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Abstract. In this paper, we will introduce the notion of ψ-type and Jaggi type hybrid

contraction in a bipolar metric space and show the existence and uniqueness of fixed point

for such type of contractions. In the end, we will provide some corollaries and support our

theorems by examples.

1. Introduction

To obtain new fixed point theorems, the researchers have two options either
they generalize the metric space introduced by Fréchet [3] in 1906 or Banach
contraction principle introduced by Banach [1] in 1922. Since then, a number
of generalization ([2],[4],[5],[6],[9]) in Banach contraction principle are done
by weakening the Banach hypothesis like Meir-Keeler contraction [9], α − ψ
contraction by Samet ([14],[15],[16]) et al. etc. In 1977, Jaggi [4] was the first
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who introduced rational contraction in a metric space to obtain fixed point
theorems.

Recently in 2019, Karapinar and Fulga [6] introduced Jaggi type hybrid
contraction in metric spaces. On the other hand, researchers also introduced
new generalized metric spaces like G-metric space by Mustafa and Sims [10]
in 2006 etc. In 2016, Mutlu and Gürdal [11] introduced bipolar metric space.
Then a number of fixed point theorems were proved in bipolar metric space
([7],[8],[12],[13]) by many authors till now.

In this paper also, we will prove fixed point theorems for ψ-type contraction
and Jaggi type hybrid contraction in bipolar metric spaces.

We need some basic notions and definitions from the literature to prove the
results as follows:

Let Ψ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following
conditions:

(1) ψ is non-decreasing.
(2)

∑∞
n=1 ψ

n(t) <∞ for all t > 0, where ψn is the nth iteration of ψ.

These functions are known as (c)-comparison functions. It can be easily veri-
fied that if ψ ∈ Ψ, then ψ(t) < t for any t > 0.

In 2016, Mutlu and Gurdal introduced the bipolar metric space as follows:

Definition 1.1. ([11]) Let X and Y be two nonempty sets and d : X × Y →
[0,∞) be a map satisfying the following conditions:

(1) d(x, y) = 0 if and only if x = y for all (x, y) ∈ X × Y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ∩ Y ;
(3) d(x1, y2) ≤ d(x1, y1) + d(x2, y1) + d(x2, y2), for all x1, x2 ∈ X and

y1, y2 ∈ Y .

Then d is called a bipolar metric and (X,Y, d) is called a bipolar metric space.

If X ∩ Y = φ then space is called disjoint otherwise joint. The set X is
called left pole and the set Y is called right pole of (X,Y, d). The elements of
X, Y and X ∩ Y are called left, right and central elements, respectively.

Definition 1.2. ([11]) Let (X,Y, d) be a bipolar metric space. Then any
sequence {xn} ⊆ X is called left sequence and is said to be convergent to right
element say y if d(xn, y)→ 0 as n→∞. Similiarly, a right sequence {yn} ⊆ Y
is said to be convergent to a left element say x if d(x, yn)→ 0 as n→∞.

Definition 1.3. ([11]) Let (X,Y, d) be a bipolar metric space.

(1) A sequence {(xn, yn)} on X × Y is called a bisequence on (X,Y, d).
(2) If both the sequences {xn} and {yn} converge, then the bisequence
{(xn, yn)} is said to be convergent. If both the sequences {xn} and {yn}
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converge to the same point u ∈ X ∩ Y then the bisequence {(xn, yn)}
is called biconvergent.

(3) A bisequence {(xn, yn)} on (X,Y, d) is said to be Cauchy bisequence,
if for each ε > 0 there exists a positive integer N ∈ N such that
d(xn, ym) < ε for all n,m ≥ N .

(4) A bipolar metric space is said to be complete, if every Cauchy bise-
quence is convergent in this space.

Definition 1.4. ([11]) Let (X1, Y1, d1) and (X2, Y2, d2) be two bipolar metric
spaces and T : X1 ∪ Y1 → X2 ∪ Y2 be a function:

(1) If TX1 ⊆ X2 and TY1 ⊆ Y2, then T is called covariant mapping and
is denoted by T : (X1, Y1, d1) ⇒ (X2, Y2, d2).

(2) If TX1 ⊆ Y2 and TY1 ⊆ X2, then T is called contravariant mapping
and is denoted by T : (X1, Y1, d1) � (X2, Y2, d2).

