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Abstract. In this paper, we prove the generalized Hyers-Ulam stability of a general quintic

functional equation,
6∑

k=0

(−1)k6Ckf(x + (3 − k)y) = 0, by using the fixed point method.

1. Introduction

In 1940, Ulam [11] asked the following question about the stability of group
homomorphisms:

What are the conditions under which an exact solution exists
near each approximate solution of a given functional equation?

In 1941, Hyers [6] gave an affirmative answer to this question for additive
mappings between Banach spaces. Thereafter, a number of mathematicians
came to deal with this question (see [5, 8, 9, 10]).

The following functional equation:

6∑
k=0

(−1)k6Ckf
(
x+ (3− k)y

)
= 0 (1.1)
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is a kind of the general quintic functional equation, where nCk = n!
k!(n−k)! is

the binomial coefficient. Every solution of equation (1.1) is called the general
quintic mapping. For example, the mapping f(x) = a5x

5 + a4x
4 + a3x

3 +
a2x

2 +a1x+a0, where a5, a4, a3, a2, a1, and a0 are real constants, is a general
quintic mapping as we can easily check that it is a solution of the functional
equation (1.1).

To the best of our knowledge, Cădariu and Radu were the first to prove
the Hyers-Ulam stability of functional equations using the fixed point method
(see [1, 2, 3]).

In this paper, we apply the fixed point method to prove the generalized
Hyers-Ulam stability of a general quintic functional equation (1.1). More
precisely, starting from an arbitrary approximate solution f of a general quintic
functional equation (1.1), we will explicitly construct an exact solution F of
this equation using the formula:

F (x) = lim
n→∞

n∑
i=0

nCi

(
(−1)n−i20i

64n
fe
(
22n−ix

)
+

i∑
j=0

iCj(−42)i−j336j

512n
fo
(
23n−i−jx

))
or

F (x) = lim
n→∞

n∑
i=0

nCi

(
i∑

j=0

iCj42j(−336)i−j512n−ifo

(
x

23n−i−j

)

+ 20i(−64)n−ife

(
x

22n−i

))
,

depending on the given conditions, where fe is the even part and fo is the
odd part of the function f . Furthermore, we will prove that the constructed
function F is quite close to the function f with respect to the sup-norm.

Throughout the paper, we denote by N the set of all positive integers and
by N0 the set of all nonnegative integers.

2. Preliminaries

Let S be a set. A function d : S × S → [0,∞] is called a generalized metric
on S, if d satisfies the following conditions:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ S;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.
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In the case, (S, d) is called a generalized metric space. The only real difference
between generalized and traditional metrics is that infinity belongs to the
range of generalized metrics.

We shall now introduce a theorem of Diaz and Margolis [4]. It has been
proved by a number of examples that this theorem is very useful to prove the
stability of various functional equations.

Theorem 2.1. ([4]) Assume that (S, d) is a complete generalized metric space
and J : S → S is a strictly contractive mapping with the Lipschitz constant
0 < L < 1. Then, for each element x ∈ S, either

d
(
Jnx, Jn+1x

)
=∞ (for all n ∈ N0)

or there exists a k ∈ N0 that satisfies the following four conditions:

(i) d
(
Jnx, Jn+1x

)
<∞ for all integers n ≥ k;

(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of J in T =

{
y ∈ S : d

(
Jkx, y

)
<∞

}
;

(iv) d
(
y, y∗

)
≤ 1

1−Ld(y, Jy) for all y ∈ T .

From now on, we set c21 = 4
√

21 cos θ − 14. The following two lemmas are
essential to proving the main theorems of our paper. To prove these lemmas,
we only need very basic knowledge. But arriving at these lemmas is not easy.

Lemma 2.2. Let θ be a real number with 0 < θ < π
4 and cos 3θ = − 17

21
√
21

.

Then 1 < c21 < 2 and c321 + 42c221 + 336c21 = 512.

Proof. When 0 < θ < π
4 and cos 3θ = − 17

21
√
21

, it is easy to confirm that

1.7483 < 3θ < 1.7484, 0.5827 < θ < 0.5828, and hence 0.8349 < cos θ <
0.8350. Thus, 1.3039 < c21 < 1.3059. (WolframAlpha was used to calculate
the above numerical results.)

