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Abstract. In this paper, finite element method is applied to solve boundary control problem

governed by elliptic variational inequality with an infinite number of variables. First, we

introduce some important features of the finite element method, boundary control problem

governed by elliptic variational inequalities with an infinite number of variables in the case

of the control and observation are on the boundary is introduced. We prove the existence

of the solution by using the augmented Lagrangian multipliers method. A triangular type

finite element method is used.

1. Introduction

Finite element and boundary element methods are major numerical tools for
different types of boundary value problems and for studying partial differential
equations modeling real-world problems. Functional analysis plays a vital role
in reducing the problem in a form amenable to compute analysis. It is a
basic tool for error estimation between solutions of continuous and discrete
problems and convergence of solutions of the latter to the original problem.
The finite element method is a general technique to build finite-dimensional
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spaces of a Hilbert space of some classes of functions, such as Sobolev spaces of
different orders, and their subspaces, in order to apply the Ritz and Galerkin
methods to a variational problem. The technique is based on ideas like (i)
Division of the domain in which the problem is posed in a set of simple
subdomains, called elements-often these elements are triangles, quadrilaterals
and tetrahedra. (ii) A space H of functions defined on Ω is then approximated
by appropriate functions defined on each subdomain with suitable matching
conditions at interfaces ([13]).

Some important features of the finite element method are:

(1) arbitrary geometries,

(2) unstructured meshes,

(3) robustness,

(4) sound mathematical foundation.

Arbitrary geometries means that, in principle, the method can be applied
to domains of arbitrary shapes with different boundary conditions. By un-
structured meshes, we mean that, in principle, one can place finite elements
anywhere from the complex cross-sections of biological tissues to the exterior
of aircraft, to internal flows in turbo machinery, without the use of a glob-
ally fixed coordinate frame. Robustness means that the scheme developed for
assemblage after local approximation over individual elements is stable in ap-
propriate norms and insensitive to singularities or distortions of the meshes
(This property is not available in classical different methods) ([13]).

The finite element method has been applied in every conceivable area of
engineering, such as structural analysis, semiconductor devices, meteorology,
flow through porous media, heat conduction, wave propagation, electromag-
netism, environmental studies, biomechanics ([13]).

A set of inequalities defining a control of a system governed by self-adjoint
elliptic operators with an infinite number of variables are presented in Gali et
al. ([8]). In Gali et al. ([8, 9]) the optimal control problem for system described
by elliptic operators with an infinite number of variables have been discussed.
El-Zahaby ([5]) presented the necessary conditions for control problems gov-
erned by elliptic variational inequalities with an infinite number of variables.
Necessary conditions for optimality in distributed control problem governed
by parabolic variational inequalities with an infinite number of variables are
established by El-Zahaby et al. ([7]). Boundary control problem with non-
linear state equation with an infinite number of variables is established by
El-Zahaby and Mostafa ([6]).
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In this paper we shall use the theory of Barbu ([2, 3]) to introduce bound-
ary control problem governed by elliptic equation with nonlinear boundary
value condition in the case of infinite number of variables and will apply finite
element method.

This paper is organized as follows: In Section 2, some functional spaces
with an infinite number of variables will be introduced. In Section 3, the main
result is introduced where the boundary control problems governed by elliptic
variational inequalities with an infinite number of variables, the finite element
discretization of the state equation and optimal control problem, the exis-
tence of the solution is proved by using the augmented Lagrangian multipliers
method. A triangular type finite element method is used.

2. Preliminaries

We consider the space L2(R∞, dp(x)) which is constructed over R∞ = R1×
R1 × · · · , with the measure dp(x) = p1(x1) ⊗ p2(x2) · · · (R∞ 3 x = (xk)

∞
k=1,

xk ∈ R1) where (pk(t))
∞
k=1 is a fixed weight such that 0 < pk(t) ∈ C∞(R1),∫

R1

pk(t)dt = 1, that is, the space of functions which are measurable and such

that

‖u‖L2(R∞,dp(x)) =

( ∫
R∞

|u|2dp(x)

) 1
2

<∞. (2.1)

We shall often set L2(R∞, dp(x)) = L2(R∞). It is a classical result that
L2(R∞) is a Hilbert space for the scalar product

(u, v)L2(R∞) =

∫
R∞

u(x)v(x)dp(x)

associated to the above norm (2.1) ([12]).