Definition 1.5. ([11]) Let (X1, Y1, d1) and (X2, Y2, d2) be two bipolar metric
spaces.

(1) A map T : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called left continuous at
a point x0 ∈ X if for every ε > 0 there exists a δ > 0 such that
d2(Tx0, T y) < ε whenever d1(x0, y) < δ.

(2) A map T : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called right continuous at
a point y0 ∈ Y if for every ε > 0 there exists a δ > 0 such that
d2(Tx, Ty0) < ε whenever d1(x, y0) < δ.

(3) A map T is called continuous if it is left continuous at each x0 ∈ X
and right continuous at each y0 ∈ Y .

(4) A contravariant map T : (X1, Y1, d1) � (X2, Y2, d2) is continuous if and
only if T is continuous as covariant map T : (X1, Y1, d1) ⇒ (X2, Y2, d2).

2. Main Results

Here, we will prove our main results by introducing the notions of general-
ized contractive mappings in bipolar metric spaces.

Definition 2.1. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) ⇒
(X,Y ) be a covariant mapping. Then T is said to be ψ-contractive covariant
mapping if there exists ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)) (2.1)

for all (x, y) ∈ X × Y .
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Definition 2.2. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant mapping. Then T is said to be ψ-contractive con-
travariant mapping if there exists ψ ∈ Ψ such that

d(Ty, Tx) ≤ ψ(d(x, y)) (2.2)

for all (x, y) ∈ X × Y .

Theorem 2.3. Let (X,Y, d) be a complete bipolar metric space and T :
(X,Y ) ⇒ (X,Y ) be a contractive covariant mapping satisfying equation (2.1).
Then T has a unique fixed point.

Proof. Let x0 ∈ X and y0 ∈ Y . Construct two sequences {xn} ∈ X and
{yn} ∈ Y such that xn = Txn−1 and yn = Tyn−1. Then {(xn, yn)} is a
bisequence in X × Y .

Now putting x = xn and y = yn in equation (2.1), we obtain that

d(xn+1, yn+1) = d(Txn, Tyn) ≤ ψ(d(xn−1, yn−1)).

By induction, we say that

d(xn+1, yn+1) ≤ ψn+1(d(x0, y0)). (2.3)

Again, putting x = xn−1 and y = yn in equation (2.1), we obtain that

d(xn, yn+1) = d(Txn−1, T yn) ≤ ψ(d(xn−1, yn)).

By induction, we have

d(xn, yn+1) ≤ ψn(d(x0, y1)). (2.4)

Since
∑∞

n=1 ψ
n(a) < ∞ for each a > 0, for every ε > 0, we can find N ∈ N

such that ∑
n≥N

ψn(d(x0, y1)) <
ε

2
and ψn+1(d(x0, y0)) <

ε

2
. (2.5)

Now, for n,m ∈ N with m > n ≥ N , applying the condition (3) of Definition
1.1, we get

d(xn, ym) ≤ d(xn, yn+1) + d(xn+1, yn+1) + d(xn+1, yn+2)

+ · · ·+ d(xm−1, ym−1) + d(xm−1, ym)

=

m−1∑
k=n

d(xk, yk+1) +

m−2∑
k=n

d(xk+1, yk+1).
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Now, using equation (2.3) and (2.4), we get

d(xn, ym) ≤
m−1∑
k=n

ψkd(x0, y1) +
m−2∑
k=n

ψk+1d(x0, y0),

≤
m−1∑
k=N

ψkd(x0, y1) +
m−2∑
k=n

ψk+1d(x0, y0),

≤
∑
n≥N

ψnd(x0, y1) +
∑
n≥N

ψn+1d(x0, y0). (2.6)

Using equation (2.5) in (2.6), we get

d(xn, ym) <
ε

2
+
ε

2
= ε. (2.7)

Similarly, one can prove easily for n,m ∈ N with n > m ≥ N that

d(xn, ym) < ε. (2.8)

From equations (2.7) and (2.8), we can say that {(xn, yn)} is a Cauchy bise-
quence. Since (X,Y, d) is a complete bipolar metric space, {(xn, yn)} is conver-
gent and thus biconverges to a point v ∈ X ∩Y and Txn = xn+1 → v ∈ X ∩Y
guarantees that {xn+1} has unique limit.

