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Abstract. The aim of this paper is to study certain subclass
∼
Sq

Σ(λ, α, t, s, p, b) of analytic

and bi-univalent functions which are defined by using symmetric q-derivative operator. We

estimate the second and third coefficients of the Taylor-Maclaurin series expansions belonging

to the subclass and upper bounds for Feketo-Szegö inequality. Furthermore, some relevant

connections of certain special cases of the main results with those in several earlier works

are also pointed out.

1. Introduction and Definitions

Let A denote the class of functions f(z) of the form:

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Also let
S denote the class of functions in A which are univalent in the unit disk U.

For analytic functions f and g with f(0) = g(0), f is said to be subordinate
to g if there exists an analytic function ω on U such that ω(0) = 0, |ω(z)| < 1
and f(z) = g(ω(z)) for z ∈ U. The subordination will be denoted by

f ≺ g or f(z) ≺ g(z) in U.
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Note that f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U) when g is univalent
in U.

The well-known Koebe one-quarter theorem [10] ensures that the image of
U under every univalent function f ∈ A contains a disk of radius 1/4. Hence
every function f ∈ S has an inverse f−1 satisfying f−1(f(z)) = z(z ∈ U) and

f−1(f(w)) = w (|w| < r0(f); r0(f) ≥ 1/4),

where

g(w) = f−1(w) = w−a2w
2 +(2a2

2−a3)w3−(5a3
2−5a2a3 +a4)w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are
univalent in U. Let Σ denote the class of bi-uninalent functions in U given by
(1.1). For a brief history and interesting examples of the class Σ, see [24].

In 1967, Lewin [17] investigated the class Σ of bi-univalent functions and
showed that |a2| < 1.51. Subsequently, Netanyahu [21] showed that maxf∈Σ |a2|
= 4/3 and Suffridge [26] has given an example of f ∈ Σ for which |a2| = 4/3.
Later, Brannan and Clunie [6] conjectured that |a2| ≤

√
2 for f ∈ Σ. A brief

summery of functions in the family Σ can be found in the study of Srivastava
et al. [24], which is a basic research on the bi-univalent function family Σ
(also, see the references cited therein). In a number of sequels to [24], bounds
for the first two coefficients |a2| and |a3| of different subclasses of bi-univalent
functions were given, for example, see [1, 2, 11, 12, 18, 23, 25]. But the coef-
ficient estimate problem for each of |an| (n ∈ N \ {1, 2};N = {1, 2, 3, · · · }) is
still an open problem. In recent years, Srivastava et al.’s pioneering research
on the subject [24] has successfully revitalized the study of bi-univalent func-
tions to have produced numerous bi-univalent function papers. There are also
several papers dealing with bi-univalent functions defined by subordination,
for example, see [3, 4, 7].

Chebyshev polynomials have become increasingly important in numerical
analysis, from both theoretical and practical points of view. The Chebyshev
polynomials of the first and second kinds are well known (see [9, 19, 20, 22]).
Recently, Kizilateş et al. [16] defined (p, b)-Chebyshev polynomials of the first
and second kinds and derived explicit formulas, generating functions and some
interesting properties of these polynomials.

For any integer n ≥ 2 and 0 < b < p ≤ 1, the (p, b)-Chebyshev polynomials
of the second kind is defined by the following recurrence relation:

Un(t, s, p, b) = (pn + bn)tUn−1(t, s, p, b) + (pb)n−1sUn−2(t, s, p, b) (1.3)



Certain subclass of bi-univalent functions 649

with the initial values U0(t, s, p, b) = 1, U1(t, s, p, b) = (p + b)t and s is a real
variable. Also, it follows readily from (1.3) that

U2(t, s, p, b) = t2(p+ b)(p2 + b2) + pbs, (1.4)

U3(t, s, p, b) = t3(p+ b)(p2 + b2)(p3 + b3) + pbst(p3 + b3) + (pb)2st(p+ b), · · · .

By assuming various values of t, s, p and b, we get some interesting polyno-
mials as follows (see [8, 16]):

(i) When t = t/2, s = s, p = p and b = q, the (p, b)-Chebyshev polynomi-
als of the second kind becomes (p, q)-Fibonacci polynomials.

(ii) When t = t, s = −1, p = 1 and b = q, the (p, b)-Chebyshev polynomials
of the second kind becomes q-Chebyshev polynomials of the second
kind.

(iii) When t = t, s = 1, p = 1 and b = 1, the (p, b)-Chebyshev polynomials
of the second kind becomes Pell polynomials.

(iv) When t = 1/2, s = 2y, p = 1 and b = 1, the (p, b)-Chebyshev polyno-
mials of the second kind becomes Jacobi polynomials.

