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Abstract. This paper is concerned with fixed point results of a finite family of multi-valued

Osilike-Berinde nonexpansive type mappings in hyperbolic spaces along with some numerical

examples. Also strong convergence and ∆−convergence of a sequence generated by Alagoz

iteration scheme are investigated.

1. Introduction

Let K be a nonempty subset of a metric space (X, d). A mapping T : K →
K is called contraction if there exists λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ K. When λ = 1, T is called a nonexpansive mapping.
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One of the most important and fruitful result in a metric space was given
by Banach [4] called “Banach Contraction Principle”. This principle was gen-
eralized and its several variants were studied by mathematicians over different
spaces.

Note that a subset K of a metric space (X, d) is called proximal if there
exists an element y ∈ K such that

d(x, y) = d(x,K) = inf
z∈K

d(x, z)

for all x ∈ X. Let CB(K) and P (K) be the collection of all nonempty closed
bounded subsets and the collection of all nonempty proximal bounded closed
subsets of K, respectively.

The concept of Hausdorff metric to approximate fixed points of multi-valued
nonexpansive mappings was introduced by Markin [25]. The Hausdorff dis-
tance on CB(K) is denoted by H(., .) and is defined by

H(A,B) = max{sup d(x,B), sup d(A, y)},

where A,B ∈ CB(K), d(A, x) = infa∈A d(a, x).

The concept of contraction mapping was generalized by many researcher.
This class of mappings is known as almost contraction mappings. Ali et al.
[3] introduced concept of weak contraction. A mapping T : K → K is called
weak contraction if there exists ζ ∈ (0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ ζd(x, y) + Ld(x, Tx) for all x, y ∈ K.

Osilike [30] introduced almost contraction in the following manner: there
exists λ ∈ [0, 1) and L ∈ [0,∞) such that

d(Tx, Ty) ≤ λd(x, y) + Ld(x, Tx) for all x, y ∈ K.

This concept was further extended to multi-valued mappings by Berinde [7]
in the following manner: a multi-valued mapping T : K → CB(K) is called
weak contraction if there exists λ ∈ [0, 1) and L ∈ [0,∞) such that

H(Tx, Ty) ≤ λd(x, y) + Ld(x, Tx)

for all x, y ∈ K. When λ = 1, T is called Osilike-Berinde nonexpansive
mapping. Hence, we observed that a nonexpansive mapping implies Osilike-
Berinde nonexpansive mapping. Various generalizations of nonexpansive map-
pings are given by many authors (refer [1, 13, 19, 27, 29, 32]).

Example 1.1. Let X be a uniformly convex Banach space, whose norm ||.|| is
induced by metric d such that d(x, y) = ||x−y|| for all x, y ∈ X. Let K = [0, 2]
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be a nonempty subset of X and define a mapping T : K → P (K) by

Tx =

{
[0, x2 ], 0 ≤ x ≤ 1

2 ,

{0}, 1
2 < x ≤ 1.

First, we will show that T is a multi-valued nonexpansive mapping. Con-
sider the following cases:

Case I: when 0 ≤ x, y ≤ 1
2 . Then d(x, y) = ||x− y|| and

H(Tx, Ty) = H
(

[0,
x

2
], [0,

y

2
]
)

=
1

2
||x− y||

≤ d(x, y).

Case II: when 1
2 < x, y ≤ 1. Then H(Tx, Ty) = 0. Clearly H(Tx, Ty) ≤

d(x, y).

Case III: when 0 ≤ x ≤ 1
2 , 1

2 < y ≤ 1. Then

H(Tx, Ty) = H
(

[0,
x

2
], {0}

)
= ||x

2
||

≤ d(x, y).

Case IV: when 0 ≤ y ≤ 1
2 , 1

2 < x ≤ 1. By similar procedure as in Case III,
we have H(Tx, Ty) ≤ d(x, y).

Now choose x = 1
2 , y = 1. Then

H(Tx, Ty) = H
(

[0,
x

2
], {0}

)
=

1

4
,

d(x, y) + Ld(x, Tx) =
1

2
+ Ld

(
x,
x

2

)
=

1

2
+ L

1

4
.

Clearly H(Tx, Ty) ≤ d(x, y) + Ld(x, Tx) for L ≥ 0. It conclude that T is
multi-valued Osilike-Berinde nonexpansive mapping.