We can also check that the following equality is true:

c321 + 42c221 + 336c21

= 1344
√

21 cos3 θ − 14112 cos2 θ + 2352
√

21 cos θ − 2744

+ 14112 cos2 θ − 4704
√

21 cos θ + 8232

+ 1344
√

21 cos θ − 4704

= 336
√

21
(
4 cos3 θ − 3 cos θ

)
+ 784

= 336
√

21 cos 3θ + 784

= 512,

which establishes the lemma. �
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Now we set c77 = 4
√

77 cos θ + 14.

Lemma 2.3. Let θ be a real number such that 0 < θ < π
4 and cos 3θ = 669

77
√
77

.

Then 49 < c77 < 50 and 42
c77

+ 336
c277

+ 512
c377

= 1.

Proof. When 0 < θ < π
4 and cos 3θ = 669

77
√
77

, it is easy to show that 0.1406 <

3θ < 0.1407, 0.0468 < θ < 0.0469, and hence 0.998900 < cos θ < 0.998906.
Thus, 49.0612 < c77 < 49.0615. (WolframAlpha was used to calculate the
above numerical results.)

We also obtain the following equality

42

c77
+

336

c277
+

512

c377
= 1

by using the equality

512 + 336c77 + 42c277 − c377 = 512 + 1344
√

77 cos θ + 4704 + 51744 cos2 θ

+ 4704
√

77 cos θ + 8232− 4928
√

77 cos3 θ

− 51744 cos2 θ − 2352
√

77 cos θ − 2744

= −1232
√

77
(
4 cos3 θ − 3 cos θ

)
+ 10704

= −1232
√

77 cos 3θ + 10704

= −1232
√

77
669

77
√

77
+ 10704

= 0.

This completes the proof of this lemma. �

3. Main results

Throughout this section, let X and Y be a real vector space and a real
Banach space, respectively. For any given mappings f : X → Y and ϕ :
X ×X → [0,∞), the following abbreviations will be used:

fe(x) =
1

2

(
f(x) + f(−x)

)
,

fo(x) =
1

2

(
f(x)− f(−x)

)
,

ϕe(x, y) =
1

2

(
ϕ(x, y) + ϕ(−x,−y)

)
,

(3.1)
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Df(x, y) =

6∑
k=0

(−1)k6Ckf
(
x+ (3− k)y

)
= f(x+ 3y)− 6f(x+ 2y) + 15f(x+ y)− 20f(x)

+ 15f(x− y)− 6f(x− 2y) + f(x− 3y).

The following theorem proves the generalized Hyers-Ulam stability of the
general quintic functional equation (1.1) using the fixed point method. We
note that according to Lemma 2.2, c21 is a constant whose value lies between
1 and 2.

Theorem 3.1. Let θ be given as in Lemma 2.2 and let ϕ : X ×X → [0,∞)
be a mapping for which there exists a constant 0 < L < 1 such that

ϕ(2x, 2y) ≤ c21Lϕ(x, y) (3.2)

for all x, y ∈ X. If a mapping f : X → Y with f(0) = 0 satisfies the inequality

‖Df(x, y)‖ ≤ ϕ(x, y) (3.3)

for all x, y ∈ X, then there exists a unique solution F : X → Y to the general
quintic functional equation (1.1) that satisfies F (0) = 0 and the inequality

‖f(x)− F (x)‖ ≤ 1

1− L
Φ(x) (3.4)

for all x ∈ X, where Φ(x) = 1
512

(
ϕe(2x, 2x) + 6ϕe(3x, x) + 36ϕe(2x, x) +

78ϕe(x, x)+24ϕe(0, x)
)

(see (3.1) for ϕe). In particular, the F can be expressed
as

F (x) = lim
n→∞

n∑
i=0

nCi

(
(−1)n−i20i

64n
fe
(
22n−ix

)
+

i∑
j=0

iCj(−42)i−j336j

512n
fo
(
23n−i−jx

)) (3.5)

for all x ∈ X.

