̄2

n2

8

(
Rn−2z2P ′′(z/R) + φn

(
R, ᾱ, β̄

)
z2P ′′(z)

)
. (2.11)

Also, for |z| = 1

|B[P ∗ ◦ σ](z) + φn (R,α, β)B[P ∗](z)|
= |B[P ∗ ◦ σ]∗(z) + φn

(
R, ᾱ, β̄

)
B[P ∗]∗(z)|.

Using this in (2.10), we get for |z| = 1 and R > r ≥ 1,

|B[P ◦ σ](z) + φn (R,α, β)B[P ](z)|
≤ |B[P ∗ ◦ σ]∗(z) + φn

(
R, ᾱ, β̄

)
B[P ∗]∗(z)|.

Since all the zeros of P ∗(z) lie in |z| ≤ 1, as before, all the zeros of P ∗(Rz) +
φn(R,α, β)P ∗(z) lie in |z| < 1 for all real or complex numbers α, β with
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|α| ≤ 1, |β| ≤ 1 and R > 1. Hence by Lemma 2.2, all the zeros of B[P ∗ ◦
σ](z) + φn(R,α, β)B[P ∗](z) lie in |z| < 1, therefore, all the zeros of B[P ∗ ◦
σ]∗(z) + φn(R, ᾱ, β̄)B[P ∗]∗(z) lie in |z| > 1. Hence by the maximum modulus
principle,

|B[P ◦ σ](z) + φn (R,α, β)B[P ∗](z)|
< |B[P ∗ ◦ σ]∗(z) + φn

(
R, ᾱ, β̄

)
B[P ∗]∗(z)| for |z| < 1. (2.12)

A direct application of Rouche’s theorem shows that

CγP (z) =
(
B[P ◦ σ](z) + φn(R,α, β)B[P ](z)

)
eiη

+
(
B[P ∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[P ∗]∗(z)

)
=
{

(Rn + φn(R,α, β)rn)Λne
iη + (1 + φn(R, ᾱ, β̄))λ̄0

}
anz

n

+ · · ·+
{

(Rn + φn(R, ᾱ, β̄))Λ̄n + eiη(1 + φn(R,α, β))λ0

}
a0

does not vanish in |z| < 1. Therefore, Cγ is an admissible operator. Applying
(2.9) of Lemma 2.5, the desired result follows immediately for each p > 0. �

From Lemma 2.6, we deduce the following more general result.

Lemma 2.7. If P ∈ Pn, then for every p > 0, R > 1 and η real, 0 ≤ η < 2π,∫ 2π

0
|
(
B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)

)
|pdθ

≤ |(Rn + φn(R,α, β))Λne
iη + (1 + φn(R, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

where B ∈ Bn, σ(z) := Rz, B[P ∗ ◦ σ]∗(z) := (B[P ∗ ◦ σ](z))∗, Λn and
φn (R,α, β) are defined by (1.10) and (1.13) respectively.

Proof. If all the zeros of P (z) lie in |z| ≥ 1, then the result follows by Lemma
2.6. Henceforth, we assume that P (z) has at least one zero in |z| < 1 so that
we can write

P (z) = P1(z)P2(z) = a
k∏
j=1

(z − zj)
n∏

j=k+1

(z − zj), 0 ≤ k ≤ n− 1, a 6= 0

where all the zeros of P1(z) lie in |z| ≥ 1 and all the zeros of P2(z) lie in
|z| < 1. First we assume that P1(z) has no zero on |z| = 1 so that all the zeros

of P1(z) lie in |z| > 1. Let P ∗2 (z) = zn−kP2(1/z̄), then all the zeros of P ∗2 (z)
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lie in |z| > 1 and |P ∗2 (z)| = |P2(z)| for |z| = 1. Now consider the polynomial

f(z) = P1(z)P ∗2 (z) = a
k∏
j=1

(z − zj)
n∏

j=k+1

(1− zz̄j),

then all the zeros of f(z) lie in |z| > 1 and for |z| = 1,

|f(z)| = |P1(z)| |P ∗2 (z)| = |P1(z)| |P2(z)| = |P (z)| . (2.13)

