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Abstract. In this paper, we study the distributed optimal control problem of a coupled

system of the host-pathogen model. The system consists of the density of the susceptible

host, the density of the infected host, and the density of pathogen particles. Our main goal

is to minimize the infected density and also to decrease the cost of the drugs administered.

First, we prove the existence and uniqueness of solutions for the proposed problem. Then,

the existence of the optimal control is established and necessary optimality conditions are

also derived.

1. Introduction

For better understanding the mechanism of the spread of infectious disease
as well as treatment and prevention, mathematical models play an important
role. Bio-mathematicians and mathematical biologists have shown that these
diseases can affect the dynamics of communities. The host population is di-
vided into susceptible and infected classes, with one differential equation that
represent each class in classical epidemiology. Host-pathogen interactions are
the interactions between a host (plants or humans) and pathogen (bacteria or
virus).

In 1981, Anderson and May proposed the host-pathogen model and studied
about the population of infection without the intra-species competition and
also its spatial effects in [2]. Most of the interaction models are formulated
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in relation to time evolution by ordinary differential equations. This present
the limitation to not incorporate any spatial position and its possibility that
infection can spread over a spatial region. Therefore, many researchers have
recognized that spatial structure is also an important factor in the infectious
spread. In [8], Dwyer extended the original host-pathogen model with the
density-dependent host population dynamics and also incorporated the spa-
tial behavior of the populations. In [23], Wang et al. studied the general
system by replacing the constant parameters with spatial dependent parame-
ters and considering the solution dynamics on a general bounded domain with
zero-flux boundary conditions. The reaction-diffusion host-pathogen model
is analyzed in [21], in which the authors explored how diffusion rates and
spatial heterogeneity affect the dynamics of the system by incorporating the
frequency-dependent interaction.

Recently, in modern population dynamics, the use of reaction-diffusion (typ-
ical spatially extended model) is the simplest mechanism used to model a
variety of physical and biological phenomena [3, 9, 11, 12, 17, 22] and the ref-
erences therein. In this work, we considered the nonlinear coupled system of
host-pathogen model with spatial diffusion and also incorporated two control
variables as follows:

∂tu1 = D1∆u1 + r(1− u1 − u2)u1 − µu1 − βu1u3 + c1u1, in QT ,

∂tu2 = D2∆u2 + βu1u3 − νu2 − r(u1 + u2)u2, in QT ,

∂tu3 = αc2u2 − δu3, in QT ,

(1.1)

with initial and boundary conditions

ui(x, 0) = ui,0(x) > 0, i = 1, 2, 3 in Ω,
∂ui
∂η

= 0, i = 1, 2, in ΣT ,

where QT = Ω × (0, T ), ΣT = ∂Ω × (0, T ), Ω is an open bounded domain in
Rd, (d ≤ 3) with boundary ∂Ω and η is the unit normal vector on ∂Ω. The
mathematical model consists of three physical variables describing the density
of susceptible hosts u1(x, t), the density of infected hosts u2(x, t) and the
density of pathogen particles u3(x, t) at time t and spatial position x. Here,
Di > 0, i = 1, 2 denotes the constant diffusion coefficients of the corresponding
population. The parameters r, µ, β, ν, α and δ are positive constants, which are
shown in Table 1. In (1.1), ui,0(x), i = 1, 2, 3 represent the initial conditions
of unknown variables ui, i = 1, 2, 3 respectively. Further, we have assumed the
Neumann boundary conditions on the boundary ΣT .