Proof. Let S be the set of all functions g : X → Y with g(0) = 0. Then we
can define a generalized metric on S by

d(g, h) = inf
{
K ≥ 0 : ‖g(x)− h(x)‖ ≤ KΦ(x) for all x ∈ X

}
.

It is not difficult to verify that (S, d) is a complete generalized metric space
(see the proof of [7, Theorem 3.1]).
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Now we consider the mapping J : S → S defined by

Jg(x) =
496

1024
g(2x)− 176

1024
g(−2x)− 50

1024
g(4x) +

34

1024
g(−4x)

+
1

1024
g(8x)− 1

1024
g(−8x)

for all x ∈ X. We can apply the mathematical induction to prove the following
equality

Jng(x) =

n∑
i=0

nCi

(
(−1)n−i20i

64n
ge
(
22n−ix

)
+

i∑
j=0

iCj(−42)i−j336j

512n
go
(
23n−i−jx

))

for all n ∈ N0 and x ∈ X.
Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K.

From the definition of generalized metric d, we have

‖Jg(x)− Jh(x)‖ ≤ 496

1024
‖g(2x)− h(−2x)‖+

176

1024
‖g(−2x)− h(−2x)‖

+
50

1024
‖g(4x)− h(4x)‖+

34

1024
‖g(−4x)− h(−4x)‖

+
1

1024
‖g(8x)− h(8x)‖+

1

1024
‖g(−8x)− h(−8x)‖

≤ K
(

336

512
Φ(2x) +

42

512
Φ(4x) +

1

512
Φ(8x)

)
≤ K

(
336c21L

512
+

42c221L
2

512
+
c321L

3

512

)
Φ(x)

≤ K

(
336c21

512
+

42c221
512

+
c321
512

)
LΦ(x)

≤ LKΦ(x)

for all x ∈ X, which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S, that is, J is a strictly contractive self-mapping of S with the
Lipschitz constant 0 < L < 1.
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Moreover, it follows from (3.3) that

‖f(x)− Jf(x)‖

≤ 1

64
‖Dfe(x, x) + 3Dfe(0, x)‖

+
1

512
‖Dfo(2x, 2x) + 6Dfo(3x, x) + 36Dfo(2x, x) + 70Dfo(x, x)‖

≤ 1

512

(
ϕe(2x, 2x) + 6ϕe(3x, x) + 36ϕe(2x, x) + 78ϕe(x, x) + 24ϕe(0, x)

)
≤ Φ(x)

for all x ∈ X, which implies that d(f, Jf) ≤ 1 by the definition of d. Therefore,
according to Theorem 2.1, the sequence {Jnf} converges to the unique fixed
point F : X → Y of J in the set T = {g ∈ S : d(f, g) < ∞}, which is
represented by (3.5) for all x ∈ X. We note that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ 1

1− L
,

which implies (3.4).
Using the conditions (3.2) and (3.3), we have the following inequalities

lim
n→∞

∥∥∥∥∥
n∑
i=0

nCi
(−1)n−i20i

64n
Dfe

(
22n−ix, 22n−iy

)∥∥∥∥∥
≤ lim

n→∞

1

64n

n∑
i=0

nCi20iϕe
(
22n−ix, 22n−iy

)
≤ lim

n→∞

1

64n

n∑
i=0

nCi20iLn−icn−i21 ϕe(2
nx, 2ny)

≤ lim
n→∞

1

64n
(c21L+ 20)nϕe(2

nx, 2ny)

≤ lim
n→∞

1

64n
(c21L+ 20)ncn21L

nϕe(x, y)

≤ lim
n→∞

1

64n
(
c221 + 20c21

)n
Lnϕe(x, y)

≤ lim
n→∞

1

512n
(
8c221 + 160c21

)n
Lnϕe(x, y)

≤ lim
n→∞

Ln
(
c321 + 42c221 + 336c21

512

)n
ϕe(x, y)

