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Abstract. In this article, we present a new notion called “extended metric
spaces of type (φ, ρ)” as a generalization of extended b-metric spaces. Also,
we establish a fixed point result of a Reich-type contraction on an extended
metric space of type (φ, ρ). We also provide several examples to demonstrate
the significance of the established results.

1. Introduction

The concept of fixed points is one of the most investigated topics in scientific
studies. It is commonly developed by applying it in different spaces and with
various conditions, namely, metric space, and b-metric space. For some results
in fixed point theory (see [1]-[13], [15], [17]-[29]).
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In 2017 Kamran et al. [14] extended the notion of b−metric spaces to the
notion of extended b−metric spaces and they proved a Banach contraction the-
orem in such spaces. Recently, Mlaiki et al.[16] presented another new metric
space called “controlled metric type space” as a generalization of b−metric
spaces and proved the Banach contraction theorem in such spaces.

In this paper, we establish a new fixed point result on extended metric space
of type (φ, ρ) of a Reich-type contraction[8]. Some examples are also provided
to illustrate the significance of the presented results in terms of the existence
and uniqueness of fixed point.

Kamran et al. [14] introduced the concept of extended b-metric space as a
generalization of b-metric spaces as follows:

Definition 1.1. ([14]) Let α : D × D → [1,∞). The function ι : D × D
→ [0,∞) is said to be an extended b-metric if for all τ, ϕ, ω ∈ D, we have

(1) ι(τ, ϕ) = 0 if and only if τ = ϕ,
(2) ι(τ, ϕ) =ι(ϕ, τ),
(3) ι(τ, ϕ) ≤ α(τ, ϕ)[ι(τ, ω)+ι(ω, ϕ)].

Then the pair (D, ι) is called an extended b-metric space. In this current
paper, we will say (D, ι) is an extended b-metric space through α.

2. Main results

We start our work by given the notion of extended metric spaces of type
(φ, ρ) as a generalization of extended b−metric spaces as follows:

Definition 2.1. On a nonempty set D, consider φ, ρ :D × D → [1,∞). An
extended metric of type (φ, ρ) is a function Λ:D ×D → [1,∞) that achieves:

(1) Λ(τ, ϕ) = 0 if and only if τ = ϕ,
(2) Λ(τ, ϕ) = Λ(ϕ, τ),
(3) Λ(τ, ϕ) ≤ φ(τ, ϕ) Λ(τ, ω)+ρ(τ, ϕ) Λ(ω, ϕ) ∀τ, ϕ, ω ∈ D.

Henceforth (D,Λ) is refereed as an extended metric space of type (φ, ρ).

Remark 2.2. An extended metric space of type (ψ, ρ) in general is not an
extended b-metric through ψ or ρ.

Example 2.3. Put D = {0, 1, 2}, set the distance function Λ: D×D→ [0,∞)
as

Λ(τ, ϕ) 0 1 2

0 Λ(0, 0) = 0 Λ(1, 0) = 1 Λ(2, 0) = 2
5

1 Λ(0, 1) = 1 Λ(1, 1) = 0 Λ(2, 1) = 6
25

2 Λ(0, 2) = 2
5 Λ(1, 2) = 6

25 Λ(2, 2) = 0
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And define the functions ρ, φ: D ×D → [1,∞) by

φ(τ, ϕ) 0 1 2

0 φ(0, 0) = 1 φ(1, 0) = 11
10 φ(2, 0) = 1

1 φ(0, 1) = 11
10 φ(1, 1) = 1 φ(2, 1) = 1

2 φ(0, 2) = 1 φ(1, 2) = 1 φ(2, 2) = 1

and

ρ(τ, ϕ) 0 1 2

0 ρ(0, 0) = 1 ρ(1, 0) = 6
5 ρ(2, 0) = 151

100
1 ρ(0, 1) = 6

5 ρ(1, 1) = 1 ρ(2, 1) = 8
5

2 ρ(0, 2) = 151
100 ρ(1, 2) = 8

5 ρ(2, 2) = 1

Then, it is clear that (D,Λ) is an extended metric space of type (φ, ρ).
Since

1 = Λ(0, 1) > φ(0, 1)Λ(0, 2) + φ(0, 1)Λ(2, 1) = 0.704

and
1 = Λ(0, 1) > ρ(0, 1)Λ(0, 2) + ρ(0, 1)Λ(2, 1) = 0.768,

(D,Λ) is not an extended b-metric space through the use of function φ or
function ρ.

Now, we will present the topological definitions for the extended metric
space of type (φ, ρ), which will be applied to our current paper.

Definition 2.4. Let (D,Λ) be an extended metric space of type (φ, ρ) and
let {ξn}n∈N be a sequence on D. Then:

(1) {ξn}n∈N converges to some ξ ∈ D if for each ε > 0, there exists an
integer nε such that ν(ξn, ξ) < ε for each n > nε. Mathematically it is
written as limn→∞ ν(ξn, ξ) = 0.