Our aim is to minimize the infected hosts and to maximize the density of
susceptible hosts. To achieve this, we formulate an optimal control problem
with two control interventions c1 and c2. In this article, we focused on a partial
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Table 1. Symbols and description of parameters

Symbol Description
u1 Density of susceptible hosts
u2 Density of infected hosts
u3 Density of pathogen particles
D1 Constant diffusion coefficient of susceptible hosts
D2 Constant diffusion coefficient of infected hosts
r Reproductive rate of the host
t Time
µ Natural death rate of susceptible hosts
β Transmission rate
c1 Efficaciousness of drug therapy in blocking off the infection

of new cells
c2 Efficacy of drug therapy in decreasing the production of

virus
ν Death rate of infected hosts
α Production rate of pathogen particles from the infected hosts
δ Decay rate of pathogen particles

differential equations (PDE) constrained optimal control problem. The PDE
incorporates the dynamics of the population and its control strategies. In the
literature, many researchers have developed optimal control problems related
to epidemic models without spatial distribution [1, 5, 7, 10, 15, 16, 19], the
study of optimal control problems constrained by PDE models with spatial
behavior of population are much fewer, among which are Zine et al. [24], Liu
et al. [13], Sowndarrajan et al. [18] and the references therein [6].

Our work in this paper is different from others so far reported in the lit-
erature. We prove the existence and uniqueness of the model with spatial
movement and control variables for a model (1.1). It is to note that apart
from the existence of optimal control, we also verified the necessary first-order
condition satisfied by the optimal control. Other than the literature mentioned
above, for optimal control problems constrained by system of PDEs (1.1) with
diffusion operators concerned, it should be emphasized that, to the best of
authors knowledge, there is no paper available in the literature. Therefore,
in this work, we have made an attempt to study an optimal control problem
with PDEs (1.1).

The paper is organized as follows. In Section 2, we prove the existence of
a global strong solution for the direct system (1.1). Section 3 is devoted to
optimal control, in which we study the existence of optimal solution for our
proposed optimal control problem. Then we derive the adjoint problem and
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the first order optimality conditions using the Lagrangian framework. Finally,
we obtain the existence of solution to the adjoint problem.

2. Existence of global solutions for direct problem

In this section, we study the existence of global solutions for direct problem
(1.1). We consider the Hilbert space H = L2(Ω) and the initial condition
u0 = (u1,0, u2,0, u3,0). By A : D(A) ⊂ H → H the linear operator

Au = (D1∆u1, D2∆u2, 0), for all u = (u1, u2, u3) ∈ D(A), (2.1)

D(A) =

{
u = (u1, u2, u3) ∈ (H2(Ω))2 × L∞(Ω),

∂u1

∂η
=
∂u2

∂η
= 0, x ∈ ∂Ω

}
and by f(u(t), t) = (f1(u, t), f2(u, t), f3(u, t)) the nonlinear term in (1.1) as f1(u, t) = r(1− u1 − u2)u1 − µu1 − βu1u3 + c1u1,

f2(u, t) = βu1u3 − νu2 − r(u1 + u2)u2,
f3(u, t) = αc2u2 − δu3,

(2.2)

for all u ∈ D(f), t ∈ [0, T ], where D(f) = {u ∈ L2(Ω), f(u, t) ∈ L2(Ω), for all
t ∈ [0, T ]}. Then the problem (1.1) can be rewritten as{

u′(t) = Au(t) + f(u(t), t), t ∈ [0, T ],
u(0) = u0.

(2.3)

Theorem 2.1. ([4, 14, 20]) Let A : D(A) ⊂ X → X be the infinitesimal
generator of a C0−semigroup of contractions on a Banach space X, f : X ×
[0, T ]→ X be a function, measurable in t and Lipschitz continuous in x ∈ X,
uniformly with respect to t ∈ [0, T ].

(1) If u0 ∈ X, then problem (2.3) has a unique mild solution u ∈ C([0, T ];X)
which verifies the equality

u(t) = S(t)u0 +

∫ t

0
S(t− s)f(u(s), s)ds, for all t ∈ [0, T ].

(2) If in addition X is a Hilbert space, A is self-adjoint and dissipative on
X and u0 ∈ D(A), then the mild solution is in fact a strong solution
and u ∈W 1,2(0, T ;X) ∩ L2(0, T ;D(A)).