= lim
n→∞

Lnϕe(x, y) = 0
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and

lim
n→∞

1

512n

∥∥∥∥∥
n∑
i=0

nCi

(
i∑

j=0

iCj(−42)i−j336jDfo
(
23n−i−jx, 23n−i−jy

))∥∥∥∥∥
≤ lim

n→∞

1

512n

n∑
i=0

nCi

(
i∑

j=0

iCj42i−j336jϕe
(
23n−i−jx, 23n−i−jy

))

≤ lim
n→∞

1

512n

n∑
i=0

nCi

(
i∑

j=0

iCj42i−jci−j21 336j

)
ϕe
(
23n−2ix, 23n−2iy

)
≤ lim

n→∞

1

512n

n∑
i=0

nCic
2n−2i
21 (42c21 + 336)iϕe(2

nx, 2ny)

≤ lim
n→∞

1

512n
(
c221 + 42c21 + 336

)n
ϕe(2

nx, 2ny)

= lim
n→∞

Ln
(
c321 + 42c221 + 336c21

512

)n
ϕe(x, y)

= lim
n→∞

Lnϕe(x, y) = 0

for all x, y ∈ X, which imply that

DF (x, y) = lim
n→∞

(
n∑
i=0

nCi

(
i∑

j=0

iCj(−42)i−j336j

512n
Dfo

(
23n−i−jx, 23n−i−jy

)
+

(−1)n−i20i

64n
Dfe

(
22n−ix, 22n−iy

)))
= 0

for all x, y ∈ X.
We note that if F is a solution of the functional equation (1.1) and F (0) = 0,

then F is a fixed point of J due to the equality F (x)−JF (x) = 1
64

(
DFe(x, x)+

3DFe(0, x)
)

+ 1
512

(
DFo(2x, 2x) + 6DFo(3x, x) + 36DFo(2x, x) + 70DFo(x, x)

)
.

�

Similar to Theorem 3.1, we apply the fixed point method to prove the
generalized Hyers-Ulam stability of the general quintic function equation (1.1).
We note that according to Lemma 2.3, c77 is a constant whose value lies
between 49 and 50.

From now on, for the sake of simplicity, we write x
α instead of 1

αx for all
vectors x and nonzero real numbers α.
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Theorem 3.2. Let θ be given as in Lemma 2.3 and let ϕ : X ×X → [0,∞)
be a mapping for which there exists a constant 0 < L < 1 such that

Lϕ(2x, 2y) ≥ c77ϕ(x, y) (3.6)

for all x, y ∈ X. If a mapping f : X → Y satisfies f(0) = 0 and inequality
(3.3) for all x, y ∈ X, then there exists a unique solution F : X → Y to
the general quintic functional equation (1.1) that satisfies F (0) = 0 and the
inequality

‖f(x)− F (x)‖ ≤ 1

1− L
Ψ(x) (3.7)

for all x ∈ X, where Ψ(x) = 2ϕe
(
x
4 ,

x
4

)
+3ϕe

(
0, x4

)
+64ϕe

(
3x
8 ,

x
8

)
+36ϕe

(
x
4 ,

x
8

)
+

70ϕe
(
x
8 ,

x
8

)
(see (3.1) for ϕe). In particular, F is expressed as

F (x) = lim
n→∞

n∑
i=0

nCi

(
i∑

j=0

iCj42j(−336)i−j512n−ifo

(
x

23n−i−j

)

+ 20i(−64)n−ife

(
x

22n−i

)) (3.8)

for all x ∈ X.

Proof. Let S be the set of all mappings g : X → Y with g(0) = 0. We define
a generalized metric on S by

d(g, h) = inf
{
K ≥ 0 : ‖g(x)− h(x)‖ ≤ KΨ(x) for all x ∈ X

}
.

It is not difficult to verify that (S, d) is a complete generalized metric space
(see the proof of [7, Theorem 3.1]).