A mapping T is called multi-valued quasi-nonexpansive mapping if F (T ) 6=
∅ and

H(Tx, Ty) ≤ d(x, y)
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for all y ∈ F (T ). A point x ∈ K is called fixed point of multi-valued mapping
T if x ∈ Tx. Here we denote the set of fixed point of T by F (T ).

Fixed point theory has a vital role in the field of analysis due to its appli-
cations in various fields (refer [3, 22, 31, 33, 37] ). Several mathematicians
studied fixed point results over different spaces. Once the existence result of
a fixed point for a mapping is established, an algorithm to find the value of
the fixed point is desirable. Banach contraction principle uses Picard iteration
to approximate fixed point. In this direction some well-known iterations are
Mann [24], Ishikawa [10], Noor [28], Thakur [36], and so on.

In 2020, Sen et al. [13] introduced a new class of nonexpansive mappings,
namely generalized (α, β)−nonexpansive mapping and proved the existence
and convergence results for this class of mappings in the framework of uni-
formly convex Banach spaces by using K iteration scheme given by Hussain
et al. [9] as follows: 

x1 ∈ K,
zk = (1− βk)xk + βkTxx,

yk = T ((1− αk)Txk + αkTzk),

xk+1 = Tyk.

In 2021, Arshad et al. [12] proved weak and strong convergence of a mapping
endowed with property (CSC) in uniformly convex Banach spaces by using
K∗ iterative scheme given by Ullah and Arshad [38] as follows:

x1 ∈ K,
zk = (1− βk)xk + βkTxx,

yk = T ((1− αk)zk + αkTzk),

xk+1 = Tyk.

In 2022, Khan et al. [15] proved some fixed point convergence results for
generalized α-nonexpansive mappings in the framework of uniformly convex
Banach spaces through KF iteration scheme defined by

x1 ∈ K,
zk = T ((1− βk)xk + βkTxx),

yk = Tzk,

xk+1 = T ((1− αk)Txk + αkTyk).

In the same year, Junaid et al. [11] proved strong convergence and ∆−
convergence of F iteration scheme in hyperbolic space for general class of
contractive-like operators. In 2022, Austine et al. [3] proved fixed point results
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and w2 stability of Riech-Suzuki type nonexpansive mappings in the framework
of Banach space by using AH iterative scheme as follows:

x1 ∈ K,
zk = (1− βk)xk + βkTxx,

yk = T (Tzk),

wk = T (Tyk),

xk+1 = (1− αk)wk + αkTwk.

Some classical fixed point theorems for single-valued nonexpansive map-
pings have been extended to multi-valued mappings. The multi-valued version
of Banach contraction principle [4] was given by Nadler [26] in 1969. Sastry
and Babu [34] introduced multi-valued version of Mann [24] and Ishikawa [10]
iteration and proved convergence theorems for nonexpansive mappings in a
Hilbert space. In 2016, Kim et al. [21] introduced multi-valued version of
Thakur iteration [36] and proved convergence results in a uniformly convex
Banach space.

Various iterative schemes are introduced by many authors for single-valued
as well as multi-valued mappings. We focus on the iteration scheme given by
Alagoz et al. [2] in 2016 for multi-valued mappings. Alagoz et al. [2] studied
the convergence of the following iteration scheme: LetK be a nonempty convex
subset of a hyperbolic space X. Let {Ti : i = 1, 2, ..., k} be a family of multi-
valued mappings such that Ti : K → P (K) and PTi(x) = {y ∈ Tix : d(x, y) =
d(x, Tx)} is a nonexpansive mapping. Suppose that {αnk} is a sequence in
[0, 1] for all n = 1, 2, ... and k = 1, 2, ..., j. Let for i = 1, 2, ..., k, x0 ∈ K, {xk}
be a sequence generated by the following:

xk+1 = W (u(n−1)k, y(n−1)k, αnk),

y(n−1)k = W (u(n−2)k, y(n−2)k, α(n−1)k),
...

y2k = W (u1k, y1k, α2k),

y1k = W (u0k, y0k, α1k),

(1.1)

where uik ∈ PTi+1(yik), i = 0, 1, 2, ..., k − 1 and y0k = xk.

