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Abstract. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for
any complex number α with |α| ≥ k, and r ≥ 1, Aziz [1] proved

{∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣r dθ} 1

r

max
|z|=1

|p′(z)| ≥ n
{∫ 2π

0

∣∣∣p(eiθ)∣∣∣r dθ} 1
r

.

In this paper, we obtain an improved extension of the above inequality into polar deriv-

ative. Further, we also extend an inequality on polar derivative recently proved by Rather

et al. [20] into Lr-norm. Our results not only extend some known polynomial inequalities,

but also reduce to some interesting results as particular cases.
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1. Introduction

Let p(z) be a polynomial of degree n over the set of complex numbers and
for each r > 0, we define

‖p‖r =

{
1

2π

∫ 2π

0

∣∣∣p(eiθ)∣∣∣r dθ} 1
r

.

If we take limit as r →∞ and make use of the well-known fact from analysis
[23, 25] that

lim
r→∞

{
1

2π

∫ 2π

0

∣∣∣p(eiθ)∣∣∣r dθ} 1
r

= max
|z|=1

|p(z)|,

we can suitably denote

‖p‖∞ = max
|z|=1

|p(z)|.

Let p(z) be a polynomial of degree n, it was shown by Turán [26] that if
p(z) has all its zeros in |z| ≤ 1, then

‖p′‖∞ ≥
n

2
‖p‖∞. (1.1)

Inequality (1.1) is sharp and equality holds for p(z) = αzn+β, where |α| = |β|.
Inequality (1.1) was refined by Aziz and Dawood [2] in the form

‖p′‖∞ ≥
n

2

{
‖p‖∞ + min

|z|=1
|p(z)|

}
. (1.2)

Inequality (1.1) of Turán [26] has been of considerable interest and applications
and it would be of interest to seek its generalization for polynomials having
all their zeros in |z| ≤ k, k > 0. The case when 0 < k ≤ 1 was settled by Malik
[16] and proved

‖p′‖∞ ≥
n

1 + k
‖p‖∞. (1.3)

While for the case k ≥ 1, Govil [10] proved

‖p′‖∞ ≥
n

1 + kn
‖p‖∞. (1.4)

Equality in (1.4) holds for p(z) = zn + kn, k ≥ 1.

As a refinement of inequality (1.3), Govil [11] proved

‖p′‖∞ ≥
n

1 + k

(
‖p‖∞ +

1

kn−1
min
|z|=k

|p(z)|
)
. (1.5)

Equality in (1.5) holds for p(z) = (z + k)n.
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Aziz and Shah [4] generalized (1.3) by considering the class of polynomials
having all their zeros in |z| ≤ k, k ≤ 1, with s- fold zeros at the origin and
proved

‖p′‖∞ ≥
n+ sk

1 + k
‖p‖∞. (1.6)

The result is sharp and the extremal polynomial is p(z) = zs (z + k)n−s ,
0 ≤ s ≤ n.

Again, under the same hypothesis, it was Govil [11] who improved upon
(1.4) by proving

‖p′‖∞ ≥
n

1 + kn

{
‖p‖∞ + min

|z|=k
|p(z)|

}
. (1.7)

Equality in (1.7) holds for p(z) = zn + kn, k ≥ 1.

For the first time in 1984, Malik [15] extended inequality (1.1) proved by
Turán [26] into Lr-norm and proved that if p(z) is a polynomial of degree n
having all its zeros in |z| ≤ 1, then for r > 0,

‖1 + z‖r‖p′‖∞ ≥ n‖p‖r. (1.8)

The result is sharp and equality holds for p(z) = (z + 1)n (see [21]).

In 1988, Aziz [1] obtained the Lr-norm extension of inequality (1.4) by
proving the following result.

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≥ 1, then for r ≥ 1,

‖1 + knz‖r‖p′‖∞ ≥ n‖p‖r. (1.9)

The result is sharp and equality holds for p(z) = αzn + βkn, |α| = |β|.

For a polynomial p(z) of degree n and a complex number α, let

Dαp(z) = np(z) + (α− z)p′(z)
denote the polar derivative of the polynomial p(z) with respect to α.