Now we consider the mapping J : S → S defined by

Jg(x)=31g

(
x

2

)
−11g

(
−x
2

)
−200g

(
x

4

)
+136g

(
−x
4

)
+256g

(
x

8

)
−256g

(
−x
8

)
for all x ∈ X. By a similar way to the proof of Theorem 3.1, we can show the
truth of the following equality

Jng(x) =
n∑
i=0

nCi

(
i∑

j=0

iCj42j(−336)i−j512n−igo

(
x

23n−i−j

)

+ 20i(−64)n−ige

(
x

22n−i

))
for all n ∈ N0 and x ∈ X.
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Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K.
From the definition of generalized metric d, we have

‖Jg(x)− Jh(x)‖

≤ 31

∥∥∥∥g(x2
)
− h
(
x

2

)∥∥∥∥+ 11

∥∥∥∥g(−x2
)
− h
(
−x
2

)∥∥∥∥
+ 200

∥∥∥∥g(x4
)
− h
(
x

4

)∥∥∥∥+ 136

∥∥∥∥g(−x4
)
− h
(
−x
4

)∥∥∥∥
+ 256

∥∥∥∥g(x8
)
− h
(
x

8

)∥∥∥∥+ 256

∥∥∥∥g(−x8
)
− h
(
−x
8

)∥∥∥∥
≤ 42KΨ

(
x

2

)
+ 336KΨ

(
x

4

)
+ 512KΨ

(
x

8

)
≤ 42LKΨ(x)

c77
+

336L2KΨ(x)

c277
+

512L3KΨ(x)

c377

≤
(

42

c77
+

336

c277
+

512

c377

)
LKΨ(x)

≤ LKΨ(x)

for all x ∈ X, which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S, that is, J is a strictly contractive self-mapping of S with the
Lipschitz constant 0 < L < 1.

Moreover, by (3.3) we see that

‖f(x)− Jf(x)‖

=

∥∥∥∥Dfe(x4 , x4
)

+ 3Dfe

(
0,
x

4

)
+Dfo

(
x

4
,
x

4

)
+ 6Dfo

(
3x

8
,
x

8

)
+ 36Dfo

(
x

4
,
x

8

)
+ 70Dfo

(
x

8
,
x

8

)∥∥∥∥
≤ 2ϕe

(
x

4
,
x

4

)
+ 3ϕe

(
0,
x

4

)
+ 6ϕe

(
3x

8
,
x

8

)
+ 36ϕe

(
x

4
,
x

8

)
+ 70ϕe

(
x

8
,
x

8

)
= Ψ(x)

for all x ∈ X. It means that d(f, Jf) ≤ 1 < ∞ by the definition of d.
Therefore, according to Theorem 2.1, the sequence {Jnf} converges to the
unique fixed point F : X → Y of J in the set T = {g ∈ S : d(f, g) < ∞},
which is represented by (3.8) for all x ∈ X. We notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ 1

1− L
,
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which implies (3.7).
By the definition of F , together with (3.3) and (3.6), we have the inequalities

lim
n→∞

∥∥∥∥∥
n∑
i=0

nCi

i∑
j=0

iCj42j(−336)i−j512n−iDfo

(
x

23n−i−j
,

y

23n−i−j

)∥∥∥∥∥
≤ lim

n→∞

n∑
i=0

nCi

i∑
j=0

iCj42j336i−j512n−iϕe

(
x

23n−i−j
,

y

23n−i−j

)

≤ lim
n→∞

n∑
i=0

nCi

i∑
j=0

iCj42j
(

336L

c77

)i−j
512n−iϕe

(
x

23n−2i
,

y

23n−2i

)

≤ lim
n→∞

n∑
i=0

nCi

(
42 +

336L

c77

)i
512n−iϕe

(
x

23n−2i
,

y

23n−2i

)

≤ lim
n→∞

n∑
i=0

nCi

(
42 +

336L

c77

)i(512L2

c277

)n−i
ϕe

(
x

2n
,
y

2n

)
≤ lim

n→∞

(
42 +

336L

c77
+

512L2

c277

)n( L

c77

)n
ϕe(x, y)

≤ lim
n→∞

(
42

c77
+

336

c277
+

512

c377

)n
Lnϕe(x, y)

= lim
n→∞

Lnϕe(x, y) = 0

and

lim
n→∞

∥∥∥∥∥
n∑
i=0

nCi20i(−64)n−iDfe

(
x

22n−i
,

y

22n−i

)∥∥∥∥∥
≤ lim

n→∞

n∑
i=0

nCi20i64n−iϕe

(
x

22n−i
,

y

22n−i

)