After that Bello et al. [6] studied some fixed point results and established
demiclosedness principle for mean nonexpansive mappings by using iteration
scheme (1.1) in hyperbolic spaces. Inspired by work of Bello et al. [6], our aim
in this paper is to establish strong convergence and ∆−convergence of the se-
quence {xk} defined by (1.1) for Osilike-Berinde type nonexpansive mappings
in complete hyperbolic spaces.
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2. Preliminaries

This section starts with some basic concepts and also contains some useful
results which are required to get main results.

Definition 2.1. ([11]) A hyperbolic space (X, d,W ) is a metric space (X, d)
together with a convexity mapping W : X ×X × [0, 1]→ X such that for all
x, y, z ∈ X and α, β ∈ [0, 1], we have

(i) d(u,W (x, y, α)) ≤ (1− α)d(u, y) + αd(u, x),
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),

(iii) W (x, y, α) = W (y, x, 1− α),
(iv) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(z, w) + αd(x, y).

Remark 2.2. Banach spaces and CAT (0) spaces are examples of hyperbolic
spaces.

Example 2.3. Let X = R be a Banach space. Let d : X ×X → [0,∞) be a
mapping defined by

d(x, y) = ||x− y||.
It is clear that d is metric on X. Let K = [0, 1] be a subset of X. Further we
define a mapping W : X ×X × [0, 1] by

W (x, y, α) = αx+ (1− α)y

for all x, y ∈ X and α ∈ [0, 1]. Then (X, d,W ) is hyperbolic space, in fact,

(i)

d(u,W (x, y, α)) = ||u−W (x, y, α)||
= ||u− αx− (1− α)y||
= ||(1− α)(u− y) + α(u− x)||
≤ (1− α)d(u, y) + αd(u, x).

(ii)

d(W (x, y, α),W (x, y, β)) = ||W (x, y, α)−W (x, y, β)||
= ||αx− αy − βx+ βy||
= ||(α− β)x− (α− β)y||
= |α− β|d(x, y).

(iii)

W (y, x, 1− α)) = (1− α)y + (1− (1− α))x

= W (x, y, α).
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(iv)

d(W (x, z, α),W (y, s, α)) = ||(W (x, z, α)−W (y, s, α)||
= ||(1− α)(z − s) + α(x− y)||
= (1− α)d(z, s) + αd(x, y).

Definition 2.4. ([8]) A nonempty subset K of a hyperbolic space X is said
to be convex if W (x, y, α) ∈ K for all x, y ∈ K and α ∈ [0, 1].

Definition 2.5. ([35]) A hyperbolic space X is said to be uniformly convex
if for any r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that for all
x, y, z ∈ X,

d(W (x, y,
1

2
), z) ≤ (1− δ)r,

provided d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ εr.

Definition 2.6. ([16, 17, 18]) Let K be a nonempty closed subset of a CAT (0)
space X and {xk} be any bounded sequence in K. For x ∈ X there is a
continuous functional r(., {xk}) : X → [0,∞) defined by

r(x, {xk}) = lim sup
k→∞

d(xk, x).

The asymptotic radius r(K, {xk}) of {xk} with respect to K is given by

r(K, {xk}) = inf{r(x, {xk}) : x ∈ K}.
A point x ∈ K is said to be an asymptotic center of the sequence {xk} with
respect to K, if

r(x, {xk}) = inf{r(y, {xk}) : y ∈ K}.
The set of all asymptotic centres of {xk} with respect to K is denoted by
A(K, {xk}).

Remark 2.7. ([14]) Every bounded sequence in uniformly convex Banach
spaces and CAT (0) spaces has a unique asymptotic center with respect to
closed convex subset.

Definition 2.8. ([14]) A sequence {xk} in X is said to be ∆−convergent to
x ∈ X if x is the unique asymptotic center of {xkn} of {xk}. In this case
∆− limk→∞ xk = x.

Definition 2.9. ([35]) Let X be a hyperbolic space. A map η : (0,∞) ×
(0, 2] → (0, 1] which provides a δ = η(r, ε) for a given r > 0 and ε ∈ (0, 2] is
known as a modulus of uniform convexity of X. The mapping η is said to be
monotone if it decreases with r.
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Lemma 2.10. ([23]) Let X be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η. Then every bounded sequence
{xk} in X has a unique asymptotic center with respect to any nonempty closed
convex subset K of X.