We introduce the scalar product

(u, v)W l(R∞) =
∑
|α|≤l

(Dαu,Dαv)L2(R∞), (2.2)

where Dα is defined by

Dα =
∂|α|

(∂x1)α1(∂x2)α2 · · ·
, |α| =

∞∑
i=1

αi,

and the differentiation is in the sense of generalized functions, and after the
completion, we obtain the Sobolev spaces W l(R∞); l = 1, 2, · · · .
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In short, Sobolev spaces W l(R∞) of order l on R are defined by

W l(R∞) = {ϕ : Dαϕ ∈ L2(R∞), ∀α, |α| ≤ l}.

This space forms a Hilbert space denoted with the scalar product (2.2) ([4]).

As in the l case of bounded region, the spaces W l(R∞) form a sequence of
positive spaces. We can construct negative spaces W−l(R∞) with respect
to the zero space W 0(R∞) = L2(R∞) and then we are equipped with the
following ([8]):

W l(R∞) ⊆W 0(R∞) = L2(R∞) ⊆W−1(R∞),

‖u‖W l(R∞) ≥ ‖u‖L2(R∞) ≥ ‖u‖W−l(R∞),

analogous to the above chain we have a chain of the form:

W l
0(R∞) ⊆ L2(R∞) ⊆W−1

0 (R∞),

‖u‖W l
0(R∞) ≥ ‖u‖L2(R∞) ≥ ‖u‖W−l0 (R∞),

where

W l
0(R∞) =

{
ϕ : ϕ ∈W l(R∞),

∂ kϕ

∂nk

∣∣∣∣∣
Γ

= 0, 0 ≤ k ≤ l − 1

}
,

where ∂ kϕ
∂nk

is the normal k-order derivative on Γ oriented to the exterior of

R∞ and W−l0 (R∞) is its dual, the norm on W l
0(R∞) is given by

‖u‖W l
0(R∞,dp(x)) =

(∑
|α|≤l

(Dαu,Dαu)L2(R∞)

) 1
2

=

(∑
|α|≤l

‖Dα‖2L2(R∞)

) 1
2

. (2.3)

3. Main results

Definition 3.1. Let A be a second order self-adjoint elliptic partial deferen-
tial operator with an infinite number of variables that maps W 1(R∞) onto
W−1(R∞) and takes the form:

Ay(x) = −
∞∑
k=1

1√
pk(xk)

∂2

∂x2
k

√
pk(xk)y(x) + q(x)y(x)

= −
∞∑
k=1

(D2
ky(x) + q(x)y(x), (3.1)
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where

(Dky)(x) =
1√
pk(xk)

∂

∂xk

√
pk(xk)y(x)

and q(x) is a real valued function from L2(R∞, dp(x)) such that

q(x) ≥ v, 1 ≥ v > 0.

We consider a chain of the form:

W 1
0 (R∞) ⊆ L2(R∞) ⊆W−1

0 (R∞), (3.2)

where l = 1.

Every continuous bilinear form π(y, w) can be written in the form:

π(y, w) = (Ay,w), y, w ∈W 1
0 (R∞), (3.3)

where A is bounded operator.

In our consideration, we have an operator of the form (3.1) with and maps
y, w ∈W 1

0 (R∞) and maps W 1
0 (R∞) into W−1

0 (R∞), then

π(y, w) = −
∞∑
k=1

1√
pk(xk)

∂2

∂x2
k

√
pk(xk)y(x), w)L2(R∞)

+ (q(x)y(x), w(x))L2(R∞)

=

∞∑
k=1

(
1√
pk(xk)

∂

∂xk

√
pk(xk)y(x),

1√
(pk(xk)

∂

∂xk

√
pk(xk)w(x))L2(R∞)

+ (q(x)y(x), w(x))L2(R∞)

=
∞∑
k=1

(Dky(x), Dkw(x))L2(R∞) + (q(x)y(x), w(x))L2(R∞)

=

∞∑
k=1

∫
R∞

(Dk(y(x)), (Dk(w(x))dp(x) +

∫
R∞

q(x)y(x)w(x)dp(x).