Therefore, it follows by Rouche’s theorem that the polynomial g(z) = P (z) +
µf(z) does not vanish in |z| ≤ 1 for every µ with |µ| > 1, so that all the zeros
of g(z) lie in |z| ≥ δ for some δ > 1 and hence all the zeros of T (z) = g(δz)
lie in |z| ≥ 1. Applying (2.12) and (2.11) to the polynomial T (z), we get for
R > 1 and |z| < 1,

|B[T ◦ σ](z) + φn (R,α, β)B[T ](z)|
< |B[T ∗ ◦ σ]∗(z) + φn

(
R, ᾱ, β̄

)
B[T ∗]∗(z)|

=

∣∣∣∣ (λ̄0 + λ̄1
n2

2
+ λ̄2

n3(n− 1)

8

)(
RnT (z/R) + φn

(
R, ᾱ, β̄

)
T (z)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1zT ′(z/R) + φn

(
R, ᾱ, β̄

)
zT ′(z)

)
+ λ̄2

n2

8

(
Rn−2z2T ′′(z/R) + φn

(
R, ᾱ, β̄

)
z2T ′′(z)

)∣∣∣∣,
that is,

|B[T ◦ σ](z) + φn (R,α, β)B[T ](z)|

=

∣∣∣∣ (λ̄0 + λ̄1
n2

2
+ λ̄2

n3(n− 1)

8

)(
Rng(δz/R) + φn

(
R, ᾱ, β̄

)
g(δz)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1δzg′(δz/R) + φn

(
R, ᾱ, β̄

)
δzg′(δz/r)

)
+ λ̄2

n2

8

(
Rn−2δ2z2g′′(δz/R) + φn

(
R, ᾱ, β̄

)
δ2z2g′′(δz)

)∣∣∣∣
for |z| < 1. If z = eiθ/δ, 0 ≤ θ < 2π, then |z| = (1/δ) < 1 as δ > 1 and we get
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|B[T ◦ σ](eiθ/δ) + φn(R,α, β)B[T ](eiθ/δ)|

=

∣∣∣∣ (λ̄0 + λ̄1
n2

2
+ λ̄2

n3(n− 1)

8

)(
Rng(eiθ/R) + φn

(
R, ᾱ, β̄

)
g(eiθ)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1eiθg′(eiθ/R) + φn

(
R, ᾱ, β̄

)
eiθg′(eiθ)

)
+ λ̄2

n2

8

(
Rn−2e2iθg′′(eiθ/R) + φn

(
R, ᾱ, β̄

)
e2iθg′′(eiθ)

)∣∣∣∣
= |B[g∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[g∗]∗(eiθ)|.

Equivalently for |z| = 1,

|B[g ◦ σ](z)] + φn (R,α, β)B[g](z)|
< |B[g∗ ◦ σ]∗(z) + φn

(
R, ᾱ, β̄

)
B[g∗]∗(z)|.

Since all the zeros of g(z) lie in |z| ≥ 1, all the zeros of g∗(z) = zng(1/z̄) lie in
|z| ≤ 1 and hence as before, all the zeros of g∗(Rz) + φn (R,α, β) g∗(z) lie in
|z| < 1. By Lemma 2.2, all the zeros of B[g∗ ◦ σ](z) + φn (R,α, β)B[g∗](z) lie
in |z| < 1 and therefore, all the zeros of B[g∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[g∗]∗(z)
lie in |z| > 1. Thus

B[g∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[g∗]∗(z) 6= 0 for |z| ≤ 1.

An application of Rouche’s theorem shows that the polynomial

M(z) =
(
B[g ◦ σ](z) + φn(R,α, β)B[g](z)

)
eiη

+B[g∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[g∗]∗(z) (2.14)

does not vanish in |z| ≤ 1. Replacing g(z) by P (z) +µf(z) and noting that B
is a linear operator, it follows that the polynomial

M(z) =
(
B[P ◦ σ](z) + φn(R,α, β)B[P ](z)

)
eiη

+
(
B[P ∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[P ∗]∗(z)

)
+ µ

((
B[f ◦ σ](z) + φn(R,α, β)B[f ](z)

)
eiη

+ (B[f∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[f∗]∗(z))
)

(2.15)

does not vanish in |z| ≤ 1 for every µ with |µ| > 1. We claim

|
(
B[P ◦ σ](z) + φn(R,α, β)B[P ](z)

)
eiη

+B[P ∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[P ∗]∗(z)|
≤ |
(
B[f ◦ σ](z) + φn(R,α, β)B[f ](z)

)
eiη

+B[f∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[f∗]∗(z)| (2.16)
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for |z| ≤ 1. If inequality (2.16) is not true, then there a point z = z0 with
|z0| ≤ 1 such that

|
(
B[P ◦ σ](z0) + φn(R,α, β)B[P ](z0)

)
eiη

+B[P ∗ ◦ σ]∗(z0) + φn(R, ᾱ, β̄)B[P ∗]∗(z0)|
> |
(
B[f ◦ σ](z0) + φn(R,α, β)B[f ](z0)

)
eiη

+B[f∗ ◦ σ]∗(z0) + φn(R, ᾱ, β̄)B[f∗]∗(z0)|.