Now, by using equation (2.1) and ψ(t) < t, we get

d(xn+1, T v) ≤ ψ(d(xn, v)) < d(xn, v). (2.9)

Taking limit n→∞ in equation (2.9), we have

d(v, Tv) ≤ 0.

This implies that d(v, Tv) = 0, that is, Tv = v. Hence v is the fixed point.
Next, we have to prove the uniqueness of the fixed point. Let us suppose,

if possible that u is also the fixed point of T and u 6= v. Then, equation (2.1)
implies that

d(u, v) = d(Tu, Tv) ≤ ψ(d(u, v)) < d(u, v),

which is a contradiction. Hence we have u = v. �

Theorem 2.4. Let (X,Y, d) be a complete bipolar metric space and T :
(X,Y ) � (X,Y ) be a contractive contravariant mapping satisfying equation
(2.2). Then T has a unique fixed point.

Proof. Let x0 ∈ X. We define a bisequence {(xn, yn)} as xn+1 = Tyn and
yn = Txn for all n ∈ N.

Now putting x = xn and y = yn−1 in equation (2.2), we obtain that

d(xn, yn) = d(Tyn−1, Txn) ≤ ψ(d(xn, yn−1)).
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By induction, we obtain

d(xn, yn) ≤ ψn(d(x0, y0)). (2.10)

Again, putting x = xn+1 and y = yn in equation (2.2), we obtain that

d(xn+1, yn) = d(Tyn, Txn) ≤ ψ(d(xn, yn)).

By induction, we have

d(xn+1, yn) ≤ ψn+1(d(x0, y0)). (2.11)

Since
∑∞

n=1 ψ
n(a) < ∞ for each a > 0, for every ε > 0, we can find N ∈ N

such that ∑
n≥N

ψn(d(x0, y0)) <
ε

2
and ψn+1(d(x0, y0)) <

ε

2
. (2.12)

Now, for n,m ∈ N with m > n ≥ N , applying the condition (3) of Definition
1.1, we get

d(xn, ym) ≤ d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1)

+ · · ·+ d(xm, ym−1) + d(xm, ym)

=
m∑
k=n

d(xk, yk) +
m−1∑
k=n

d(xk+1, yk).

Now, using equation (2.10) and (2.11), we get

d(xn, ym) ≤
m∑
k=n

ψkd(x0, y0) +
m−1∑
k=n

ψk+1d(x0, y0)

≤
m∑

k=N

ψkd(x0, y0) +

m−1∑
k=n

ψk+1d(x0, y0)

≤
∑
n≥N

ψnd(x0, y0) +
∑
n≥N

ψn+1d(x0, y0).

Using equation (2.12), we get

d(xn, ym) <
ε

2
+
ε

2
= ε. (2.13)

Similarly, we can prove easily for n,m ∈ N with n > m ≥ N that

d(xn, ym) < ε. (2.14)

From equations (2.13) and (2.14), we can say that {(xn, yn)} is a Cauchy
bisequence. Since (X,Y, d) is a complete bipolar metric space, {(xn, yn)} is
convergent and thus biconverges to a point v ∈ X ∩ Y , so Tyn = xn+1 → v
and Txn = yn → v ∈ X ∩ Y guarantees that {xn+1} has unique limit.
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Now, by using equation (2.2) and ψ(t) < t, we get

d(xn+1, T v) = d(Tyn, T v) ≤ ψ(d(v, yn)) < d(v, yn). (2.15)

Taking limit n→∞ in equation (2.15), we have

d(v, Tv) ≤ 0.

This implies that d(v, Tv) = 0, that is, Tv = v. Hence v is the fixed point of
T. Next, we have to prove the uniqueness. Let us suppose, if possible that u
is also the fixed point of T and u 6= v. Then, equation (2.2) implies that

d(u, v) = d(Tu, Tv) ≤ ψ(d(u, v)) < d(u, v),

which is a contradiction. Hence, we haves u = v. �

Definition 2.5. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant mapping. Then T is said to be generalized ψ-
contractive contravariant mapping if there exists ψ ∈ Ψ such that

d(Ty, Tx) ≤ ψ(M(x, y)), (2.16)

where

M(x, y) = max
{
d(x, y), d(x, Tx), d(Ty, y),

d(x, Tx) + d(Ty, y)

2

}
for all (x, y) ∈ X × Y .