Let Uad be the set of admissible control functions:

Uad = {(c1, c2) ∈ (L2(QT ))2, 0 ≤ c1(x, t) ≤ 1, 0 ≤ c2(x, t) ≤ 1 a.e on QT }.

Theorem 2.2. Let Ω be a bounded domain from Rd, d ≤ 3, with the boundary
of class C2+α, α > 0. If the given parameters are positive, c1, c2 ∈ Uad and
u0 = (u1,0, u2,0, u3,0) ∈ D(A), ui,0 > 0 on Ω, i = 1, 2, 3, then the problem (1.1)
has a unique (global) strong solution u = (u1, u2, u3) ∈W 1,2(0, T ;L2(Ω)) such
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that ui ∈ L2(0, T ;H2(Ω)∩L∞(0, T ;H1(Ω))), i = 1, 2, and ui ∈ L∞(QT ), ui >
0 on QT for i = 1, 2, 3. Moreover, there exists C > 0 independent of the control
terms c1, c2 and of the corresponding state solution u such that{
‖∂tui‖L2(QT )+‖ui‖L2(0,T ;H2(Ω))+‖ui‖H1(Ω)+‖ui‖L∞(QT ) ≤ C, i = 1, 2,
‖∂tu3‖L2(QT ) + ‖u3‖L∞(QT ) + ‖u3(t)‖L2(Ω) ≤ C.

(2.4)

Proof. One associates to problem (2.3) the so-called truncated problem:

u′N (t) = AuN (t) + fN (uN (t), t), t ∈ [0, T ], uN (0) = u0, (2.5)

where N > 0 is large enough and fN (u, t) = (fN1 (u, t), fN2 (u, t), fN3 (u, t))
is obtained from f(u, t) = (f1(u, t), f2(u, t), f3(u, t)) from (2.2) in the fol-
lowing way. If |u1| ≤ N , then u1 in f1(u1, u2, u3, t) remains unchanged. If
u1 > N, u1 from (2.2) is replaced by N. If u1 < −N, then u1 is replaced by
−N . Similarly one proceeds for u2 and u3. Thus function fN = (fN1 , f

N
2 , f

N
3 )

becomes Lipschitz continuous in u = (u1, u2, u3) uniformly with respect to
t ∈ [0, T ]. According to Theorem 2.1, problem (2.5) admits a unique strong
solution uN = (uN1 , u

N
2 , u

N
3 ) ∈W 1,2(0, T ;L2(Ω)) with uNi ∈ L2(0, T ;H2(Ω)) ∩

L∞(0, T ;H1(Ω)).
To prove the boundedness of uN , we take

M = max{‖fNi ‖L∞(QT ), ‖ui,0‖L∞(Ω), i = 1, 2, 3}

and therefore function vN1 (x, t) = uN1 (x, t)−Mt− ‖u1,0‖L∞(Ω) satisfies{
d
dtv

N
1 (t) = D1∆vN1 + fN1 (uN , t)−M, t ∈ [0, T ],

vN1 (0) = u1,0 − ‖u1,0‖L∞(Ω).

Then the strong solution of the problem can be written as

vN1 (t) = S(t)(u1,0 − ‖u1,0‖L∞) +

∫ t

0
S(t− s)(fN1 (uN , s)−M)ds,

where {S(t), t ≥ 0} is the C0−semigroup generated by the operator B :
D(B) ⊂ H → H,

Bu1 = D1∆u1, D(B) =

{
u1 ∈ H2(Ω),

∂u1

∂η
= 0 a.e. on ∂Ω

}
.

Since u1,0 − ‖u1,0‖L∞(Ω) ≤ 0 and fN1 (uN , s)−M ≤ 0, it follows that

vN1 (x, t) ≤ 0 for all (x, t) ∈ QT .