Since f(z) does not vanish in |z| ≤ 1, proceeding similarly as in the proof of
(2.14), it follows that the polynomial

(
B[f ◦ σ](z) + φn(R,α, β)B[f ](z)

)
eiη

+B[f∗ ◦ σ]∗(z) + φn(R, ᾱ, β̄)B[f∗]∗(z)

does not vanish in |z| ≤ 1. Hence

(
B[f ◦ σ](z0) + φn(R,α, β)B[f ](z0)

)
eiη

+B[f∗ ◦ σ]∗(z0) + φn(R, ᾱ, β̄)B[f∗]∗(z0) 6= 0.

We take

µ = − (B[P◦σ](z0)+φn(R,α,β)B[P ](z0))eiη+B[P ∗◦σ]∗(z0)+φn(R,ᾱ,β̄)B[P ∗]∗(z0)

(B[f◦σ](z0)+φn(R,α,β)B[f ](z0))eiη+B[f∗◦σ]∗(z0)+φn(R,ᾱ,β̄)B[f∗]∗(z0)

so that µ is well-defined real or complex number with |µ| > 1 and with this
choice of µ, from (2.15) , we get M(z0) = 0. This clearly is a contradiction
to the fact that M(z) does not vanish in |z| ≤ 1. Thus (2.16) holds, which in
particular gives for each p > 0 and η real,

∫ 2π

0

∣∣∣(B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)
)
eiη

+B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)
∣∣∣pdθ

≤
∫ 2π

0

∣∣∣(B[f ◦ σ](eiθ) + φn(R,α, β)B[f ](eiθ)
)
eiη

+B[f∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[f∗]∗(eiθ)
∣∣∣dθ. (2.17)
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Using Lemma 2.7 and (2.13), we get for each p > 0,∫ 2π

0

∣∣∣(B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)
)
eiη

+B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)
∣∣∣pdθ

≤ |(Rn + φn(R,α, β))Λne
iη + (1 + φn(R, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣∣f(eiθ)
∣∣∣p dθ

= |(Rn + φn(R,α, β))Λne
iη + (1 + φn(R, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ. (2.18)

Now if P1(z) has a zero on |z| = 1, then applying (2.18) to the polynomial
Q(z) = P1(tz)P2(z) where t < 1, we get for each p > 0, R > 1 and η real,∫ 2π

0
|
(
B[Q ◦ σ](eiθ) + φn(R,α, β)B[Q](eiθ)

)
eiη

+
(
B[Q∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[Q∗]∗(eiθ)

)
|pdθ

≤ |(Rn + φn(R,α, β))Λne
iη + (1 + φn(R, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣∣Q(eiθ)
∣∣∣p dθ. (2.19)

Letting t→ 1 in (2.19) and using continuity, the desired result follows imme-
diately and this proves Lemma 2.7. �

Lemma 2.8. If P ∈ Pn and P ∗(z) = znP (1/z̄), then for every p > 0, α, β ∈ C
with |α| ≤ 1, |β| ≤ 1 and R > 1,∫ 2π

0

∫ 2π

0

∣∣∣(B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)
)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

)∣∣∣pdθ
≤
∫ 2π

0

∣∣∣(Rn + φn(R,α, β))Λne
iη + (1 + φn(R,α, β))λ0

∣∣∣pdη
×
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ (2.20)

where B ∈ Bn, σ(z) := Rz, Λn and φn (R,α, β) are defined by (1.10) and
(1.13) respectively. The result is best possible and the extremal polynomial is
P (z) = βzn, β 6= 0.