(2) {ξn}n∈N is a Cauchy sequence if for each positive number ε, Λ(ξm, ξn) <
ε for all m > n > nε, where nε is a positive integer. Mathematically
it is written as limn,m→∞ ν(ξn, ξm) = 0.

(3) The space (D,Λ) is said to be a complete extended metric space of
type (φ, ρ) if every Cauchy sequence converges to D.

Definition 2.5. Let (D,Λ) be an extended metric space of type (φ, ρ). For
ξ ∈ D and c > 0.

(1) The open set Ω(ξ, c) is defined as

Ω(ξ, c) = {η ∈ D,Λ(ξ, η) < c}.
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(2) The map T : D → D is called continuous at ξ ∈ D if for all ε > 0,
there exists m > 0 such that T (Ω(ξ,m)) ⊆ Ω(Tξ, ε).

Remark 2.6. If T is continuous at ξ ∈ D, {ξn} is a sequence in D and
ξn → ξ, then Tξn → Tξ when n approaches to ∞.

Now, we state and prove our main result:

Theorem 2.7. Let (D,Λ) be a complete extended metric space of type (φ, ρ)
and T : D → D be a self -mapping. Assume there exist d, h, r ∈ (0, 1) that
satisfy k = d+h

1−r < 1, and

Λ(Tτ, Tϕ) ≤ dΛ(τ, ϕ) + hΛ(τ, T τ) + rΛ(ϕ, Tϕ) (2.1)

for all τ, ϕ ∈ D. For η0 ∈ D, put ηn = Tnη0. Now, assume that

sup
m≥1

lim
i→∞

φ(ηi+1, ηm)

φ(ηi, ηm)
ρ(ηi, ηm) <

1

k
. (2.2)

Also, suppose that

ρ(η, Tη) <
d+ h

r(1− r)
. (2.3)

Then, T has a unique fixed point in D.

Proof. For η0 ∈ D, construct a sequence {ηn} in D by putting ηn = Tηn−1.
Then the condition (2.1) implies that

Λ(ηn, ηn+1) = Λ(Tηn−1, Tηn)

≤ dΛ(ηn−1, ηn) + hΛ(ηn−1, Tηn−1) + rΛ(ηn, Tηn)

= dΛ(ηn−1, ηn) + hΛ(ηn−1, ηn) + rΛ(ηn, ηn+1).

Thus, we conclude

Λ(ηn, ηn+1) ≤
d+ h

1− r
Λ(ηn−1, ηn) = kΛ(ηn−1, ηn). (2.4)

It follows from (2.4) that

Λ(ηn, ηn+1) ≤ knΛ(η0, η1). (2.5)
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Now, for all n , m ∈ N with m > n, and by using φ(a, b) ≥ 1, ρ(a, b) ≥ 1,
we find

Λ(ηn, ηm) ≤ φ(ηn, ηm)Λ(ηn, ηn+1) + ρ(ηn, ηm)Λ(ηn+1, ηm)

≤ φ(ηn, ηm)Λ(ηn, ηn+1) + ρ(ηn, ηm)φ(ηn+1, ηm)Λ(ηn+1, ηn+2)

+ ρ(ηn, ηm)ρ(ηn+1, ηm)Λ(ηn+2, ηm)

≤ φ(ηn, ηm)Λ(ηn, ηn+1) + ρ(ηn, ηm)φ(ηn+1, ηm)Λ(ηn+1, ηn+2)

+ ρ(ηn, ηm)ρ(ηn+1, ηm)φ(ηn+2, ηm)Λ(ηn+2, ηn+3)

+ ρ(ηn, ηm)ρ(ηn+1, ηm)ρ(ηn+2, ηm)Λ(ηn+3, ηm)

≤
...

≤ φ(ηn, ηm)Λ(ηn, ηn+1) + ρ(ηn, ηm)φ(ηn+1, ηm)Λ(ηn+1, ηn+2)

+ ρ(ηn, ηm)ρ(ηn+1, ηm)φ(ηn+2, ηm)Λ(ηn+2, ηn+3)

...

+ ρ(ηn, ηm)ρ(ηn+1, ηm) . . . ρ(ηm−2, ηm)Λ(ηm−1, ηm)

≤ ρ(ηn−1, ηm)φ(ηn, ηm)Λ(ηn, ηn+1)

+ ρ(ηn−1, ηm)ρ(ηn, ηm)φ(ηn+1, ηm)Λ(ηn+1, ηn+2)

+ ρ(ηn−1, ηm)ρ(ηn, ηm)ρ(ηn+1, ηm)φ(ηn+2, ηm)Λ(ηn+2, ηn+3)

...