Theorem 2.6. Let (X,Y, d) be a complete bipolar metric space and T :
(X,Y ) � (X,Y ) be a generalized ψ-contractive contravariant mapping sat-
isfying equation (2.16). Then T has a unique fixed point.

Proof. Let x0 ∈ X. Construct a bisequence {(xn, yn)} as xn+1 = Tyn and
yn = Txn for all n ∈ N.

Now putting x = xn and y = yn−1 in equation (2.16), we obtain that

d(xn, yn) = d(Tyn−1, Txn) ≤ ψ(M(xn, yn−1)), (2.17)

where

M(xn, yn−1)

=max
{
d(xn, yn−1),d(xn, Txn),d(Tyn−1, yn−1),

d(xn, Txn)+d(Tyn−1, yn−1)

2

}
=max

{
d(xn, yn−1), d(xn, yn), d(xn, yn−1),

d(xn, yn) + d(xn, yn−1)

2

}
≤max{d(xn, yn−1), d(xn, yn)}. (2.18)

Suppose that d(xn, yn−1) < d(xn, yn). Then equation (2.18) becomes

M(xn, yn−1) < d(xn, yn).
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Putting this in equation (2.17), we get

d(xn, yn) ≤ ψ(d(xn, yn)) < d(xn, yn),

which is a contradiction. So, d(xn, yn−1) > d(xn, yn) and equation (2.18)
becomes

M(xn, yn−1) < d(xn, yn−1). (2.19)

Using equation (2.19) in (2.17), we obtain that

d(xn, yn) ≤ d(xn, yn−1).

By induction, we obtain

d(xn, yn) ≤ ψn(d(x0, y0)). (2.20)

Similarly, putting x = xn+1 and y = yn in equation (2.16), we obtain that

d(xn+1, yn) = d(Tyn, Txn) ≤ ψ(M(xn, yn)), (2.21)

where

M(xn, yn) = max
{
d(xn, yn), d(xn, Txn), d(Tyn, yn),

d(xn, Txn)+d(Tyn, yn)

2

}
= max

{
d(xn, yn), d(xn, yn), d(xn+1, yn),

d(xn, yn) + d(xn+1, yn)

2

}
≤ max{d(xn+1, yn), d(xn, yn)}. (2.22)

Suppose that d(xn, yn) < d(xn+1, yn). Then equation (2.22) becomes
M(xn, yn) < d(xn+1, yn), Then equation (2.21) becomes

d(xn+1, yn) ≤ ψ(d(xn+1, yn)) < d(xn+1, yn),

which is a contradiction. So, d(xn+1, yn) < d(xn, yn) and equation (2.22)
becomes

M(xn, yn) < d(xn, yn). (2.23)

Using equation (2.23) in (2.21), we obtain that

d(xn+1, yn) ≤ d(xn, yn). (2.24)

By induction, we obtain

d(xn+1, yn) ≤ ψn+1(d(x0, y0)). (2.25)

Since,
∑∞

n=1 ψ
n(a) < ∞ for each a > 0, for every ε > 0, we can find N ∈ N

such that ∑
n≥N

ψn(d(x0, y0)) <
ε

2
and ψn+1(d(x0, y0)) <

ε

2
. (2.26)
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Now, for n,m ∈ N with m > n ≥ N , applying the condition (3) of Definition
1.1, we get

d(xn, ym) ≤ d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1)

+ · · ·+ d(xm, ym−1) + d(xm, ym)

=

m∑
k=n

d(xk, yk) +

m−1∑
k=n

d(xk+1, yk).

Now, using equation (2.20) and (2.25), we get

d(xn, ym) ≤
m∑
k=n

ψkd(x0, y0) +

m−1∑
k=n

ψk+1d(x0, y0)

≤
m∑

k=N

ψkd(x0, y0) +
m−1∑
k=n

ψk+1d(x0, y0)

≤
∑
n≥N

ψnd(x0, y0) +
∑
n≥N

ψn+1d(x0, y0).