To set our problem, we need to prove the following lemma ([8]), which
enable us to formulate our problem.

Lemma 3.2. The continuous bilinear form π(y, w) in (3.3) is coercive, that
means

π(y, y) ≥ v‖y‖2, v > 0, y ∈W 1(R∞). (3.4)
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Proof. It is well known that the ellipticity of A is sufficient for the coerciveness
of π(y, w) on W 1

0 (R∞) (see [12]). In fact

π(y, y) =

∞∑
k=1

∫
R∞

(Dk(y(x))(Dk(y(x))dp(x) +

∫
R∞

q(x)y(x)y(x)dp(x)

≥
∞∑
k=1

(Dky(x), Dky(x))L2(R∞) + v(y(x), y(x))L2(R∞)

=
∞∑
k=1

‖Dky‖2L2(R∞) + v‖y‖2L2(R∞)

=
∞∑
k=1

‖Dky‖2L2(R∞) + v‖Dky‖2L2(R∞) − v‖Dky‖2L2(R∞)

+ v‖y‖2L2(R∞)

= v||y‖2W 1
0 (R∞) + (1− v)‖Dky‖2L2(R∞).

Then π(y, y) ≥ v‖y‖2
W 1

0 (R∞)
, which gives the required. �

Let U = L2(R∞) be the space of controls. For the control u, the state
y(u) ∈W 1(R∞) is given by the solution of

y +Ay = f in R∞,

∂y

∂vA
+ β(y) 3 u in Γ1, (3.5)

y = 0 in Γ2,

where, ∂y
∂vA

is the outward normal derivative corresponding to A, f ∈ L2(Ω),

Γ2 is a smooth and open nonempty subset of Γ, Γ1 is the interior of Γ − Γ2

and β is a maximal monotone graph in R×R such that 0 ∈ D(β).

The optimal control problem (P ) can be set in the following form: Minimize
the function

g1(y) +

∫
Γ1

g0(z, y(z))dz + r(u), (3.6)

on all y ∈ W 1(R∞), z ∈ Γ1 and u ∈ L2(R∞) subject to the system (3.5),
where, g1 : L2(R∞)→ R+ and r(u) satisfy the following conditions:

(i) The function g1(y) is Lipschitz on bounded subsets of W 1(R∞) and
there exists a real number C and k0 ∈ L2(R∞) such that

g1(y) ≥ (k0, y) + C, ∀y ∈ L2(R∞),

that is, g1(y) is bounded from below by (k0, y) + C.
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(ii) The function r is convex lower semicontinuous and for some constants
c1 > 0, c2 ∈ R

r(u) ≥ c1‖u‖U + c2, ∀u ∈ U,
where, g0 : Γ1 × R→ R+ is measurable in z, differentiable in W 1(Ω)
satisfies the conditions:

g0(z, 0) = 0, |∇g0(z, y(z))| ≤ c(1 + |y|) a.e. z ∈ Γ1, ∀y ∈ R.

We define g2(y) = g1(y) +
∫
Γ1

g0(z, y(z))dz.

The pervious conditions of g1 and g0 implies that the function g2(y) satisfies
condition (i) and is Frechet differentiable in W 1(R∞).

Theorem 3.3. If the assumptions (i), (ii) and the coerciveness condition (3.4)
satisfy, then the problem (P ) has at least one optimal pair (y∗, u∗).

Proof. Let d = inf
{
g1(y) +

∫
Γ1

g0(z, y(z))dz+ r(u), u ∈ U
}

. Then, by assump-

tions (i), (ii) we see that −∞ < d <∞.
Now let {un} ⊂ U = L2(Ω) be such that

d ≤ g1(yn) +

∫
Γ1

g0(z, yn)dz + r(un),

where yn = y(un). Then, by assumption (ii) it follows that the sequence {un}
is weakly compact in U = L2(Ω) and so by Barbu ([2]) we may infer that a
subsequence {uni} with

uni → u∗ weakly in U = L2(Ω) and yni → y∗ strongly in W 1(Ω).

