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Abstract. Bulut and Cakar [2] have defined the space l(p, s) and determined some classes of

matrix transformations (l(p, s), l∞) and (l(p, s), c). The object of this paper is to investigate

some further clases of infinite matrices, i.e., (l(p, s), vσ) and (l(p, s), vσ∞), where vσ is the

space of all bounded sequences all of whose σ- means are equal, vσ∞ is the space of σ-bounded

sequence.

1. Preliminaries, background and Notation

We denote the set of all sequences(real or complex) by ω. Any subspace
of ω is called the sequence space. So the sequence space is the set of scalar
sequences(real of complex) which is closed under co-ordinate wise addition and
scalar multiplication. Throughout the paper N, R and C denotes the set of
non-negative integers, the set of real numbers and the set of complex numbers,
respectively. Let l∞, c and c0, respectively, denotes the space of all bounded
sequences, the space of convergent sequences and the sequences converging to
zero. Also, by cs, l1 and l(p) we denote the spaces of all convergent, absolutely
and p-absolutely convergent series, respectively.

Let X,Y be two sequence spaces and let A = (ank) be an infinite matrix
of real or complex numbers ank, where n, k ∈ N. Then, the matrix A defines
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the A-transformation from X into Y , if for every sequence x = (xk) ∈ X
the sequence Ax = {(Ax)n}, the A-transform of x exists and is in Y ; where
(Ax)n =

∑
k

ankxk. For simplicity in notation, here and in what follows, the

summation without limits runs from 0 to ∞. By A ∈ (X : Y ) we mean the
characterizations of matrices from X to Y i.e., A : X → Y . A sequence x is
said to be A-summable to l if Ax converges to l which is called as the A-limit
of x.

Let σ be a mapping of the set of positive integers into itself. A continuous
linear functional φ on l∞ is said to be an invariant mean or a σ-mean if and
only if
(i) φ(x) ≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n;
(ii) φ(e) = 1, where e={1,1,1,.....}; and
(iii) φ(xσ(n)) = φ(x) for all x ∈ l∞.

Through out this paper, we deal only with mappings σ as one to one and
are such that σm(n) 6= n, for all positive integers n and m, where σm(n)
denotes the mth iterate of the mapping σ at n. If σ is the translation mapping
n→ n+ 1, a σ mean is often called a Banach limit (see, [1, 3-5]). If x = (xn),
write Tx = (Txn) = (xσ(n)). It can be shown (see, [12]) that

vσ =
{
x ∈ l∞ : lim

m→∞
tmn(x) = L uniformly in n, L = σ − limx

}
,

where,

tmn(x) =
1

m+ 1

m∑
j=0

T jxn, T
jxn = xσj(n), t−1,n(x) = 0.

We define vσ∞ the space of σ−bounded sequences (see [9]) in the following:

vσ∞ = {x ∈ w : sup
m,n
|φm,n(x)| <∞},

where,

φm,n(x) = tm,n(x)− tm−1,n(x)

=
1

m(m+ 1)

m∑
j=1

j(T jxn − T j−1xn). (1.1)

If σ(n) = n+1, then vσ∞ is the set of almost bounded sequences f∞ (see, [3, 8,
10-14]). The approach of constructing a new sequence space by means of ma-
trix domain of a particular limitation method has been studied by several au-
thors viz., (see, [1, 2, 7-9, 13]). In [2], Bulut and Cakar have defined the space
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l(p, s) and characterized the classes (l(p, s), l∞) and (l(p, s), c). The object of
this paper is to characterize the classes of matrices (l(p, s), vσ) and (l(p, s), vσ∞),
where the space l(p, s) is defined as follows:

l(p, s) =

{
x :
∑
k

k−s|xk|pk <∞, s ≥ 0

}
,

which is paranormed by

g(x) =

(∑
k

k−s|xk|pk
)1/M

,

where M = max(1, sup
k
pk). Further, l(p, s) is a metric space with the metric

defined by d(x, y) = g(x− y). The Köthe-Toeplitz dual is the set

M(p, s) =

{
a = (ak) :

∑
k

ks(qk−1)N
−qk
pk |ak|qk <∞, s ≥ 0,

for some integer N > 1

}
.

2. Some matrix transformations

We note that, if Ax is defined, then it follows from (1.1) that, for all integers
n,m ≥ 0

φm,n(Ax) =
∑
k

α(n, k,m)xk,

where

α(n, k,m) =
1

m(m+ 1)

m∑
j=1

j{a(σj(n), k)− a(σj−1(n), k)}.

Theorem 2.1. Let 1 < pk ≤ supk pk = H < ∞ for every k, then A ∈
(l(p, s), vσ∞) if and only if there exists an integer N > 1 such that

sup
m,n

∑
k

|α(n, k,m)|qkks(qk−1)N−qk <∞. (2.1)

Proof. Necessity: Let A ∈ (l(p, s), vσ∞) and that x ∈ l(p, s). Put

qn(x) = sup
m
|φmn(Ax)|.