Similarly, we prove that wN1 (x, t)−uN1 (x, t)+Mt+‖u1,0‖L∞(Ω) is nonnegative.
Then

|uNi (x, t)| ≤Mt+ ‖ui,0‖L∞(Ω) for all (x, t) ∈ QT , i = 1, 2, 3. (2.6)
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Thus we have proved that uNi ∈ L∞(QT ), i = 1, 2, 3, the upper bound being
dependent only on N. To show the positiveness of uN1 , we write the problem
as 

∂uN1
∂t v

N
1 (t) = D1∆uN1 + fN1 (uN , t), (x, t) ∈ QT ,

∂uN1
∂η = 0, (x, t) ∈ Σ,

uN1 (x, 0) = u1,0, x ∈ Ω.

(2.7)

We set uN1 = (uN1 )+−(uN1 )− with (uN1 )+(x, t) = sup{uN1 (x, t), 0}, (uN1 )−(x, t) =
− inf{uN1 (x, t), 0}. One multiplies (2.7) by (uN1 )−, integrating over Ω × [0, t]
and using Green’s formula, we obtain∫

Ω
|(uN1 )−|2dx ≤ c

∫ t

0

∫
Ω
|(uN1 )−|2dxds,

for some constant c > 0. Gronwall’s inequality leads to uN1 (x, t) ≥ 0 on QT .
Since u1,0 > 0 on Ω, one deduces that uN1 (x, t) > 0, for all (x, t) ∈ QT .
Similarly, we get uN2 (x, t) > 0 and uN3 (x, t) > 0, for all (x, t) ∈ QT .

If we choose N > 2 max{‖ui,0‖L∞(Ω), i = 1, 2, 3}, there exists θ ∈ (0, T )

such that Mθ + ‖ui,0‖L∞(Ω) ≤ N
2 , i = 1, 2, 3. From (2.6) we derive that

|uNi (x, t)| ≤ N, for all t ∈ (0, θ), x ∈ Ω, i = 1, 2, 3. Thus fN = f for t ∈ (0, θ),
so uN = (uN1 , u

N
2 , u

N
3 ) is a solution of problem (1.1) defined on Ω×(0, θ). Now,

we prove that this local solution is in fact a global solution to our problem. To
this end, it sufficient to show that uNi , i = 1, 2, 3 are bounded on Ω×(0, θ). By
the third equation from (1.1), together with u1, u3 > 0 on QT and u3,0 > 0 on

Ω, we get 0 < u3(x, t) ≤ u3,0(x)e−δt, (x, t) ∈ QT . Hence u3 ∈ L∞(Ω× (0, θ)).
By the first equation of (1.1), it follows that 0 < u1(x, t) ≤ ũ1(x, t), (x, t) ∈

Ω× (0, θ), where ũ1 is the solution of the boundary value problem
∂ũ1
∂t = D1∆ũ1 + rũ1, (x, t) ∈ Ω× (0, θ),
∂ũ1
∂η = 0, (x, t) ∈ ∂Ω× (0, θ),

ũ1(x, 0) = u1,0, x ∈ Ω.

Since ũ1 ∈ L∞(Ω × (0, θ)), we get u1 ∈ L∞(Ω × (0, θ)). Similarly, we can
also find that u2 ∈ L∞(Ω × (0, θ)). Therefore the solution u = (u1, u2, u3) is
defined on the whole set QT , ui ∈ L∞(QT ), ui ∈ W 1,2(0, T ;L2(Ω), ui > 0)
on QT , i = 1, 2, 3 and ui ∈ L2(0, T ;H2(Ω)), i = 1, 2.

By the first equation of (1.1) one obtains via Green’s formula:∫ t

0

∫
Ω
|∂tu1|2dsdx+D2

1

∫ t

0

∫
Ω
|∆u1|2dsdx+ 2D1

∫
Ω
|∇u1|2dx

−2D1

∫
Ω
|∇u1,0|2dx =

∫ t

0

∫
Ω
u2

1(r(1− u1 − u2)− µ− βu3 + c1)2dsdx.
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Since u1,0 ∈ H2(Ω) and ‖ui‖L∞(QT ), i = 1, 2, 3 are bounded independently of

the control terms ci, i = 1, 2, we yield that u1 ∈ L∞(0, T ;H1(Ω)) and the first
inequality in (2.4) holds for the case i = 1. Case i = 2 can be treated similarly
as previous. Multiplying the third equation of (1.1) by u3 and integrating over
Ω× [0, t]. This completes the proof. �

3. Optimal control problem

In this section, we study the existence of optimal control, the derivation of
the adjoint problem and also the optimality conditions. Further, the existence
of solution for the adjoint problem is also proved. First, we prove the existence
of solution for the following optimal control problem:

Ĵ(u2, c1, c2) =
α1

2

∫
QT

|u2 − u2Q|2dxdt+
1

2

∫
QT

(Ac2
1 +Bc2

2)dxdt, (3.1)

where (c1, c2) belongs to the admissible set Uad. Here, J is the cost functional
and u2 is the state variable and c1 and c2 are the control variables, while u2Q is
the corresponding desired rates belong to L2(QT ). Moreover, α1 and A,B are
the positive parameters used to change the relative importance of the terms
that appear in the definition of the functional. The goal is to minimize the
functional (3.1) subject to state equations with respect to input rate.

3.1. Existence of control.

Theorem 3.1. If the parameters r, µ, β, ν, α and δ are positive and u0 ∈
D(A), ui,0 > 0, i = 1, 2, 3 on Ω, then the optimal control problem (3.1)
subject to (1.1) admits an optimal solution (u∗1, u

∗
2, u
∗
3, c
∗
1, c
∗
2).

Proof. We denote inf J(u, c1, c2) = m, where m is finite, c1, c2 ∈ Uad and u
is the solution of (1.1). Therefore, there exists a sequence (un, cn1 , c

n
2 ) with

cni ∈ Uad, i = 1, 2, un ∈W 1,2(0, T ;L2(Ω)) such that
∂tu

n
1 = D1∆un1 + r(1− un1 − un2 )un1 − µun1 − βun1un3 + cn1u

n
1 in QT ,

∂tu
n
2 = D2∆un2 + βun1u

n
3 − νun2 − r(un1 + un2 )un2 in QT ,

∂tu
n
3 = αcn2u

n
2 − δun3 in QT ,

(3.2)

with initial and boundary conditions

uni (x, 0) = uni,0(x), i = 1, 2, 3 in Ω, and
∂uni
∂η

= 0, i = 1, 2 in ΣT . (3.3)

Therefore, there exists a sequence such that J(un, cn1 , c
n
2 )→ m as m ∈ [0,+∞),

and m ≤ J(un, cn1 , c
n
2 ) ≤ m+ 1

n , for all n ≥ 1. By Theorem 2.2, there exists a
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constants C > 0 independent of n such that{
‖∂tuni ‖L2(QT ) + ‖uni ‖L2(0,T ;H2(Ω)) + ‖uni (t)‖H1(Ω) ≤ C, i = 1, 2,
‖un3 (t)‖L2(Ω) ≤ C,

(3.4)

for all n ≥ 1, t ∈ [0, T ]. The sequence {uni } is bounded in C([0, T ;L2(Ω)) and
{∂tuni }, i = 1, 2 is bounded in L2(QT ). The third equation from (3.2) gives∫

Ω
(un3 )2(x, t)dx=

∫
Ω

(u3,0)2dx+2

∫ t

0

∫
Ω
un3 (αcn2u

n
2 − δun3 )dxdt for all t ∈ [0, T ].