Lemma 2.11. ([8]) Let (X, d,W ) be a complete uniformly convex hyperbolic
space with monotone modulus of uniform convexity η and let {xk} be a bounded
sequence in X with A({xk})(:= A(X, {xk})) = {x}. Suppose that {xkn} is any
subsequence of {xk} with A({xkn}) = {x1} and {d(xk, x1)} converges. Then
x = x1.

Lemma 2.12. ([20]) Let (X, d,W ) be a complete uniformly convex hyper-
bolic space with monotone modulus of uniform convexity η. Let x∗ ∈ X and
{tk} be a sequence in [a, b] for some a, b ∈ (0, 1). If {xk} and {yk} are se-
quences in X such that lim supk→∞ d(xk, x

∗) ≤ c, lim supk→∞ d(yk, x
∗) ≤ c

and limk→∞ d(W (xk, yk, tk), x∗) ≤ c for some c > 0. Then limk→∞ d(xk, yk) =
0.

Lemma 2.13. ([8]) Let (X, d,W ) be a complete uniformly convex hyperbolic
space, K be a nonempty closed convex subset of X. Let T : K → P (K) be
a multi-valued mapping with F (T ) 6= ∅. Let PT : K → 2K be a multi-valued
mapping defined by

PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)}, x ∈ K.
Then the following conclusions hold:

(a) PT is a multi-valued mapping from K to P (K).
(b) F (T ) = F (PT ).
(c) PT (p) = {p}, for each p ∈ F (T ).
(d) For each x ∈ K, PT (x) is a closed subset of Tx and so it is compact.
(e) d(x, Tx) = d(x, PT (x)) for each x ∈ K.

Definition 2.14. ([6]) Let K be a non-empty closed subset of a complete
metric space X and {xk} be a sequence in K. Then {xk} is called a Fejer
monotone sequence with respect to K if for all x ∈ K and k ∈ N,

d(xk+1, x) ≤ d(xk, x).

Proposition 2.15. ([6]) Let K be a nonempty closed subset of a complete
metric space X and {xk} be a sequence in K. Suppose T : K → K is any
nonlinear mapping and the sequence {xk} is Fejer monotone with respect of
K. Then we have the following:

(i) {xk} is bounded.
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(ii) The sequence {d(xk, x
∗)} is decreasing and converges for all x∗ ∈ F (T ).

(iii) limk→∞ d(xk, F (T )) exists.

Lemma 2.16. ([5]) Let K be a nonempty closed subset of a complete met-
ric space X and {xk} be Fejer monotone with respect to K. Then {xk} is
convergent to some x∗ ∈ K if and only if limk→∞ d(xk,K) = 0.

Vetro [39] established some results related to Hausdorff distance. These
results are as follows:

Lemma 2.17. ([39]) Let (X, d) be a metric space. Then for any A,B,C ∈
CB(X) and any x, y ∈ X, we have:

(i) d(x,B) ≤ d(x, b) for b ∈ B;
(ii) δ(A,B) ≤ H(A,B);

(iii) d(x,B) ≤ H(A,B) for any x ∈ A;
(iv) H(A,A) = 0;
(v) H(A,B) = H(B,A);

(vi) H(A,C) ≤ H(A,B) +H(B,C);
(vii) d(x,A) ≤ d(x, y) + d(y,A).

3. Main results

3.1. Structure of fixed point set of multi-valued Osilike-Berinde non-
expansive mapping.

Lemma 3.1. Let K be a nonempty closed convex subset of a complete hy-
perbolic space X. Let Ti : K → CB(K) (i = 1, 2, ..., k) be a finite family of
multi-valued quasi-nonexpansive mappings such that F (T ) = ∩ki=1F (Ti) 6= ∅
and PTi : K → 2K are multi-valued Osilike-Berinde nonexpansive mappings.
Then F (T ) is closed and convex.

Proof. To show that F (T ) is closed, let {xk} be a sequence in F (T ) such that
{xk} converges to some y ∈ K and p ∈ F (T ). Then from Lemma 2.13, we
have p ∈ F (PT ) and PT (p) = {p}. By using quasi-nonexpansiveness of T and
Lemma 2.17, we have

d(xk, T y) ≤ d(xk, p) + d(p, Ty)

≤ H(PT (xk), PT (p)) + d(p, Ty)

≤ d(xk, p) + Ld(p, Tp) + d(p, Ty)

≤ d(xk, p) + d(p, y)

≤ d(xk, y).
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Taking limk→∞ on both sides, we have

lim
k→∞

d(xk, T y) = 0.