Note that Dαp(z) is a polynomial of degree at most n−1, and it generalizes
the ordinary derivative in the sense that

lim
α→∞

Dαp(z)

α
= p

′
(z).

Aziz and Rather [3] first extended inequality (1.3) to the polar derivative
version and proved that if p(z) is a polynomial of degree n having all its zeros
in |z| ≤ k, k ≤ 1, then for every complex number α with |α| ≥ k,

‖Dαp‖∞ ≥ n
(
|α| − k
1 + k

)
‖p‖∞. (1.10)
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Further, in the same paper [3], they also extended (1.4) to polar derivative
and obtained

‖Dαp‖∞ ≥ n
(
|α| − k
1 + kn

)
‖p‖∞, (1.11)

where α is any complex number with |α| ≥ k.

The corresponding polar derivative analogue of (1.7) and a refinement of
(1.11) was given by Dewan et al. [7]. They proved that if p(z) is a polynomial
of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex number
α with |α| ≥ k,

‖Dαp‖∞ ≥
n

1 + kn

{
(|α| − k)‖p‖∞ +

(
|α|+ 1

kn−1

)
min
|z|=k

|p(z)|
}
. (1.12)

Recently, Govil and Kumar [12] proved a generalization and improvement
of inequality (1.11), incorporating the leading coefficient and constant term of
the polynomial (see [6], [22]).

Theorem 1.2. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then for every complex number α with
|α| ≥ k,

‖Dαp‖∞ ≥
|α| − k
1 + kn

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
‖p‖∞ . (1.13)

Also, Rather et al. [20] proved a generalization and improvement of inequal-
ity (1.10) by involving leading coefficient and constant term of the polynomial.

Theorem 1.3. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| ≥ k,

‖Dαp‖∞ ≥
n(|α| − t)

1 + k

{
1 +

k

n

(
s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

)}
‖p‖∞ , (1.14)

where

t =
(n− s)k2|cn−s|+ |cn−s−1|
(n− s)|cn−s|+ |cn−s−1|

. (1.15)
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2. Lemmas

The following lemmas are needed for the proof of theorems and the corol-

laries. For a polynomial p(z) of degree n, we will use q(z) = znp
(

1
z̄

)
.

Lemma 2.1. ([16]) If p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≤ 1, then for |z| = 1,

|q′(z)| ≤ k|p′(z)|.

Lemma 2.2. ([24]) Let p(z) = cnz
n+

n∑
ν=µ

cn−νz
n−ν , 1 ≤ µ ≤ n is a polynomial

of degree n having all its zeros in |z| ≤ k, k ≤ 1. Then for |z| = 1,

|p′(z)| ≥ n|cn|kµ−1 + µ|cn−µ|
n|cn|k2µ + µ|cn−µ|kµ−1

|q′(z)|, (2.1)

where

q(z) = znp

(
1

z

)
.

Lemma 2.3. If p(z) is a polynomial of degree n, then for every R ≥ 1 and
r > 0, {∫ 2π

0

∣∣∣p(Reiθ)∣∣∣r dθ} 1
r

≤ Rn
{∫ 2π

0

∣∣∣p(eiθ)∣∣∣r dθ} 1
r

. (2.2)

As far as Lemma 2.3 is concerned, it is difficult to trace its origin. It was
deduced from a well-known result of Hardy [13], according to which for every
function f(z) analytic in |z| < t0, and for every r > 0,{∫ 2π

0

∣∣∣f (teiθ)∣∣∣r dθ} 1
r

is a non-decreasing function of t for 0 < t < t0. If p(z) is a polynomial of

degree n, then f(z) = znp
(

1
z̄

)
is again a polynomial of degree at most n, that

is, an entire function and by Hardy’s result for r > 0,{∫ 2π

0

∣∣∣f (teiθ)∣∣∣r dθ} 1
r

≤
{∫ 2π

0

∣∣∣f (eiθ)∣∣∣r dθ} 1
r

,

for t = 1
R < 1. This is equivalent to (2.2).
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Lemma 2.4. ([8]) If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of

degree n having all its zeros in |z| ≤ 1, then for |z| = 1,∣∣∣p′(z)∣∣∣ ≥ 1

2

{
n+ s+

|cn−s| − |c0|
|cn−s|+ |c0|

}
|p(z)|.