This implies that for all t, s ∈ [0, T ],∣∣∣∣∫
Ω

(un3 )2(x, t)dx−
∫

Ω
(un3 )2(x, s)dx

∣∣∣∣ ≤ k|t− s|,
so by the Ascoli-Arzela Theorem we derive the existence of a function u∗3 such
that un3 → u∗3 in L2(Ω) uniformly with respect to t ∈ [0, T ], at least on a
subsequence denoted again un3 . Since H1(Ω) is compactly embedded in L2(Ω),
we infer that uni (t) is compact in L2(Ω), for any t ∈ [0, T ] and for i = 1, 2. The
Ascoli-Arzela Theorem implies that {uni } is compact in C([0, T ];L2(Ω)), i =
1, 2. Hence, selecting further sequences, if necessary, we have uni → u∗i in
L2(Ω), i = 1, 2 uniformly with respect to t ∈ [0, T ]. The boundedness of {∆uni }
in L2(QT ) implies its weak convergence, namely ∆uni ⇀ ∆u∗i in L2(QT ), i =
1, 2. Estimates (3.4) lead to

∂tu
n
i ⇀ ∂tu

∗
i in L2(QT ), i = 1, 2, 3,

uni ⇀ u∗i weakly star in L∞(0, T ;H1(Ω)), i = 1, 2,

uni ⇀ u∗i in L2(0, T ;H2(Ω)), i = 1, 2.

Writing un1u
n
2 − u∗1u∗2 = (un1 − u∗1)un2 + u∗1(un2 − u∗2) and un1u

n
3 − u∗1u∗3 = (un1 −

u∗1)un3 +u∗1(un3−u∗3) and making use of the convergences uni −u∗i → 0, i = 1, 2, 3
in L2(QT ) and of the boundedness of {un2}, {un3} in L∞(QT ), we get

un1u
n
2 → u∗1u

∗
2, un1u

n
3 → u∗1u

∗
3 in L2(QT ).

We also have cn1 ⇀ c∗1 and cn2 ⇀ c∗2 in L2(QT ) on a subsequence denoted again
cni , i = 1, 2. Since, Uad is a closed and convex set in L2(QT ), it is weakly closed,
so (c∗1, c

∗
2) ∈ Uad and as above cn1u

n
1 → c∗1u

∗
1 and cn2u

n
2 → c∗2u

∗
2 in L2(QT ). Now

we pass to the limit in L2(QT ) as n→∞ in (3.2) to deduce that (u∗, c∗1, c
∗
2) is

an optimal solution. This completes the proof. �
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3.2. Optimality conditions and dual problem.

Theorem 3.2. If (u∗1, u
∗
2, u
∗
3) is an optimal solution of the direct problem (1.1)

and (c∗1, c
∗
2) is an optimal control pair of (3.1), then there exists a solution

(p1, p2, p3) for the adjoint system subject to boundary and final conditions:

∂p1

∂η
=
∂p2

∂η
= 0 on ΣT and p1(x, T ) = p2(x, T ) = p3(x, T ) = 0 in Ω.

Further, the optimality conditions are given by

c∗1 = max
{

min{−p1u1

A
, 1}, 0

}
and c∗2 = max

{
min{−αp3u2

B
, 1}, 0

}
.

Proof. Defining the Lagrangian function as follows:

L (u1, u2, u3, p1, p2, p3, c1, c2)

=
α1

2

∫
QT

|u1 − u1Q|2dxdt+
1

2

∫
QT

(Ac2
1 +Bc2

2)dxdt

−
∫
QT

p1[∂tu1 −D1∆u1 − r(1− u1 − u2)u1 + µu1 + βu1u3 − c1u1]

−
∫
QT

p2[∂tu2 −D2∆u2 − βu1u3 + νu2 + r(u1 + u2)u2]

−
∫
QT

p3[∂tu3 − αc2u2 + δu3].

The first order optimality system is given by the Karush-Kuhn-Tucker(KKT)
conditions which results from equating the partial derivatives of the Lagrangian
L (u1, u2, u3, p1, p2, p3, c1, c2) with respect to u1, u2 and u3 equal to zero. Now,

∂tp1 = −D1∆p1 − r(1− 2u1 − u2)p1 + µp1 + βu3p1 − c1p1 − βu3p2

+ru2p2 − α1(u1 − u1Q),
∂tp2 = −D2∆p2 + νp2 + 2ru2p2 − p3αc2 + p1ru1,
∂tp3 = p3δ + p1βu1 − p2βu1,