256 N. A. Sheikh and A. H. Ganie

For n > 0, qn is continuous semi-norm on l(p, s) and (qn) is pointwise bounded
on l(p, s). Suppose that (2.1) is not true. Then there exists x ∈ l(p, s) with

sup
n
qn(x) =∞.

By the principle of condensation of singularities (see, [15]), the set{
x ∈ l(p, s) : sup

n
qn(x) =∞

}
is of second category in l(p, s) and hence nonempty, i.e., there is x ∈ l(p, s) with
supn qn(x) =∞. But this contradicts the fact that qn is pointwise bounded on
l(p, s). Now, by Banach-Steinhauss theorem, there is constant M such that

qn(x) ≤Mg(x). (2.2)

Applying (2.2) to the sequence x = (xk) defined as in [2, p. 42] by replacing
ank by a(n, k,m), we then obtain the necessity of (2.1).

Sufficiency: Let (2.1) holds and x ∈ l(p, s). Using the following inequality

|ab| ≤ C(|a|qC−q + |b|p)

for C > 0 and a, b two complex numbers (p > 1 and p−1 + q−1 = 1) (see [7,
15]),we have

|φm,n(Ax)| =

∣∣∣∣∣∑
k

α(n, k,m)xk

∣∣∣∣∣
≤

∑
k

|α(n, k,m)xk|

≤
∑
k

N [|α(n, k,m)|qkks(qk−1)N−qk + |xk|pkk−s].

Taking the supremum over m,n and using (2.2) we get Ax ∈ vσ∞ for x ∈ l(p, s),
i.e., A ∈ (l(p, s), vσ∞). This completes the proof of the Theorem 2.1. �

Theorem 2.2. Let 1 < pk ≤ supk pk = H < ∞ for every k, then A ∈
(l(p, s), vσ) if and only if there exists an integer N > 1 such that

(i) supm,n
∑

k |t(n, k,m)|qkks(qk−1)N−qk <∞,
(ii) limm t(n, k,m) = ak uniformly in n, for every k.

Proof. Necessity: Let A ∈ (l(p, s), vσ) and that x ∈ l(p, s). Write qn(x) =
supm |tmn(Ax)|. It is easy to see that for n ≥ 0, qn is continuous semi-norm on
l(p, s) and qn is pointwise bounded on l(p, s). Suppose that (i) is not true. Then
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there exists x ∈ l(p, s) with supn qn(x) =∞. By the principle of condensation
of singularities [15], the set{

x ∈ l(p, s) : sup
n
qn(x) =∞

}
is of second category in l(p, s) and hence non empty, i.e., there is x ∈ l(p, s)
with supn qn(x) = ∞. But this contradicts the fact that (qn) is pointwise
bounded on l(p, s). Now by Banach-Steinhauss theorem, there is constant M
such that

qn(x) ≤Mg(x). (2.3)

Now define a sequence x = (xk) by

xk =

{
(sgn t(n, k,m))k

s
pkN

−qk
pk , 1 ≤ k ≤ k0,

0, k > k0.

Then it is easy to see that x ∈ l(p, s). Applying this sequence to (2.3), we
get the condition (i). Since ek ∈ l(p, s), condition (ii) follows immediately by
taking x = ek.

Sufficiency: Let (i) and (ii) hold and x ∈ l(p, s). For j ≥ 1

j∑
k=1

|t(n, k,m)|qkks(qk−1)N
−qk
pk ≤ sup

m

∑
k

|t(n, k,m)|qkks(qk−1)N
−qk
pk <∞

for every n. Therefore,

∑
k

|αk|qkks(qk−1)N
−qk
pk = lim

j
lim
m

j∑
k=1

|t(n, k,m)|qkks(qk−1)N
−qk
pk

≤ sup
m

∑
k

|t(n, k,m)|qkks(qk−1)N
−qk
pk

< ∞.

Consequently the series
∑

k t(n, k,m)xk and
∑

k αkxk converges for every n,m
and for every x ∈ l(p, s). Now for ε > 0 and x ∈ l(p, s). Choose k0 ∈ N such
that ∑

k≥k0+1

|xk|pkk−s < 1.

By condition (ii), there exists m0 such that∣∣∣∣∣
k0∑
k=1

[t(n, k,m)− αk]

∣∣∣∣∣ <∞
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for every m > m0. By condition (i), it follows that∣∣∣∣∣∣
∑

k≥k0+1

[t(n, k,m)− αk]

∣∣∣∣∣∣
is arbitrarily small. Therefore

lim
m

∑
k

t(n, k,m)xk =
∑
k

αkxk uniformly in n.

Hence A ∈ (l(p, s), vσ). �

Corollary 2.3. If we choose the mapping σ as the translation mapping, we
get the results obtained by Mursaleen [8].
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