The generating function of the (p, b)-Chebyshev polynomials of the second
kind is as follows:

Gp,b(z) =
1

1− tpzηp − tbzηb − spbz2ηp,b

=
∞∑
n=0

Un(t, s, p, b)zn (z ∈ U), (1.5)

where the Fibonacci operator ηb was introduced by Mason and Handscomb
[20], by ηbf(z) = f(bz). Similarly, we define another operator ηp,bf(z) =
f(pbz).

A q-analog of the class of starlike functions was first introduced in [13] by
means of the q-difference operator Dqf(z) acting on functions f ∈ A given
by (1.1) and 0 < q < 1, the q-derivative of a function f(z) is defined by (see
[14, 15])

Dqf(z) =
f(z)− f(qz)

(1− q)z
(z 6= 0), (1.6)

where, Dqf(0) = f ′(0) and D2
qf(z) = Dq(Dqf(z)). From (1.6), we have

Dqf(z) = 1 +
∞∑
n=2

[n]qanz
n−1,
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where [n]q = 1−qn
1−q . If q → 1−, [n]q → n. For a function h(z) = zn, we observe

that

Dq(h(z) = Dq(zn) =
1− qn

1− q
zn−1 = [n]qz

n−1,

lim
q→1−1

(Dq(h(z))) = lim
q→1−1

(
[n]qz

n−1
)

= nzn−1 = h′(z),

where h′ is the ordinary derivative.

With the aid of above definition, Brahim and Sidomou [5] introduced the

symmetric q-derivative
∼
Dqf which is defined as follows:

∼
Dqf(z) =


f(qz)− f(q−1z)

(q − q−1)z
(z 6= 0),

f ′(0) (z = 0).

(1.7)

From (1.7), we deduce that
∼
Dqzn =

∼
[n]qz

n−1 and a power series of
∼
Dqf is

∼
Dqf(z) = 1 +

∞∑
n=2

∼
[n]qanz

n−1,

when f has the form (1.1) and the symbol
∼
[n]q denotes the number

∼
[n]q =

qn−q−n

q−q−1 . It is easy to check that the following properties hold:

∼
Dq(f(z) + g(z)) =

∼
Dqf(z) +

∼
Dqg(z),

∼
Dq(f(z)g(z)) = g(q−1z)

∼
Dqf(z) + f(qz)

∼
Dqg(z)

= g(qz)
∼
Dqf(z) + f(q−1z)

∼
Dqg(z).

We note that
∼
Dqf(z) = Dq2f(q−1z).

Indeed, it follows From (1.2) and (1.7) that

∼
Dq g(w) =

g(qw)− g(q−1w)

(q − q−1)w

= 1−
∼
[2]qa2w +

∼
[3]q(2a

2
2 − a3)w2 −

∼
[4]q(5a

3
2 − 5a2a3 + a4)w3 + · · · .

Definition 1.1. Let 0 ≤ λ ≤ 1, 0 < b < p ≤ 1, α ∈ C \ {0} and 1
2 < t < 1. A

function f ∈ Σ is said to be in the subclass
∼
SqΣ(λ, α, t, s, p, b), if the following
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conditions are satisfied:

1 +
1

α

 z
∼
Dqf(z)

(1− λ)z + λf(z)
− 1

 ≺ Gp,b(z) (z ∈ U)

and

1 +
1

α

 w
∼
Dqg(w)

(1− λ)w + λg(w)
− 1

 ≺ Gp,b(w) (w ∈ U),

where g = f−1 and Gp,b is given by (1.5).

The object of the present paper is to study the Chebyshev polynomial ex-
pansions to provide estimates for the Taylor-Maclaurin coefficients |a2| and

|a3| for functions in the above-defined subclass
∼
SqΣ(λ, α, t, s, p, b). Also, we

investigate the Feketo-Szegö inequalities for the class
∼
SqΣ(λ, α, t, s, p, b).

2. Coefficient estimates for the subclass
∼
SqΣ(λ, α, t, s, p, b)

In order to establish our results, we shall need the following lemma.

Lemma 2.1. ([10]) Let P be the class of all analytic functions h in U of the
form:

h(z) = 1 +
∞∑
n=1

cnz
n,

which satisfy Re(h(z)) > 0 for all z ∈ U. Then if h ∈ P, then |cn| ≤ 2 (n ∈ N).

We begin by proving the following result.