(3.5)

with boundary and final conditions:

∂pi
∂η

= 0, i = 1, 2 on ΣT , (3.6)

pi(T ) = 0, i = 1, 2, 3 in Ω. (3.7)

The system (3.5)-(3.6) is the required adjoint problem for the given optimal
control problem (3.1) with system of PDE constraints (1.1). Further, to find
the optimality conditions, we calculate the gradient of the J(c1, c2) :

∇J(c1) =
∂L

∂c1
=

∫
QT

(Ac1 + p1u1)dxdt
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and

∇J(c2) =
∂L

∂c2
=

∫
QT

(Bc2 + αp3u2)dxdt.

Using the property of control space and the compact notation, the optimality
condition can be written as

c∗1 = max
{

min{−p1u1

A
, 1}, 0

}
and c∗2 = max

{
min{−αp3u2

B
, 1}, 0

}
.

�

3.3. Existence of the solution of adjoint problem.

Theorem 3.3. Under the hypotheses of Theorem 2.2, if (u∗, c∗1, c
∗
2) is an op-

timal pair, then the adjoint system (3.5)-(3.6) admits a unique strong solution
p = (p1, p2, p3) ∈W 1,2(0, T ;L2(Ω)) with p ∈ L∞(Ω) and pi ∈ L2(0, T ;H2(Ω))∩
L∞(0, T ;H1(Ω)), i = 1, 2.

It is easy to establish the existence of a strong solution to the given adjoint
system. This can be proved by making the change of variables s = T − t and
the change of functions qi(x, s) = pi(x, T−s) = pi(x, t), (x, t) ∈ QT , i = 1, 2, 3
and applying the same method as in the proof of Theorem 2.2.

4. Conclusion

In this paper, we have examined the distributed optimal control problem for
the host-pathogen interaction model constrained by a reaction-diffusion sys-
tem. The mathematical model consists of three coupled equations involving
the density of susceptible hosts, the density of infected hosts, and the density
of pathogen particles. It describes the importance of the effect of spatial move-
ment and distinct diffusion rates on the dynamics of a diffusive host-pathogen
system. We aim to minimize the density of infected cells and also to decrease
the cost of the drugs administered. First, we proved the existence of a global
strong solution for the direct problem. Further, we proved the existence of
optimal control and derived the necessary optimality conditions. Finally, we
discussed the existence of a strong solution to the adjoint system. We note
that obtaining the first-order necessary condition for an optimal control prob-
lem is more important because it is useful for designing feedback controls and
also in the development of more efficient and faster numerical simulations of
optimal control algorithms. Moreover, it would be interesting to explore the
effects of controls using the numerical simulations with additional optimal con-
trol measures and perform a sensitivity analysis on the parameters can be our
future direction of the work. Based on the ideas in the current paper, we shall
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investigate this more realistic problem in the near future.

Acknowledgments: The author would like to thank the anonymous referees
for their valuable comments and suggestions, which improved the quality of
this article.

References

[1] M.O. Adewole, Analysis of Transmission Dynamics of Cholera: An Optimal Control
Strategy, J. Appl. Nonlinear Dyn., 11(2) (2022), 387-400.

[2] R.M. Anderson and R.M. May, The population dynamics of microparasites and their
invertebrate hosts, Phil. Trans. Royal Soc. London B, Biol. Sci., 291 (1981), 451-524.

[3] B.S. Attili, Investigation of the Stability and the Anti-Synchronization of the Brusselator
Chemical Reaction Model, Nonlinear Funct. Anal. Appl., 25(1) (2020), 189-197.

[4] V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Aca-
demic Publishers, Dordrecht, 1994.

[5] E.H. Bussell and N.J. Cunniffe, Optimal strategies to protect a sub-population
at risk due to an established epidemic, J. R. Soc. Interface, 19(186) (2022),
DOI:10.1098/rsif.2021.0718.