By uniqueness of limit, we have y ∈ Ty. Hence F (T ) is closed.

Next we will show that F (T ) is convex. Let x, y ∈ F (T ) and α ∈ [0, 1]. By
using Lemma 2.17, we have

d(x, T (W (x, y, α))) ≤ H(PT (x), PT (W (x, y, α))

≤ d(x,W (x, y, α)) + Ld(x, Tx)

≤ d(x,W (x, y, α)).

Hence

d(x, T (W (x, y, α))) ≤ d(x,W (x, y, α)). (3.1)

Using similar argument, we have

d(y, T (W (x, y, α))) ≤ d(y,W (x, y, α)). (3.2)

By using Lemma 2.17, (3.1) and (3.2), we have

d(x, y) ≤ d(x, T (W (x, y, α))) + d(T (W (x, y, α)), y)

≤ H(PT (x), PT (W (x, y, α))) +H(PT (W (x, y, α)), PT (y))

≤ (d(x,W (x, y, α)) + d(y,W (x, y, α))) + L(d(x, Tx) + d(y, Ty))

≤ d(x,W (x, y, α)) + d(y,W (x, y, α))

= d(x, y).

Therefore,

d(x, y) ≤ d(x, y). (3.3)

Hence, we conclude that (3.1) and (3.2) are

d(x, T (W (x, y, α))) = d(x,W (x, y, α))

and d(y, T (W (x, y, α))) = d(y,W (x, y, α)), respectively, because if we take
strictly less than sign<, then from (3.3) we get the contradiction that d(x, y) <
d(x, y). Therefore,

T (W (x, y, α)) = W (x, y, α)

for all x, y ∈ F (T ) and α ∈ [0, 1]. Thus W (x, y, α) ∈ F (T ) which implies that
F (T ) is convex. �

Corollary 3.2. Let K be a nonempty closed convex subset of a complete
hyperbolic space X. Let Ti : K → CB(K) (i = 1, 2, ..., k) be a finite family of

multi-valued quasi-nonexpansive mappings such that F (T ) =
⋂k

i=1 F (Ti) 6= ∅
and PTi : K → 2K are multi-valued Osilike-Berinde nonexpansive mappings.
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Let {xk} be a bounded sequence in K such that limk→∞ d(xk, Txk) = 0. Then
F (T ) is closed and convex.

Proof. Let {xk} be a bounded sequence in F (T ) such that {xk} converges to
some y ∈ K and p ∈ F (T ). Using quasi-nonexpansiveness of T , we have

d(xk, T y) ≤ d(xk, Txk) + d(Txk, p) + d(p, Ty)

≤ d(xk, Txk) + d(xk, p) + d(p, y)

≤ d(xk, Txk) + d(xk, y).

Taking limk→∞ on both sides, we have

lim
k→∞

d(xk, T y) = 0.

Hence F (T ) is closed. The rest is the same as of the proof in Lemma 3.1. �

Theorem 3.3. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X with monotone modulus of convexity η. Let
Ti : K → CB(K) (i = 1, 2, ..., k) be a finite family of multi-valued quasi-

nonexpansive mappings such that F (T ) =
⋂k

i=1 F (Ti) 6= ∅ and PTi : K →
2K are multi-valued Osilike-Berinde nonexpansive mappings. Let {xk} be a
bounded sequence in K such that limk→∞ d(xk, Txk) = 0 and ∆−limk→∞ xk =
x∗. Then x∗ ∈ F (T ).

Proof. Since {xk} is a bounded sequence in K, from Lemma 2.10, {xk} has
a unique asymptotic center in K. Since ∆ − limk→∞ xk = x∗, we have
A(K, {xk}) = {x∗}. Hence for p ∈ F (T ), we have

d(xk, Tx
∗) ≤ d(xk, Txk) + d(Txk, Tx

∗)

≤ d(xk, Txk) + d(Txk, p) + d(p, Tx∗)

≤ d(xk, Txk) + d(xk, p) + d(p, x∗).