≤ lim
n→∞

n∑
i=0

nCi20i
(

64L

c77

)n−i
ϕe

(
x

2n
,
y

2n

)
≤ lim

n→∞

(
20 +

64L

c77

)n( L

c77

)n
ϕe(x, y)

≤ lim
n→∞

(
42

c77
+

336

c277
+

512

c377

)n
Lnϕe(x, y)

= lim
n→∞

Lnϕe(x, y) = 0

for all x, y ∈ X.
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Hence, in view of the equality

DF (x, y) = lim
n→∞

n∑
i=0

nCi

i∑
j=0

iCj42j(−336)i−j512n−ifo

(
x

23n−i−j
,

y

23n−i−j

)

+ lim
n→∞

n∑
i=0

nCi20i(−64)n−iDfe

(
x

22n−i
,

y

22n−i

)
for all x, y ∈ X, we may conclude that F is a solution to functional equation
(1.1). Notice that if F is a solution to functional equation (1.1), then the
equality F (x)−JF (x) = DFe

(
x
4 ,

x
4

)
+3Dfe

(
0, x4

)
+DFo

(
x
4 ,

x
4

)
+6DFo

(
3x
8 ,

x
8

)
+

36DFo
(
x
4 ,

x
8

)
+ 70DFo

(
x
8 ,

x
8

)
implies that F is a fixed point of J . �

4. Discussion

In this paper, we proved for the first time the generalized Hyers-Ulam
stability of a generalized quintic functional equation (1.1) using Diaz and
Margolis’ theorem (Theorem 2.1), which was first used by Cădariu and Radu
to prove the Hyers-Ulam stability of functional equations (see [1, 2, 3]). In
this process, the concept of a generalized metric was used.

5. Conclusions

The main results of this paper are summarized as follows: Let θ be a
constant that satisfies cos 3θ = − 17

21
√
21

and 0 < θ < π
4 . We set c21 =

4
√

21 cos θ − 14. Then, 1 < c21 < 2. Let ϕ : X × X → [0,∞) be a map-
ping for which there exists a constant 0 < L < 1 such that

ϕ(2x, 2y) ≤ c21Lϕ(x, y)

for all x, y ∈ X, and let us define

Φ(x)=
1

512

(
ϕe(2x, 2x) + 6ϕe(3x, x) + 36ϕe(2x, x) + 78ϕe(x, x) + 24ϕe(0, x)

)
for all x ∈ X.

We have proved in Theorem 3.1 the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0. More precisely, Theorem 3.1 states that if
a mapping f : X → Y satisfies f(0) = 0 and the inequality

‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X, then there exists a unique solution F : X → Y of DF (x, y) = 0
that satisfies F (0) = 0 and the inequality

‖f(x)− F (x)‖ ≤ 1

1− L
Φ(x)

for all x ∈ X.
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On the other hand, let θ be a constant that satisfies cos 3θ = 669
77
√
77

and

0 < θ < π
4 . We set c77 = 4

√
77 cos θ + 14. Then, we have 49 < c77 < 50.

Assume that ϕ : X × X → [0,∞) is a mapping for which there exists a
constant 0 < L < 1 such that

Lϕ(2x, 2y) ≥ c77ϕ(x, y)

for all x, y ∈ X.
Furthermore, we define

Ψ(x)=2ϕe

(
x

4
,
x

4

)
+3ϕe

(
0,
x

4

)
+64ϕe

(
3x

8
,
x

8

)
+36ϕe

(
x

4
,
x

8

)
+70ϕe

(
x

8
,
x

8

)
for any x ∈ X.

We have proved in Theorem 3.2 the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0. More precisely, Theorem 3.2 states that if
a mapping f : X → Y satisfies f(0) = 0 and inequality (3.3) for all x, y ∈ X,
then there exists a unique solution F : X → Y of DF (x, y) = 0 that satisfies
F (0) = 0 and the inequality

‖f(x)− F (x)‖ ≤ 1

1− L
Ψ(x)

for all x ∈ X.
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