Proof. Since B[P ∗ ◦σ]∗(z) +φn(R, ᾱ, β̄)B[P ∗]∗(z) is the conjugate polynomial
of B[P ∗ ◦ σ](z) + φn(R,α, β)B[P ∗](z),
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|B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)|

= |B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)|, 0 ≤ θ < 2π

and therefore for each p > 0, R > 1 and 0 ≤ θ < 2π, we have∫ 2π

0
|
(
B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

)
|pdη

=

∫ 2π

0
||B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|eiη

+ |B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)||pdη

=

∫ 2π

0
||B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|eiη

+ |B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)||pdη. (2.21)

Integrating both sides of (2.21) with respect to θ from 0 to 2π and using
Lemma 2.7, we get∫ 2π

0

∫ 2π

0
|
(
B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

)
|pdηdθ

=

∫ 2π

0

∫ 2π

0
||B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|eiη

+ |B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)||pdηdθ

=

∫ 2π

0

(∫ 2π

0

(
B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ]∗(eiθ) + φn(R, ᾱ, β̄)B[P ∗]∗(eiθ)

)
|pdθ

)
dη

≤
∫ 2π

0
|(Rn + φn(R,α, β))Λne

iη + (1 + φn(R, ᾱ, β̄))λ̄0|pdη

×
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ

≤
∫ 2π

0
|(Rn + φn(R,α, β))Λne

iη + (1 + φn(R,α, β))λ0|pdη

×
∫ 2π

0
|P (eiθ)|pdθ.
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This completes the proof of Lemma 2.8. �

3. Main Results

We first present the following result which is a compact generalization of
the inequalities (1.1),(1.2), (1.5) and (1.8) and extends inequality (1.11) for
0 ≤ p < 1 as well.

Theorem 3.1. If P ∈ Pn, then for arbitrary real or complex numbers α, β
with |α| ≤ 1, |β| ≤ 1, R > 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z) + φn(R,α, β)B[P ](z)‖p
≤ |Rn + φn (R,α, β) | |Λn| ‖P (z)‖p ,

(3.1)

where B ∈ Bn, σ(z) := Rz, Λn and φn (R,α, β) are defined by (1.10) and
(1.13) respectively. The result is best possible and equality in (3.1) holds for
P (z) = azn, a 6= 0.

Proof. By hypothesis P ∈ Pn, we can write

P (z) = P1(z)P2(z) = c
k∏
j=1

(z − zj)
n∏

j=k+1

(z − zj), k ≥ 1, c 6= 0,

where all the zeros of P1(z) lie in |z| ≤ 1 and all the zeros of P2(z) lie in
|z| > 1. First we suppose that all the zeros of P1(z) lie in |z| < 1. Let P ∗2 (z) =

zn−kP2(1/z̄), then all the zeros of P ∗2 (z) lie in |z| < 1 and |P ∗2 (z)| = |P2(z)|
for |z| = 1. Now consider the polynomial

F (z) = P1(z)P ∗2 (z) = c

k∏
j=1

(z − zj)
n∏

j=k+1

(1− zz̄j),

then all the zeros of F (z) lie in |z| < 1 and for |z| = 1,

|F (z)| = |P1(z)| |P ∗2 (z)| = |P1(z)| |P2(z)| = |P (z)| . (3.2)

Observe that P (z)/F (z)→ 1/
∏n
j=k+1(−z̄j) when z →∞, so it is regular even

at ∞ and thus from (3.2) and by the maximum modulus principle, it follows
that

|P (z)| ≤ |F (z)| for |z| ≥ 1.

Since F (z) 6= 0 for |z| ≥ 1, a direct application of Rouche’s theorem shows that
the polynomial H(z) = P (z)+λF (z) has all its zeros in |z| < 1 for every λ with
|λ| > 1. Therefore, for all real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1
and R > 1, it follows that all the zeros of h(z) = H(Rz) +φn(R,α, β)H(z) lie
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in |z| < 1. Applying Lemma 2.2 to the polynomial h(z) and noting that B is
a linear operator, it follows that all the zeros of

B[h](z) = B[H ◦ σ](z) + φn(R,α, β)B[H](z)

= B[P ◦ σ](z) + φn(R,α, β)B[P ](z)

+ λ(B[F ◦ σ](z) + φn(R,α, β)B[F ](z))

lie in |z| < 1 for every λ with |λ| > 1. This implies

|B[P ◦ σ](z) + φn(R,α, β)B[P ](z)| ≤ |B[F ◦ σ](z) + φn(R,α, β)B[F ](z)|
for |z| ≥ 1, which, in particular, gives for each p > 0, R > 1 and 0 ≤ θ < 2π,∫ 2π