[6] M. Divya, Optimal control and Hopf Bifurcation analysis of delay dependent HIV pro-
tease inhibitor model, Nonlinear Funct. Anal. Appl., 25(3) (2020), 453-471.

[7] S. Dühring, J. Ewald, S. Germerodt, C. Kaleta, T. Dandekar and S. Schuster, Modelling
the hostpathogen interactions of macrophages and Candida albicans using Game Theory
and dynamic optimization, J. R. Soc. Interface, 14 (2017), DOI:10.1098/rsif.2017.0095.

[8] G. Dwyer, Density Dependence and Spatial Structure in the Dynamics of Insect
Pathogens, The American Naturalist, 143 (1994), 533-562.

[9] A. El Alami Laaroussi and M. Rachik, On the regional control of a reaction-diffusion
system SIR, Bull. Math. Biol., 82 (2020), 125.

[10] J. Ewald, P. Sieber, R. Garde, S.N. Lang, S. Schuster and B. Ibrahim, Trends in math-
ematical modeling of hostpathogen interactions, Cell. Mol. Life Sci., 77 (2020), 467-480.

[11] J. Ge, K.I. Kim, Z. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a
low-risk and high-risk domain, J. Diff. Equ., 259 (2015), 5486-5509.

[12] A.E.A. Laaroussi, R. Ghazzali, M. Rachik and S. Benrhila, Modeling the spatiotemporal
transmission of Ebola disease and optimal control: a regional approach, Int. J. Dyn.
Control, 7 (2019), 1110-1124.

[13] Y. Liu, S. Jian and J. Gao, Dynamics analysis and optimal control of SIVR epidemic
model with incomplete immunity, Adv. Cont. Discr. Mod., 1 (2022), 1-22.

[14] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-
tions, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.

[15] O.J. Peter, A.I. Abioye, F.A. Oguntolu, T.A. Owolabi, M.O. Ajisope, A.G. Zakari and
T.G. Shaba, Modelling and optimal control analysis of Lassa fever disease, Inform. Med.
Unlocked, 20 (2020), DOI:10.1016/j.imu.2020.100419.

[16] M. Shirazian and M.H. Farahi, Optimal control strategy for a fully determined HIV
model, Intelligent Control and Automation, 1(1) (2010), 15-19.

[17] P.T. Sowndarrajan, Existence and optimal control analysis of acid-mediated tumor in-
vasion model, Adv. Diff. Equ. Control Processes, 30 (2023), 53-72.



670 P. T. Sowndarrajan

[18] P.T. Sowndarrajan, N. Nyamoradi, L. Shangerganesh and J. Manimaran, Mathematical
analysis of an optimal control problem for the predatorprey model with disease in prey,
Optim. Control Appl. Methods, 41(5) (2020), 1495-1509.

[19] P.T. Sowndarrajan, L. Shangerganesh, A. Debbouche and D.F.M. Torres, Optimal con-
trol of a heroin epidemic mathematical model, Optimization, 71(11) (2021), 3107-3131.

[20] I. Vrabie, C0 -Semigroups and Applications, Math. Stud. North-Holland, 191, 2003.
[21] J. Wang and R. Cui, Analysis of a diffusive host-pathogen model with standard incidence

and distinct dispersal rates, Adv. Nonlinear Anal., 10(1) (2021), 922-951.
[22] W. Wang, W. Ma and Z. Feng, Complex dynamics of a time periodic nonlocal and

time-delayed model of reaction-diffusion equations for modeling CD4+ T cells decline,
J. Comput. Appl. Math., 367 (2020), doi.org/10.1016/j.cam.2019.112430.

[23] F.B. Wang, J. Shi and X. Zou, Dynamics of a host-pathogen system on a bounded spatial
domain, Commun. Pure Appl. Anal., 14(6) (2015), 25-35.

[24] H. Zine, A.E. Adraoui and D.F.M. Torres, Mathematical analysis, forecasting and op-
timal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA
model, AIMS, Mathematics, 7(9) (2022), 16519-16535.