Taking limk→∞ on both sides, we have

lim
k→∞

d(xk, Tx
∗) ≤ lim

k→∞
d(xk, x

∗).

Since

r(Tx∗, {xk}) = lim sup
k→∞

d(xk, Tx
∗)

≤ lim sup
k→∞

d(xk, x
∗)

= r(x∗, {xk}).

By uniqueness of asymptotic center of {xk}, we have Tx∗ = x∗. Hence x∗ ∈
F (T ). �
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3.2. Strong convergence and ∆−convergence of a sequence in hyper-
bolic spaces.

Lemma 3.4. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X. Let Ti : K → CB(K) (i = 1, 2, ..., k) be a
finite family of multi-valued quasi-nonexpansive mappings such that F (T ) =⋂k

i=1 F (Ti) 6= ∅ and PTi : K → 2K are multi-valued Osilike-Berinde nonexpan-
sive mappings. Let {xk} be a sequence in K defined by (1.1) and let y0k = xk.
Then

(i) d(yik, p) ≤ d(xk, p) for i = 1, 2, ..., k − 1,
(ii) limk→∞ d(xk, p) exists for all p ∈ F (T ),

(iii) limk→∞ d(xk, F (T )) exists.

Proof. (i) We proceed by induction on i.

d(y1k, p) = d(W (u0k, y0k, α1k), p)

≤ (1− α1k)d(u0k, p) + α1kd(y0k, p)

≤ (1− α1k)H(PT1(y0k), PT1(p)) + α1kd(y0k, p)

≤ (1− α1k)(d(y0k, p) + Ld(p, Tp)) + α1kd(y0k, p)

= d(y0k, p)

= d(xk, p).

Hence, we have d(y1k, p) ≤ d(xk, p). Assuming that d(yik, p) ≤ d(xk, p) holds
for some 1 ≤ i ≤ k − 2. Now

d(y(i+1)k, p) = d(W (uik, yik, α(i+1)k), p)

≤ (1− α(i+1)k)d(uik, p) + α(i+1)kd(yik, p)

≤ (1− α(i+1)k)H(PT(i+1)
(yik), PT(i+1)

(p)) + α(i+1)kd(yik, p)

≤ d(xk, p).

We now show that d(yik, p) ≤ d(xk, p) for i = 1, 2, ..., k − 1.

d(y(k−1)k, p) = d(W (u(k−2)k, y(k−2)k, α(k−1)k), p)

≤ (1− α(k−1)k)d(u(k−2)k, p) + α(k−1)kd(y(k−2)k, p)

≤ (1− α(k−1)k)H(PT(k−1)
(y(k−2)k), PT(k−1)k

(p))

+ α(k−1)kd(y(k−2)k, p)

≤ (1− α(k−1)k)(d(y(k−2)k, p) + Ld(p, Tp)) + α(k−1)kd(y(k−2)k, p)

≤ d(xk, p).

Thus by induction, d(yik, p) ≤ d(xk, p) for i = 1, 2, ..., k − 1.
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(ii)

d(xk+1, p) = d(W (u(n−1)k, y(n−1)k, αnk), p)

≤ (1− αnk)d(u(n−1)k, p) + αnkd(y(n−1)k, p)

≤ (1− αnk)H(PTn(y(n−1)k), PTn(p)) + αnkd(y(n−1)k, p)

≤ (1− αnk)(d(y(n−1)k, p) + Ld(p, Tp)) + αnkd(y(n−1)k, p)

≤ d(xk, p).

This implies that {xk} is Fejer monotone with respect to F (T ), so by Propo-
sition 2.15, limk→∞ d(xk, p) exists.

(iii) By Proposition 2.15 and Lemma 2.16, limk→∞ d(xk, F (T )) exists. �

Theorem 3.5. Let K be a nonempty closed convex subset of complete uni-
formly convex hyperbolic space X with monotone modulus of convexity η. Let
Ti : K → CB(K) (i = 1, 2, ..., k) be a finite family of multi-valued quasi-

nonexpansive mappings such that F (T ) =
⋂k

i=1 F (Ti) 6= ∅ and PTi : K → 2K

are multi-valued Osilike-Berinde nonexpansive mappings. Let {xk} be a se-
quence in K defined by (1.1). Then limk→∞ d(xk, Tixk) = 0 for i = 1, 2, ..., k.