Using equation (2.26), we get

d(xn, ym) <
ε

2
+
ε

2
= ε. (2.27)

Similarly, we can prove easily for n,m ∈ N with n > m ≥ N that

d(xn, ym) < ε. (2.28)

From equations (2.27) and (2.28), we can say that {(xn, yn)} is a Cauchy
bisequence. Since (X,Y, d) is a complete bipolar metric space, {(xn, yn)} is
convergent and thus biconverges to a point v ∈ X ∩ Y , so Tyn = xn+1 → v
and Txn = yn → v ∈ X ∩ Y guarantees that {xn+1} has unique limit.

Now, by using equation (2.16) and ψ(t) < t, we get

d(xn+1, T v) = d(Tyn, T v) ≤ ψ(M(v, yn)) < M(v, yn), (2.29)

where

M(v, yn) = max
{
d(v, yn), d(v, Tv), d(Tyn, yn)

d(v, Tv) + d(Tyn, yn)

2

}
≤ max{d(v, yn), d(v, Tv), d(Tyn, yn)}. (2.30)

Using equation (2.30) in (2.29) and taking limit n→∞, we get

d(v, Tv) ≤ 0,

this implies that d(v, Tv) = 0, that is, Tv = v. So v is the fixed point of T .
Next, we have to prove the uniqueness. Let us suppose, if possible that u

is also the fixed point of T and u 6= v. Then, equation (2.16) implies that

d(u, v) = d(Tu, Tv) ≤ ψ(M(v, u)) < M(v, u),
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where

M(v, u) = max
{
d(v, u), d(v, Tv), d(Tu, u),

d(v, Tv), d(Tu, u)

2

}
,

≤ d(u, v).

This is a contradiction, so we have u = v. Hence T has a unique fixed point.
�

Definition 2.7. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant mapping. Then T is said to be Jaggi type hybrid
contravariant mapping if there exists ψ ∈ Ψ such that

d(Ty, Tx) ≤ ψ(JTs (x, y)), (2.31)

for all distinct (x, y) ∈ X × Y, where s ≥ 0 and αi ≥ 0 for i = 1, 2 such that
α1 + α2 = 1 and

JTs (x, y) =


[
α1(

d(x,Tx)d(Ty,y)
d(x,y) )s + α2(d(x, y))s

] 1
s
, if s > 0

(d(x, Tx))α1(d(Ty, y))α2 , if s = 0.

If x and y are different elements in X and Y , x, y /∈ FT (X ∪ Y ), where

FT (X ∪ Y ) = {x ∈ X ∪ Y : Tx = x}.

Theorem 2.8. Let (X,Y, d) be a complete bipolar metric space and T :
(X,Y ) � (X,Y ) be a Jaggi type hybrid contravariant continuous mapping
satisfying equation (2.31). Then T has a fixed point.

Proof. Let x0 ∈ X. Construct a bisequence {(xn, yn)} as xn+1 = Tyn and
yn = Txn for all n ∈ N.

We will prove the theorem in two cases (i) when s > 0, (ii) when s = 0.
Case (i): When s > 0. Now putting x = xn and y = yn−1 in equation (2.31),
then we get

d(xn, yn) = (d(Tyn−1, Txn)) ≤ ψ(JTs (xn, yn−1)), (2.32)

where

JTs (xn, yn−1) = Bigα1(
d(xn, Txn)d(Tyn−1, yn−1)

d(xn, yn−1)
)s + α2(d(xn, yn−1))

s
] 1
s

=
[
α1(

d(xn, yn)d(xn, yn−1)

d(xn, yn−1)
)s + α2(d(xn, yn−1))

s
] 1

s

= [α1(d(xn, yn))s + α2(d(xn, yn−1))
s]

1
s . (2.33)

Suppose that, d(xn, yn−1) < d(xn, yn). Then equation (2.33) becomes

JTs (xn, yn−1) ≤ d(xn, yn).
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Using this in equation (2.32), we get

d(xn, yn) ≤ ψ(JTs (d(xn, yn))) < d(xn, yn),

which is a contradiction. So, d(xn, yn−1) > d(xn, yn), by induction, we get

d(xn, yn) ≤ ψn(d(x0, y0)). (2.34)