+ ρ(ηn−1, ηm)ρ(ηn, ηm) . . . ρ(ηm−2, ηm)φ(ηm−1, ηm)Λ(ηm−1, ηm)

=

m−1∑
i=n

φ(ηi, ηm)

i∏
j=n

ρ(ηj−1, ηm)Λ(ηi, ηi+1).

.

(2.6)

By (2.5) and (2.6), we get

Λ(ηn, ηm) ≤
m−1∑
i=n

φ(ηi, ηm)
i∏

j=n

ρ(ηj−1, ηm)kiΛ(η0, η1). (2.7)

Let

∆i = φ(ηi, ηm)

i∏
j=n

ρ(ηj−1, ηm)kiΛ(η0, η1).

Then

∆i+1 = φ(ηi+1, ηm)

i+1∏
j=n

ρ(ηj−1, ηm)ki+1Λ(η0, η1).
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Therefore, we have

sup
m>1

lim
i→+∞

∆i+1

∆i
= sup

m>1
lim

i→+∞

φ(ηi+1, ηm)

φ(ηi, ηm)
ρ(ηi, ηm)k < 1.

The ratio test proves to us that the sequence{
m−1∑
i=n

φ(ηi, ηm)

i∏
j=n

ρ(ηj−1, ηm)kiΛ(η0, η1)

}

is Cauchy in a real line, and as a result, the sequence {ηn} is Cauchy in (D,Λ).
Since the space (D,Λ) is complete, the sequence {ηn} is convergent. This gives
us

lim
n→∞

Λ(ηn, ζ) = 0 for some ζ ∈ D. (2.8)

If Tζ 6= ζ, the triangular inequality, (2.1), (2.3) and (2.8) imply that

0 < Λ(ζ, T ζ)

≤ φ(ζ, T ζ)Λ(ζ, ηn+1) + ρ(ζ, T ζ)Λ(ηn+1, T ζ)

= φ(ζ, T ζ)Λ(ζ, ηn+1) + ρ(ζ, T ζ)Λ(Tηn, T ζ).

≤ φ(ζ, T ζ)Λ(ζ, ηn+1) + ρ(ζ, T ζ)[dΛ(ηn, ζ) + hΛ(ηn, Tηn) + rΛ(ζ, T ζ)]

≤ (
d+ h

1− r
= k < 1)Λ(ζ, T ζ)

< Λ(ζ, T ζ).

From the above inequalities, we arrive at

0 < Λ(ζ, T ζ) < Λ(ζ, T ζ),

which is a contradiction. So, we conclude Tζ = ζ.
To prove the uniqueness, we assume ϕ ∈ D in such manner that Tϕ = ϕ

and ζ 6= ϕ. Then, we have

0 < Λ(ζ, ϕ)

= Λ(Tζ, Tϕ)

≤ dΛ(ζ, ϕ) + hΛ(ζ, T ζ) + rΛ(ϕ, Tϕ)

< dΛ(ζ, ϕ),

which is a contradiction. Thus, ζ = ϕ. This completes the proof. �

Example 2.8. Let D = {0, 1, 2}. Set the distance function Λ: D×D→ [0,∞)
as
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Λ(τ, ϕ) 0 1 2

0 Λ(0, 0) = 0 Λ(1, 0) = 5
3 Λ(2, 0) = 15

18
1 Λ(0, 1) = 5

3 Λ(1, 1) = 0 Λ(2, 1) = 10
14

2 Λ(0, 2) = 15
18 Λ(1, 2) = 10

14 Λ(2, 2) = 0

And define the functions ρ, φ: D ×D → [1,∞) by

φ(τ, ϕ) 0 1 2
0 φ(0, 0) = 1 φ(1, 0) = 2 φ(2, 0) = 2
1 φ(0, 1) = 2 φ(1, 1) = 1 φ(2, 1) = 2
2 φ(0, 2) = 2 φ(1, 2) = 2 φ(2, 2) = 1

and

ρ(τ, ϕ) 0 1 2

0 ρ(0, 0) = 1 ρ(1, 0) = 3
2 ρ(2, 0) = 3

2
1 ρ(0, 1) = 3

2 ρ(1, 1) = 1 ρ(2, 1) = 3
2

2 ρ(0, 2) = 3
2 ρ(1, 2) = 3

2 ρ(2, 2) = 1

We define T (0) = 2, T (1) = T (2) = 1, and take d = 4
7 , h = 1

8 , r = 2
5 , then it

is obvious that the conditions of Theorem 2.7 are hold, so 1 is the only fixed
point of T.