0
|B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|pdθ

≤
∫ 2π

0
|B[F ◦ σ](eiθ) + φn(R,α, β)B[F ](eiθ)|pdθ. (3.3)

Again, since all the zeros of F (z) lie in |z| < 1, it follows, as before, that all
the zeros of B[F (Rz)] + φn(R,α, β)F (z) also lie in |z| < 1. Therefore, the
operator Cγ defined by

CγF (z) = B[F ◦ σ](z) + φn(R,α, β)B[F ](z)

= (Rn + φn(R,α, β))
(
λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8

)
bnz

n + · · ·+ λ0b0

is admissible. Hence by (2.9) of Lemma 2.5, for each p > 0, we have∫ 2π

0
|B[F ◦ σ](eiθ) + φn(R,α, β)B[F ](eiθ)|pdθ

≤ |Rn + φn(R,α, β)|
∣∣∣λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8

∣∣∣p ∫ 2π

0
|F (eiθ)|pdθ. (3.4)

Combining inequalities (3.3) and (3.4) and noting that |F (eiθ)| = |P (eiθ)|, we
obtain for each p > 0 and R > 1,∫ 2π

0
|B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|pdθ

≤ |Rn + φn(R,α, β)||Λn|
∫ 2π

0
|P (eiθ)|pdθ. (3.5)

In case P1(z) has a zero on |z| = 1, then the inequality (3.5) follows by
continuity. To obtain this result for p = 0, we simply make p→ 0+. �

A variety of interesting results can be deduced from Theorem 3.1 as special
cases. Here we mention a few of these.
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The following result follows from Theorem 3.1 by taking β = 0.

Corollary 3.2. If P ∈ Pn, then for every real or complex number α with
|α| ≤ 1, R > 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z)− αB[P ](z)‖p ≤ |R
n − α| |Λn| ‖P (z)‖p , (3.6)

where B ∈ Bn, σ(z) := Rz and Λn is defined by (1.10). The result is best
possible and equality in (3.6) holds for P (z) = azn, a 6= 0.

Setting α = 0 in Corollary 3.2, we get the following sharp result.

Corollary 3.3. If P ∈ Pn, then for R > 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z)‖p ≤ |R
n| |Λn| ‖P (z)‖p , (3.7)

where B ∈ Bn, σ(z) := Rz and Λn is defined by (1.10). The result is best
possible and equality in (3.7) holds for P (z) = azn, a 6= 0.

Remark 3.4. Corollary 3.3 not only includes inequality (1.11) as a special
case but also extends it for 0 ≤ p < 1 as well. Further inequality (1.8) follows
from Corollary 3.3 by letting p→∞ in (3.7).

The case B[P ](z) = P (z) of Theorem 3.1 yields the following interesting
result which is a compact generalization of inequalities (1.1), (1.2) and (1.5).

Corollary 3.5. If P ∈ Pn, then for every real or complex number α with
|α| ≤ 1, R > 1, and p > 0,

‖P (Rz) + φn (R,α, β)P (z)‖p ≤ |R
n + φn (R,α, β) | ‖P (z)‖p , (3.8)

where φn (R,α, β) is defined by (1.13). The result is best possible and equality
in (3.8) holds for P (z) = azn, a 6= 0.

Remark 3.6. If we divide the two sides of (3.8) by R − 1 with α = 1 and
then let R→ 1, we get for P ∈ Pn, |β| ≤ 1 and 0 ≤ p <∞,∥∥∥∥zP ′(z) +

nβ

2
P (z)

∥∥∥∥
p

≤ n
∣∣∣∣1 +

β

2

∣∣∣∣ ‖P (z)‖p . (3.9)

The result is best possible and equality in (3.9) holds for P (z) = azn, a 6= 0.

Taking α = 0 in (3.1), we obtain:

Corollary 3.7. If P ∈ Pn, then for every real or complex number β with
|β| ≤ 1, R > 1 and 0 ≤ p <∞,
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∥∥∥∥B[P (Rz)] + β

(
R+ 1

2

)n
B[P (z)]

∥∥∥∥
p

≤
∣∣∣∣Rn + β

(
R+ 1

2

)n∣∣∣∣ |Λn| ‖P (z)‖p ,
(3.10)

where B ∈ Bn and φn (R,α, β) is defined by (1.13).The result is best possible
and equality in (3.10) holds for P (z) = λzn, λ 6= 0.