Similarly, putting x = xn+1 and y = yn in equation (2.32), we obtain that

d(xn+1, yn) = (d(Tyn, Txn)) ≤ ψ(JTs (xn, yn)),

where

JTs (xn, yn) =
[
α1(

d(xn, Txn)d(Tyn, yn)

d(xn, yn)
)s + α2(d(xn, yn))s

] 1
s

=
[
α1(

d(xn, yn)d(xn+1, yn)

d(xn+1, yn)
)s + α2(d(xn, yn))s

] 1
s

= [α1(d(xn, yn))s + α2(d(xn+1, yn))s]
1
s . (2.35)

Suppose that, d(xn, yn) < d(xn+1, yn). Then equation (2.35) becomes

JTs (xn, yn) ≤ d(xn+1, yn).

Therefore, we have

d(xn+1, yn) ≤ ψ(JTs (xn, yn)) < d(xn+1, yn),

which is a contradiction. So, d(xn+1, yn) < d(xn, yn), by induction, we get

d(xn+1, yn) ≤ ψn+1(d(x0, y0)). (2.36)

Since
∑∞

n=1 ψ
n(a) < ∞ for each a > 0, for every ε > 0, we can find N ∈ N

such that ∑
n≥N

ψn(d(x0, y0)) <
ε

2
and ψn+1(d(x0, y0)) <

ε

2
. (2.37)

Now, for n,m ∈ N with m > n ≥ N , applying the condition (3) of Definition
1.1, we get

d(xn, ym) ≤ d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1)

+ · · ·+ d(xm, ym−1) + d(xm, ym)

=

m∑
k=n

d(xk, yk) +

m−1∑
k=n

d(xk+1, yk).
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Now, using equation (2.34) and (2.36), we get

d(xn, ym) ≤
m∑
k=n

ψkd(x0, y0) +

m−1∑
k=n

ψk+1d(x0, y0)

≤
m∑

k=N

ψkd(x0, y0) +
m−1∑
k=n

ψk+1d(x0, y0)

≤
∑
n≥N

ψnd(x0, y0) +
∑
n≥N

ψn+1d(x0, y0).

Using equation (2.37), we get

d(xn, ym) <
ε

2
+
ε

2
= ε. (2.38)

Similarly, we can prove easily for n,m ∈ N with n > m ≥ N that

d(xn, ym) < ε. (2.39)

From equations (2.38) and (2.39), we can say that {(xn, yn)} is a Cauchy
bisequence. Since (X,Y, d) is a complete bipolar metric space, {(xn, yn)} is
convergent and thus biconverges to a point v ∈ X ∩ Y . As T is continuous so
xn → v implies Txn = yn → Tv. So v is the fixed point of T .

Case (ii): When s = 0. Putting x = xn and y = yn−1 in equation (2.31), we
get

d(xn, yn) = (d(Tyn−1, Txn)) ≤ ψ(JTs (xn, yn−1)), (2.40)

where

JTs (xn, yn−1) = (d(xn, Txn))α1(d(Tyn−1, yn−1))
α2

= (d(xn, yn))α1(d(xn, yn−1))
α2 .

Using this in equation (3.40), we have

d(xn, yn) ≤ ψ((d(xn, yn))α1(d(xn, yn−1))
α2) < (d(xn, yn))α1(d(xn, yn−1))

α2 .

This implies that (d(xn, yn))1−α1 < d(xn, yn−1))
α2 .

Clearly,

d(xn, yn) < d(xn, yn−1). (2.41)

Similarly, we can obtain

d(xn+1, yn) < d(xn, yn). (2.42)

Now by using the same tool as in the case s > 0, we can easily show that T
has a fixed point. �
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Example 2.9. LetX = (−∞, 0], Y = [0,∞) and d : (−∞, 0]×[0,∞)→ [0,∞)
as d(x, y) = |x−y|. Then, clearly, (X,Y, d) is a complete bipolar metric space.
Define T : R → R as Tx = −x

3 . Clearly, T is contravariant continuous map.
Taking ψ(z) = z

2 .

d(Ty, Tx) =
∣∣∣−y

3
− −x

3

∣∣∣
=

∣∣∣−y
3

+
x

3

∣∣∣
=

∣∣∣y
3

+
a

3

∣∣∣, (2.43)

where x = −a for a ≥ 0. For all (x, y) ∈ X × Y .