Theorem 2.2. Let 0 ≤ λ ≤ 1, 0 < b < p ≤ 1, α ∈ C \ {0} and 1
2 < t < 1. If

the function f(z) given by (1.1) belongs to
∼
SqΣ(λ, α, t, s, p, b), then

|a2| ≤
|α|(p+ b)

3
2 t
√
t√

|ϕαλ(t, s, p, b)|
(2.1)

and

|a3| ≤
(p+ b)2|α|2t2

(
∼
[2]q − λ)2

+
(p+ b)|α|t

(
∼
[3]q − λ)

, (2.2)

where

ϕαλ(t, s, p, b) =(p+b)t2[α(p+b)(λ2−(1 +
∼
[2]q)λ+

∼
[3]q)−(

∼
[2]q−λ)2(p2 + b2)]

+ (
∼
[2]q − λ)2[(p+ b)t− pbs]. (2.3)
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Proof. Let f ∈
∼
SqΣ(λ, α, t, s, p, b) and g be the analytic function of f−1 to U.

Then there exist two functions φ and ψ, analytic in U with φ(0) = ψ(0) = 0,
|φ(z)| < 1 and |ψ(w)| < 1 (z, w ∈ U) such that

1 +
1

α

 z
∼
Dqf(z)

(1− λ)z + λf(z)
− 1

 = Gp,b(φ(z)) (z ∈ U) (2.4)

and

1 +
1

α

 w
∼
Dqg(w)

(1− λ)w + λg(w)
− 1

 = Gp,b(ψ(w)) (w ∈ U). (2.5)

Next, we define the function p, q ∈ P by

p(z) =
1 + φ(z)

1− φ(z)
= 1 + p1z + p2z

2 + · · ·

and

q(w) =
1 + ψ(w)

1− ψ(w)
= 1 + q1w + q2w

2 + · · ·

or equivalently,

φ(z) =
p(z)− 1

p(z) + 1
=

1

2
p1z +

1

2

(
p2 −

1

2
p2

1

)
z2 + · · · (2.6)

and

ψ(w) =
q(w)− 1

q(w) + 1
=

1

2
q1w +

1

2

(
q2 −

1

2
q2

1

)
w2 + · · · . (2.7)

Using (2.6) and (2.7) together with (1.5), it follows that

Gp,b(φ(z)) =1 +
U1(t, s, p, b)

2
p1z

+

(
U1(t, s, p, b)

2
(p2 −

1

2
p2

1) +
U2(t, s, p, b)

4
p2

1

)
z2 + · · · (2.8)

and

Gp,b(ψ(w)) =1 +
U1(t, s, p, b)

2
q1w

+

(
U1(t, s, p, b)

2
(q2 −

1

2
q2

1) +
U2(t, s, p, b)

4
q2

1

)
w2 + · · · . (2.9)

By equating the coefficients from (2.4), (2.5), (2.8) and (2.9), we have

1

α
(
∼
[2]q − λ)a2 =

U1(t, s, p, b)

2
p1, (2.10)

1

α

[
(
∼
[3]q−λ)a3+(λ2−

∼
[2]qλ)a2

2

]
=
U1(t, s, p, b)

2

(
p2−

p2
1

2

)
+
U2(t, s, p, b)

4
p2

1, (2.11)
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− 1

α
(
∼
[2]q − λ)a2 =

U1(t, s, p, b)

2
q1, (2.12)

and

1

α

[
(λ2 −

∼
[2]qλ)a2

2 + (
∼
[3]q − λ)(2a2

2 − a3)

]
=
U1(t, s, p, b)

2

(
q2 −

q2
1

2

)
+
U2(t, s, p, b)

4
q2

1. (2.13)

From (2.10) and (2.12), we find that

p1 = −q1, (2.14)

2

α2
(
∼
[2]q − λ)2a2

2 =
U2

1 (t, s, p, b)

4
(p2

1 + q2
1). (2.15)

If we add (2.11) to (2.13), then

2

α

(
λ2 − (

∼
[2]q + 1)λ+

∼
[3]q

)
a2

2

=
U1(t, s, p, b)

2
(p2 + q2) +

U2(t, s, p, b)− U1(t, s, p, b)

4
(p2

1 + q2
1). (2.16)

By using (2.15) in equality (2.16), we observe that

2

α

λ2 − (
∼
[2]q + 1)λ+

∼
[3]q −

(
∼
[2]q − λ)2(U2(t, s, p, b)− U1(t, s, p, b))

αU2
1 (t, s, p, b)

 a2
2

=
U1(t, s, p, b)

2
(p2 + q2). (2.17)

Then, by applying (1.3), (1.4) and Lemma 2.1 to (2.17), we obtain the in-
equality (2.1).

Next, if we subtract (2.13) from (2.11), we have

2

α
(
∼
[3]q − λ)(a3 − a2

2) =
U1(t, s, p, b)

2
(p2 − q2)

+
U2(t, s, p, b)− U1(t, s, p, b)

4
(p2

1 − q2
1). (2.18)

By applying (2.14), (2.15) and (2.18), it is evident that

a3 =
α2U2

1 (t, s, p, b)

8(
∼
[2]q − λ)2

(p2
1 + q2

1) +
αU1(t, s, p, b)

4(
∼
[3]q − λ)

(p2 − q2). (2.19)

Hence, by using (1.3) and Lemma 2.1 to (2.19), we get the inequality (2.2).
This completes the proof. �

By putting p = 1 in Theorem 2.2, we have the following corollary.