Example 2.9. Let D = [0, 1]. Define the extended metric space of type (φ, ρ)
by

Λ(τ, ϕ) = |τ + ϕ|2.
Also, define the two functions φ and ρ by φ(τ, ϕ) = 1 + τ + ϕ and ρ(τ, ϕ) =

2{1 + max(τ, ϕ)} for all τ, ϕ ∈ D. Moreover, Define T : D → D by Tx = x2

6 .

If we choose d = 1
7 , h = 1

8 , r = 2
5 , and τ0 = 0, then all conditions of Theorem

2.7 are satisfied. Therefore T has a unique fixed point. Here 0 is the unique
fixed point of T .

Corollary 2.10. Let (D,Λ) be a complete extended metric space of type (φ, ρ).
Take λ ∈ (0, 1) such that T : D → D satisfies

Λ(Tτ, Tϕ) ≤ λΛ(τ, ϕ) (2.9)

for all τ, ϕ ∈ D. For η0 ∈ D, put ηn = Tnη0. Also, assume that

sup
m≥1

lim
i→∞

φ(ηi+1, ηm)

φ(ηi, ηm)
ρ(ηi, ηm) <

1

λ
. (2.10)

Then, T has a unique fixed point in D.

Proof. Taking h = r =0 in Theorem 2.7. �
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Example 2.11. Let D = {0, 1, 2}. Define the extended metric space Λ :
D ×D → [0,+∞) of type (φ, ρ) via

Λ(τ, ϕ) 0 1 2

0 Λ(0, 0) = 0 Λ(1, 0) = 1 Λ(2, 0) = 2
5

1 Λ(0, 1) = 1 Λ(1, 1) = 0 Λ(2, 1) = 6
25

2 Λ(0, 2) = 2
5 Λ(1, 2) = 6

25 Λ(2, 2) = 0

Also, define the functions φ, ρ : D ×D → [1,+∞) by

φ(τ, ϕ) 0 1 2

0 φ(0, 0) = 1 φ(1, 0) = 6
5 φ(2, 0) = 151

100
1 φ(0, 1) = 6

5 φ(1, 1) = 1 φ(2, 1) = 8
5

2 φ(0, 2) = 151
100 φ(1, 2) = 8

5 φ(2, 2) = 1

and

ρ(τ, ϕ) 0 1 2

0 ρ(0, 0) = 1 ρ(1, 0) = 6
5 ρ(2, 0) = 8

5
1 ρ(0, 1) = 6

5 ρ(1, 1) = 1 ρ(2, 1) = 33
20

2 ρ(0, 2) = 8
5 ρ(1, 2) = 33

20 ρ(2, 2) = 1

Define Tτ = 1 for all τ ∈ X. Let τ0 = 1 and λ = 1
2 . Then we have

sup
m≥1

lim
i→∞

φ(ηi+1, ηm)

φ(ηi, ηm)
ρ(ηi, ηm) = 1 < 2 =

1

λ
.

Thus Corollary 2.10 is accomplished.

Corollary 2.12. On a set D, consider the function T : D×D. Impose (D,Λ)
is complete and there exists a ∈ (0, 12) such that

Λ(Tτ, Tϕ) ≤ a[Λ(τ, T τ) + Λ(ϕ, Tϕ)] (2.11)

for all τ, ϕ ∈ D. Take ηn = Tnη0. Moreover, assume

sup
m≥1

lim
i→∞

φ(ηi+1, ηm)

φ(ηi, ηm)
ρ(ξi, ηm) <

1

a
− 1. (2.12)

Also, for each η ∈ D, impose

ρ(η, Tη) <
1

a
. (2.13)

Then, T has a unique fixed point.

Proof. The proof follows from Theorem 2.7 by putting d = 0 and h = r. �
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Corollary 2.13. Assume (D,Λ) is a complete extended b−metric space through
the function α. Consider the map T : D ×D. Let there exists a ∈ (0, 12) such
that

Λ(Tτ, Tϕ) ≤ a[Λ(τ, T τ) + Λ(ϕ, Tϕ)] (2.14)

for all τ, ϕ ∈ D. For η ∈ D, put ηn = Tnη0. Moreover, assume

sup
m≥1

lim
i→∞

α(ηi+1, ηm) <
1

a
− 1. (2.15)

Also, for each η ∈ D, impose

α(η, Tη) <
1

a
. (2.16)

Then, T has a unique fixed point.

Proof. The proof follows from Corollary 2.12 by noting that (D,Λ) is a com-
plete extended b−metric space of type (α, α) once we take φ = ρ = α. �

3. Conclusion

We introduced a new definition of metric spaces called extended metric
spaces of type (φ, ρ) as a generalization of extended b-metric spaces. We also
proved the existence and uniqueness of a fixed point for a self-mapping in
such spaces that satisfies a set of conditions. In particular, we established and
prove a new fixed point result on extended metric spaces of type (φ, ρ) of a
Reich-type contraction.
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