M(x, y) = max
{
d(x, y), d(x, Tx), d(Ty, y),

d(x, Tx) + d(Ty, y)

2

}
.

Since d(x, y) = |x − y| = |a + y|, M(x, y) ≥ |a + y|. Clearly, equation (2.16)
holds. So, all the conditions of Theorem 2.6 are satisfied. Hence T has a
unique fixed point and it is clear that 0 is the fixed point of T .

Example 2.10. Let X = (−∞, 0], Y = [0,∞) and d : (−∞, 0] × [0,∞) →
[0,∞) as d(x, y) = |x−y|. Then, clearly (X,Y, d) is a complete bipolar metric
space. Define T : R→ R as Tx = −x

8 , then we know that T is a contravariant
continuous map.

d(Ty, Tx) =
∣∣∣−y

8
− −x

8

∣∣∣
=

∣∣∣−y
8

+
x

8

∣∣∣
=

∣∣∣y
8

+
a

8

∣∣∣, (2.44)

where x = −a for a ≥ 0, for all (x, y) ∈ X × Y .
Taking ψ(z) = z

2 , s = 1 and α1 = α2 = 1
2 . Since

JTs (x, y) =
[
α1

(d(x, Tx)d(Ty, y)

d(x, y)

)s
+ α2(d(x, y))s

] 1
s
,

ψ(JTs (x, y)) =
1

2

(1

2
(
d(x, Tx)d(Ty, y)

d(x, y)
) +

1

2
|a+ y|

)
=

1

4

∣∣∣a+ y
∣∣∣+B,∣∣∣y

8
+
a

8

∣∣∣ ≤ 1

4

∣∣∣a+ y
∣∣∣+B,
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where B = 1
4

(
d(x,Tx)d(Ty,y)

d(x,y)

)
≥ 0, equation (2.31) holds. Hence all the condi-

tions of Theorems 2.8 are holds. Thus T has a fixed point. Clearly, 0 is the
fixed point of T .

3. Consequences

In this section, we shall discuss about the consequences of Theorem 2.8.

Corollary 3.1. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant continuous mapping such that

d(Ty, Tx) ≤ θ
[
α1

(d(x, Tx)d(Ty, y)

d(x, y)

)s
+ α2(d(x, y))s

] 1
s

(3.1)

for all (x, y) ∈ X × Y with x 6= y and s ≥ 0, αi ≥ 0, i = 1, 2 such that
α1 + α2 = 1 and θ ∈ (0, 1). Then T has a fixed point.

Proof. Taking ψ(z) = θz in Theorem 2.8, one can get the proof. �

Corollary 3.2. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant continuous mapping such that

d(Ty, Tx) ≤ θ

2
1
2

[(d(x, Tx)d(Ty, y)

d(x, y)

)2
+ (d(x, y))2

] 1
2

(3.2)

for all (x, y) ∈ X × Y with x 6= y and θ ∈ (0, 1). Then T has a fixed point.

Proof. Taking ψ(z) = θz, α1 = α2 = 1
2 and s = 2 in Theorem 2.8. �

Corollary 3.3. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant continuous mapping such that

d(Ty, Tx) ≤ α
(d(x, Tx)d(Ty, y)

d(x, y)

)
+ β(d(x, y)) (3.3)

for all (x, y) ∈ X × Y with x 6= y and α, β ∈ (0, 1). Then T has a fixed point.

Proof. Putting θα1 = α, θα2 = β and s = 1 in Corollary 3.1. �

Corollary 3.4. Let (X,Y, d) be a bipolar metric space and T : (X,Y ) �
(X,Y ) be a contravariant continuous mapping such that

d(Ty, Tx) ≤ θ(d(x, Tx))α(d(Ty, y))1−α (3.4)

for all (x, y) ∈ X × Y with x 6= y and θ, α ∈ (0, 1). Then T has a fixed point.

Proof. Letting α1 = α, α2 = 1 − α, s = 0 and ψ(z) = θz in Theorem 2.8, we
get the proof. �



ψ-type contractions and Jaggi type hybrid contractions in bipolar metric spaces 717

References

[1] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations
integrals, Fundam. Math., 3 (1922), 133-181.

[2] M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc.,
12 (1961), 7-10.
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