654 J. H. Choi

Corollary 2.3. Let 0 ≤ λ ≤ 1, 0 < b < 1, α ∈ C \ {0} and 1
2 < t < 1. If the

function f(z) given by (1.1) belongs to
∼
SqΣ(λ, α, t, s, 1, b), then

|a2| ≤
|α|(1 + b)

3
2 t
√
t√

|ζαλ (t, s, b)|
and

|a3| ≤
(1 + b)2|α|2t2

(
∼
[2]q − λ)2

+
(1 + b)|α|t

(
∼
[3]q − λ)

,

where

ζαλ (t, s, b) =(1 + b)t2[α(1 + b)(λ2 − (1 +
∼
[2]q)λ+

∼
[3]q)− (

∼
[2]q − λ)2(1 + b2)]

+ (
∼
[2]q − λ)2[(1 + b)t− bs]. (2.20)

Remark 2.4. Taking λ = 0, α = b = 1 and s = −1 in Corollary 2.3, we
obtain a recent result due to Altinkaya and Yalçin [3, Theorem 7].

Theorem 2.5. Let 0 ≤ λ ≤ 1, 0 < b < p ≤ 1, α ∈ C \ {0} and 1
2 < t < 1,

and let µ ∈ R. If the function f(z) given by (1.1) belongs to
∼
SqΣ(λ, α, t, s, p, b),

then

|a3 − µa2
2|≤



(p+ b)|α|t

(
∼
[3]q − λ)

, |µ− 1| ≤
|ϕαλ(t, s, p, b)|

(
∼
[3]q − λ)(p+ b)2|α|t2

,

(p+ b)3|α|2|1− µ|t3

|ϕαλ(t, s, p, b)|
, |µ− 1| ≥

|ϕαλ(t, s, p, b)|

(
∼
[3]q − λ)(p+ b)2|α|t2

,

(2.21)

where ϕαλ(t, s, p, b) is given by (2.3).

Proof. From (2.17) and (2.18), it yields

a3 − µa2
2

=
α U1(t, s, p, b)

4(
∼
[3]q − λ)

(p2 − q2)

+
(1− µ)α2U3

1 (t, s, p, b)(p2 + q2)

4[α U2
1 (t, s, p, b)(λ2 − (1 +

∼
[2]q)λ+

∼
[3]q)− (

∼
[2]q − λ)2 U(t, s, p, b)]

= α U1(t, s, p, b)

h(µ) +
1

4(
∼
[3]q − λ)

 p2 +

h(µ)− 1

4(
∼
[3]q − λ)

 q2

 ,
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where

U(t, s, p, b) = U2(t, s, p, b)− U1(t, s, p, b)

and

h(µ) =
(1− µ)α U2

1 (t, s, p, b)

4[α U2
1 (t, s, p, b)(λ2 − (1 +

∼
[2]q)λ+

∼
[3]q)− (

∼
[2]q − λ)2 U(t, s, p, b)]

.

Then, by using Lemma 2.1, we conclude that

|a3 − µa2
2| ≤



|α| U1(t, s, p, b)
∼
[3]q − λ

, 0 ≤ |h(µ)| ≤ 1

4(
∼
[3]q − λ)

,

4|α| U1(t, s, p, b) |h(µ)|, |h(µ)| ≥ 1

4(
∼
[3]q − λ)

.

(2.22)

So (2.21) can be easily obtained from (1.3) and (2.22). This evidently com-
pletes the proof. �

By taking p = 1 in Theorem 2.5, we get the following corollary.

Corollary 2.6. Let 0 ≤ λ ≤ 1, 0 < b < 1, α ∈ C \ {0} and 1
2 < t < 1, and let

µ ∈ R. If the function f(z) given by (1.1) belongs to
∼
SqΣ(λ, α, t, s, 1, b), then

|a3 − µa2
2| ≤



(1 + b)|α|t

(
∼
[3]q − λ)

, |µ− 1| ≤
|ζαλ (t, s, b)|

(
∼
[3]q − λ)(1 + b)2|α|t2

,

(1 + b)3|α|2|1− µ|t3

|ζαλ (t, s, b)|
, |µ− 1| ≥

|ζαλ (t, s, b)|

(
∼
[3]q − λ)(1 + b)2|α|t2

,

where ζαλ (t, s, b) is given by (2.20).

Remark 2.7. Taking λ = 0, α = b = 1 and s = −1 in Corollary 2.6, we get
a recent result due to Altinkaya and Yalçin [3, Theorem 9].
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