Proof. From Lemma 3.4, we have limk→∞ d(xk, p) exists for all p ∈ F (T ). So
suppose that limk→∞ d(xk, p) = c, where c ≥ 0. If c = 0, then we have results.
Let c > 0. Since

lim
k→∞

d(xk, p) = c ⇒ lim sup
k→∞

d(xk, p) ≤ c.

Also from Lemma 3.4,
d(yik, p) ≤ d(xk, p),

we have
lim sup
k→∞

d(yik, p) ≤ c for i = 1, 2, ..., k − 1. (3.4)

Note that for i = 1, 2, ..., k

d(u(i−1)k, p) ≤ H(PTi(y(i−1)k), PTi(p))

≤ d(y(i−1)k, p).

Which implies that
lim sup
k→∞

d(u(i−1)k, p) ≤ c. (3.5)

Since limk→∞ d(xk+1, p) = c, we have

lim
k→∞

d(W (u(n−1)k, y(n−1)k, αnk), p) = c. (3.6)

From Lemma 2.12, (3.4), (3.5) and (3.6), we have

lim
k→∞

d(y(k−1)k, u(k−1)k) = 0.
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Note that for i = 1, 2, ..., k − 1, we have

d(xk+1, p) ≤ d(yik, p),

therefore

c ≤ lim inf
k→∞

d(yik, p).

Also

d(W (u(i−2)k, y(i−2)k, α(i−1)k), p) = d(y(i−1)k, p),

therefore

lim
k→∞

d(W (u(i−2)k, y(i−2)k, α(i−1)k), p) = c.

Thus by induction, we have

lim
k→∞

d(y(i−1)k, u(i−1)k) = 0 for i = 1, 2, ..., k. (3.7)

Also we have

d(yik, y(i−1)k) = d(W (u(i−1)k, y(i−1)k, αik), y(i−1)k)

≤ (1− αik)d(u(i−1)k, y(i−1)k) + αikd(y(i−1)k, y(i−1)k),

it implies that limk→∞ d(yik, y(i−1)k) = 0 and

d(xk, y1k) = d(xk,W ((u0k, y0k, α1k)))

≤ (1− α1k)d(xk, u0k) + α1kd(xk, y0k)

= (1− α1k)d(xk, u0k) + α1kd(xk, xk),

it implies that limk→∞ d(xk, y1k) = 0.
Since

d(xk, yik) ≤ d(xk, y1k) + d(y1k, y12) + · · ·+ d(y(i−1)k, yik),

we have

lim
k→∞

d(xk, yik) = 0 for i = 1, 2, ..., k − 1. (3.8)

Now from (3.7) and (3.8), we have

d(xk, Tixk) ≤ d(xk, y(i−1)k) + d(y(i−1)k), (u(i−1)k) + d(u(i−1)k, Tixk)

≤ d(xk, y(i−1)k) + d(y(i−1)k), (u(i−1)k) +H(PTiy(i−1)k, PTixk)

≤ d(xk, y(i−1)k) + d(y(i−1)k), (u(i−1)k) + d(y(i−1)k, xk)

+ Ld(xk, Tixk).

Hence we have limk→∞ d(xk, Tixk) = 0. �
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Theorem 3.6. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X with monotone modulus of convexity η. Let
Ti : K → CB(K) (i − 1, 2, ..., k) be a finite family of multi-valued quasi-

nonexpansive mappings such that F (T ) =
⋂k

i=1 F (Ti) 6= ∅ and PTi : K → 2K

are multi-valued Osilike-Berinde nonexpansive mappings. Let {xk} be a se-
quence in K defined by (1.1). Then {xk} converges strongly to p ∈ F (T ) if and
only if limk→∞ d(xk, F (T )) = 0, where d(xk, F (T ) = inf{d(xk, p) : p ∈ F (T )}.

Proof. If {xk} converges strongly to p ∈ F (T ), then limk→∞ d(xk, p) = 0.
Since 0 ≤ d(xk, F (T )) = inf{d(xk, p) : p ∈ F (T )}, we have

lim
k→∞

d(xk, F (T )) = 0.