Theorem 3.1 can be sharpened if we restrict ourselves to the class of polyno-
mials P ∈ Pn having no zero in |z| < 1. In this direction, we next present the
following result which in particular includes a generalized Lp mean extension
of the inequality (1.9) for 0 ≤ p <∞ and among other things yields a correct
proof of inequality (1.12) for each p ≥ 0 as a special case.

Theorem 3.8. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for then
for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > 1 and
0 ≤ p <∞,

‖B[P ◦ σ](z) + φn(R,α, β)B[P ](z)‖p

≤
‖(Rn + φn(R,α, β)) Λnz + (1 + φn(R,α, β))λ0‖p

‖1 + z‖p
‖P (z)‖p ,

(3.11)

where B ∈ Bn, σ(z) := Rz, Λn and φn (R,α, β) are defined by (1.10) and
(1.13) respectively. The result is best possible and equality in (3.11) holds for
P (z) = azn + b, |a| = |b| 6= 0.

Proof. By hypothesis P ∈ Pn does not vanish in |z| < 1, σ(z) = Rz, therefore,

if P ∗(z) = znP (1/z̄), then by Lemma 2.3, we have for 0 ≤ θ < 2π,

|B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|

≤ |B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)|. (3.12)

Also, by Lemma 2.8, for each p > 0 and η real and R > 1,∫ 2π

0

∫ 2π

0
|
(
B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

)
|pdθdη

≤
∫ 2π

0
|(Rn + φn(R,α, β))Λne

iη

+ (1 + φn(R,α, β))λ0|pdη
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ.

Now it can be easily verified that for every real number α and r ≥ 1,∣∣r + eiα
∣∣ ≥ ∣∣1 + eiα

∣∣ .
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This implies for each p > 0,∫ 2π

0

∣∣r + eiα
∣∣p dα ≥ ∫ 2π

0

∣∣1 + eiα
∣∣p dα. (3.13)

If B[P ◦ σ](eiθ) + φn(R, ᾱ, β̄)B[P ](eiθ) 6= 0, we take

r =
|B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)|
|B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|

,

then by (3.12), r ≥ 1 and from (3.13), we get∫ 2π

0
|
(
B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

)
|pdη

= |B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|p

×
∫ 2π

0

∣∣∣∣eiη +
B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

∣∣∣∣p dη
= |B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|p

×
∫ 2π

0

∣∣∣∣eiη +

∣∣∣∣B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)

B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)

∣∣∣∣∣∣∣∣p dη
≥ |B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|p

∫ 2π

0
|1 + eiη|pdη.

For B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ) = 0, this inequality is trivially true.
Using this in (2.20), we conclude that for each p > 0,∫ 2π

0

∣∣∣B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)
∣∣∣p dθ ∫ 2π

0

∣∣1 + eiη
∣∣p dη

≤
∫ 2π

0
|(Rn + φn(R,α, β))Λne

iη

+ (1 + φn(R,α, β))λ0|pdη
∫ 2π

0
|P (eiθ)|pdθ,

from which theorem 3.8 follows for p > 0. To establish this result for p = 0,
we simply let p→ 0+. This completes the proof of Theorem 3.8. �

For β = 0, inequality (3.11) reduces to the following result.

Corollary 3.9. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
real or complex number α with |α| ≤ 1, R > 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z)− αB[P ](z)‖p ≤
‖(Rn − α)Λnz + (1− α)λ0‖p

‖1 + z‖p
‖P (z)‖p , (3.14)
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where B ∈ Bn, σ(z) := Rz, and Λn is defined by (1.10). The result is best
possible and equality in (3.14) holds for P (z) = azn + b, |a| = |b| 6= 0.

For α = 0, Corollary 3.9 yields the following interesting result.

Corollary 3.10. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for
R > 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z)‖p ≤
‖RnΛnz + λ0‖p
‖1 + z‖p

‖P (z)‖p , (3.15)

where B ∈ Bn, σ(z) := Rz and Λn is defined by (1.10). The result is best
possible and equality in (3.15) holds for P (z) = azn + b, |a| = |b| 6= 0.