Since r(u) is a weakly lower semicontinuous on L2(Ω) and g1(y)+
∫
Γ1

g0(z, y)dz

is continuous on W 1(Ω), this yields

g1(y∗) +

∫
Γ1

g0(z, y∗) + r(u∗) = d,

that is, u∗ is an optimal control of problem (P). �

We will approximate (3.6) with a finite element method introduced in ([1,
10]).

Assume that Ω is a polygonal domain. Consider a triangulation =η of Ω in
the following sense: =η is a finite set of triangles T such that:

T ⊂ Ω̄ ∀T ∈ =η, UT∈=ηT = Ω̄,

T 0
1 ∩ T 0

2 = φ, ∀ T1, T2 ∈ =η and T1 6= T2,
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where T 0
i denotes the inner part of the corresponding triangle. Furthermore,

for all T1, T2 ∈ =η and T1 6= T2, exactly one of the following conditions must
hold:

(i) T1 ∩ T2 = φ.
(ii) T1 and T2 have only one common vertex.
(iii) T1 and T2 have only a whole common edge.

η is the length of the largest edge of the triangles in the triangulation. Define
℘ζ as a space of polynomials in T1 and T2 of degree less than or equal to ζ,
and ∑

η

= {℘ ∈ Ω̄, ℘ is a vertex of T ∈ =η}.

The space W 1
0 (R∞) is approximated by the family of subspaces (V ζ

η )η with
ζ = 1 or ζ = 2, where

V ζ
η = {vη ∈ C0(Ω̄), vη|∂Ω = 0 and vη|T ∈ ℘ζ , ∀T ∈ =η}.

It is obvious that the V ζ
η are finite dimensional. Then the space K = W 1

0 (R∞)
is approximated by

Kζ
η =

{
vη ∈ V ζ

η , vη(℘) ≥ ψ(℘), ∀℘ ∈
ζ∑
η

}
.

Notice that Kζ
η are closed convex nonempty subsets of V ζ

η .

The algorithm of the solution is given by the following steps:

Step 0: Choose an initial iterate µh and h ≥ 0.
Step 1: Solve the linear problem

((1 + µh)Ayh, A(v − yh)) +

∫
R∞

|Dkv + v| dp(x)−
∫
R∞

|(Dk + I)yh| dp(x)

−
∫
R∞

f · (u− yh)dp(x) = (µh, A(v − yh)).

Step 2: Update µα+1
h = max{0, µh + α((Dk + I)(uαh))} on each cell.

Step 3: Replace α by α+ 1 and go back to Step 1.

So we can prove the following theorem:

Theorem 3.4. Let (y∗, u∗) be an optimal pair of problem (P) and (3.5), where
β is locally Lipschitz monotonically increasing function. Then yh is a solution
of (3.6).
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Proof. From what have been introduced, the solution y is approximated by yh
which is the solution of

(A(yh), u− yh)+

∫
R∞

|Dku+ u|dp(x)−
∫
R∞

|Dkyh + yh| ≥
∫
R∞

f · (u− yh)dp(x),

∀u ∈ Kη, y ∈ Kη, f ∈W−1(R∞).

By using the augmented Lagrangian multipliers method, we find a discrete
solution of (3.6) as follows: The Lagrange functional is defined as follows:

L̂(u, µ) =
1

2
(A(u), u) +

∫
R∞

|Dku+ u| dp(x)−
∫
R∞

f · udp(x)

+

∫
R∞

µ(|Dku+ u| − 1) dp(x).

For ε ≥ 0, an augmented Lagrangian Lr is defined by

Lr(u, µ) = L̂(u, µ) +
ε

2

∫
R∞

µ(|Dku+ u− 1|2) dp(x).

For variational inequalities systems, augmented Lagrangian multipliers meth-
ods have been introduced by Glowinski and Marrocco (see [11]). Theorem
2.1 on p. 168 in ([10]) shows the existence of a solution of this optimization
problem ([1]). So, we can write the following linear problem:

((1 + µh)Ayh, A(v − yh)) +

∫
R∞

|Dkv + v| dp(x)−
∫
R∞

|Dkyh + yh|∫
R∞

f · (u− yh)dp(x) = (µh, A(v − yh)),

which is obtained by the variational calculus. �
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