Conversely, suppose that limk→∞ d(xk, F (T )) = 0. From Lemma 3.4, we have

d(xk+1, p) ≤ d(xk, p),

which implies that
d(xk+1, F (T )) ≤ d(xk, F (T )).

This implies that limk→∞ d(xk, F (T )) exists. Therefore, by our assumption
limk→∞ d(xk, F (T )) = 0. Next we will show that {xk} is a Cauchy sequence
in K. For k > n,

d(xk, xn) ≤ d(xk, p) + d(p, xn)

≤ 2d(xk, p).

Taking inf on right hand side, we have

d(xk, xn) ≤ 2d(xk, F (T )).

Hence, we have d(xk, xn)→ 0 as k, n→∞. Hence {xk} is a Cauchy sequence
in K, therefore it converges to some q ∈ K. Next we show that q ∈ F (T1).
Since d(xk, F (T1)) = infy∈F (T1) d(xk, y), so for each ε > 0, there exists pk ∈
F (T1) such that

d(xk, pk) < d(xk, F (T1)) +
ε

2
.

Since d(pk, q) ≤ d(xk, pk) + d(xk, q), limk→∞ d(pk, q) ≤ ε
2 . Hence, we obtain

that

d(T1q, q) ≤ d(T1q, pk) + d(pk, q)

≤ H(PT1pk, PT1q) + d(pk, q)

≤ d(pk, q) + Ld(p, T1p) + d(pk, q)

≤ 2d(pk, q),

which implies that d(T1q, q) ≤ ε. Hence d(T1q, q) = 0. Similarly, d(Tiq, q) = 0
for i = 1, 2, ..., k. Since F (T ) is closed, we have q ∈ F (T ). �
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Theorem 3.7. Let K be a nonempty closed convex subset of complete uni-
formly convex hyperbolic space X with monotone modulus of convexity η. Let
Ti : K → CB(K) (i = 1, 2, ..., k) be a finite family of multi-valued quasi-

nonexpansive mappings such that F (T ) =
⋂k

i=1 F (Ti) 6= ∅ and PTi : K → 2K

are multi-valued Osilike-Berinde nonexpansive mappings. Let {xk} be a se-
quence in K defined by (1.1). Then {xk} is ∆-convergent to a common fixed
point p ∈ F (T ).

Proof. Let p ∈ F (T ). Then p ∈ F (Ti), for i = 1, 2, ..., k. Also the sequence
{xk} has unique asymptotic center, so suppose that A(K, {xk}) = {x}. From
Lemma 3.4, sequence {xk} is bounded and limk→∞ d(xk, p) exists, so we can
find a subsequence {wk} of the sequence {xk} such that A(K, {wk}) = {x∗} for
some x∗ ∈ K. From the Theorem 3.5, limk→∞ d(wk, Tiwk) = 0, i = 1, 2, ..., k.
We claim that x∗ is a fixed point of T1. For this, let {vk} be an another
sequence in T1x

∗. Then

r(vk, {wk}) = lim sup
k→∞

d(vk, wk)

≤ lim sup
k→∞

(d(vk, T1wk) + d(T1wk, wk))

≤ lim sup
k→∞

(H(PT1x
∗, PT1wk) + d(T1wk, wk))

≤ lim sup
k→∞

((x∗, wk) + Ld(x∗, T1x
∗)) + d(T1wk, wk))

≤ lim sup
k→∞

d(x∗, wk)

= r(x∗, {wk}).

Hence we have |r(vk, {wk})− r(x∗, {wk})| → 0 as k →∞. From Lemma 2.11,
we have limk→∞ vk = x∗. Hence either T1x

∗ is closed or bounded. Therefore
limk→∞ vk = x∗ ∈ T1x

∗. Similarly x∗ ∈ Tix
∗, for i = 1, 2, ..., k, that is,

x∗ ∈ F (T ). From Lemma 2.11, we have p = x∗. This implies that {xk} is
∆−convergent to p ∈ F (T ). �

4. Conclusion

Started with iteration scheme (1.1) introduced by Alagoz et al., we ob-
tain strong convergence and ∆−convergence of a sequence defined by (1.1)
for a family of multi-valued quasi-nonexpansive mappings and multi-valued
Osilike-Berinde nonexoansive mappings in the framework of complete hyper-
bolic spaces. Our results are new and generalizes several results.
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