Remark 3.11. If we choose α = λ0 = λ2 = 0 in (3.15), we get for R > 1 and
0 ≤ p <∞ ∥∥P ′(Rz)∥∥

p
≤ nRn−1

‖1 + z‖p
‖P (z)‖p (3.16)

which in particular yields inequality (1.3).

By the triangle inequality, the following result immediately follows from
Corollary 3.10.

Corollary 3.12. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for
0 ≤ p <∞ and R > 1,

‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p , (3.17)

where B ∈ Bn, σ(z) := Rz, Λn is defined by (1.10).

Remark 3.13. Corollary 3.12 not only validates the inequality (1.12) for
p ≥ 1 but also extends it for 0 ≤ p < 1 as well.

A polynomial P ∈ Pn is said be self-inversive if P (z) = uP ∗(z) where
|u| = 1 and P ∗(z) is the conjugate polynomial of P (z), that is, P ∗(z) =

znP (1/z). Finally in this paper, we establish the following result for self-
inversive polynomials which includes a correct proof of another result of Shah
and Liman [17, Theorem 3] as a special case.

Theorem 3.14. If P ∈ Pn is a self-inversive polynomial, then for arbitrary
real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z) + φn(R,α, β)B[P ](z)‖p

≤
‖(Rn + φn(R,α, β)) Λnz + (1 + φn(R,α, β))λ0‖p

‖1 + z‖p
‖P (z)‖p ,

(3.18)
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where B ∈ Bn, σ(z) := Rz, Λn and φn (R,α, β) are defined by (1.10) and
(1.13) respectively. The result is best possible and equality in (3.18) holds for
P (z) = zn + 1.

Proof. Since P ∈ Pn is self-inversive polynomial, we have for some u with
u=1, P ∗(z) = uP (z) for all z ∈ C where P ∗(z) = znP (1/z̄). This gives for
0 ≤ θ < 2π,

|B[P ◦ σ](eiθ) + φn(R,α, β)B[P ](eiθ)|

≤ |B[P ∗ ◦ σ](eiθ) + φn(R,α, β)B[P ∗](eiθ)|.

Using this in (2.20) and proceeding similarly as in the proof of Theorem 3.8,
we get the desired result for each p > 0. To extension to p = 0 is obtains by
letting p→ 0+. �

The following result is an immediate consequence of Theorem 3.14.

Corollary 3.15. If P ∈ Pn is a self-inversive polynomial, then for 0 ≤ p <∞
and R > 1, ∥∥B[P ◦ σ](z)− αB[P ](z)

∥∥
p

≤
‖(Rn − αrn)Λnz + (1− α)λ0‖p

‖1 + z‖p
‖P (z)‖p , (3.19)

where B ∈ Bn and σ(z) := Rz, and Λn is defined by (1.10). The result is
sharp and equality in (3.19) holds for P (z) = zn + 1.

For α = 0, Corollary 3.15 reduces to the following interesting result.

Corollary 3.16. If P ∈ Pn is a self-inversive polynomial, then for 0 ≤ p <∞
and R > 1,

‖B[P ◦ σ](z)‖p ≤
‖RnΛnz + λ0‖p
‖1 + z‖p

‖P (z)‖p , (3.20)

where B ∈ Bn, σ(z) := Rz and Λn is defined by (1.10). The result is best
possible and equality in (3.20) holds for P (z) = zn + 1.

By the triangle inequality, the following result follows immediately from
Corollary 3.16.

Corollary 3.17. If P ∈ Pn is a self-inversive polynomial, then for 0 ≤ p <∞
and R > 1,

‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p , (3.21)
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where B ∈ Bn, σ(z) := Rz and Λn is defined by (1.10). The result is sharp
and equality in (3.21) holds for P (z) = zn + 1.

Remark 3.18. Corollary 3.17 establishes a correct proof of a result due to
Shah and Liman [17, Theorem 3] for p ≥ 1 and also extends it for 0 ≤ p < 1
as well.

Lastly letting p → ∞ and setting α = β = 0 in (3.18), we obtain the
following result.

Corollary 3.19. If P ∈ Pn is a self-inversive polynomial, then for |z| = 1
and R > 1,

|B[P ◦ σ](z)| ≤ 1

2
{Rn |Λn|+ |λ0|} ‖P (z)‖∞ ,

where B ∈ Bn, σ(z) := Rz and Λn is defined by (1.10). The result is sharp.
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