Lemma 2.5. ([14], [18]) If p(z) is a polynomial of degree n having no zero in
|z| < 1, then for every R ≥ 1 and r > 0,{∫ 2π

0

∣∣∣p(Reiθ)∣∣∣r dθ} 1
r

≤ Er
{∫ 2π

0

∣∣∣p(eiθ)∣∣∣r dθ} 1
r

, (2.3)

where

Er =

{∫ 2π
0 |1 +Rneiθ|rdθ

} 1
r

{∫ 2π
0 |1 + eiθ|rdθ

} 1
r

. (2.4)

This lemma was proved by Boas and Rahman [14] for r ≥ 1. Later, Rahman
and Schmeisser [18] showed the validity for 0 < r < 1 as well.

Lemma 2.6. ([19]) If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of

degree n having all its zeros in |z| ≤ k, k ≤ 1, then for |z| = 1,∣∣∣p′(z)∣∣∣ ≥ n

1 + k

{
1 +

k

n

(
s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

)}
|p(z)|.

Lemma 2.7. ([9]) If p(z) is a polynomial of degree n having no zero in |z| < k,
k > 0, then for |z| < k,

|p(z)| > m, (2.5)

where
m = min

|z|=k
|p(z)| .

Lemma 2.8. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k > 0, then for any complex number λ with
|λ| < 1 and m = min

|z|=k
|p(z)|,

kn|cn−s| − |λ|m− ks|c0| ≥ 0. (2.6)
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Proof. By hypothesis, p(z) = zsh(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polyno-

mial of degree n having all its zeros in |z| ≤ k, k > 0. Then, the polynomial
P (z) = e−i arg cn−sh(z) has the same zeros as h(z). Now,

P (z) = e−i arg cn−s
{
c0 + c1z+· · ·+cn−s−1z

n−s−1+|cn−s|ei arg cn−szn−s
}

= e−i arg cn−s
{
c0 + c1z+· · ·+cn−s−1z

n−s−1
}

+|cn−s|zn−s. (2.7)

Now, on |z| = k for any complex number λ with |λ| < 1 and m = min
|z|=k

p(z) 6=

0, we have ∣∣∣∣mλkn zn−s
∣∣∣∣ < m

ks
= min
|z|=k

|h(z)| = min
|z|=k

|P (z)| ≤ |P (z)|.

Then by Rouche’s theorem, R(z) = P (z)− m|λ|
kn z

n−s has all its zeros in |z| < k.
Applying Vieta’s formula to the polynomial R(z), we get

|c0|∣∣∣|cn−s| − m|λ|
kn

∣∣∣ < kn−s. (2.8)

Since P (z) is a polynomial of degree n − s having all its zeros in |z| ≤ k,

Q(z) = zn−sP
(

1
z

)
is a polynomial of degree at most n − s having no zero in

|z| < 1
k . Applying Lemma 2.7 to Q(z), we have

|cn−s| = |Q(0)| > min
|z|= 1

k

|Q(z)| = 1

kn−s
min
|z|=k

|P (z)| = m

kn
,

that is,

|cn−s| >
m

kn
. (2.9)

Using (2.9) to (2.8), we have

kn|cn−s| − |λ|m− ks|c0| > 0. (2.10)

For m = min
|z|=k

|p(z)| = 0, the result follows trivially, simply on applying the

similar argument of inequality (2.8) to the polynomial h(z) =
n−s∑
j=0

cjz
j , that

is,

kn|cn−s| − ks|c0| ≥ 0. (2.11)

This completes the proof. �

The following lemma was proved by [20]. However, we present an alternative
proof of this lemma.
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Lemma 2.9. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number λ with
|λ| < 1 and m = min

|z|=k
|p(z)|,

tm ≤ k, (2.12)

where tm =
(n− s)k2

(
|cn−s| − |λ|mkn

)
+ |cn−s−1|

(n− s)
(
|cn−s| − |λ|mkn

)
+ |cn−s−1|

.

Proof. Following the same argument as in the beginning of Lemma 2.8, it

follows that R(z) = P (z) − |λ|mkn z
n−s has all its zeros in |z| < k. Applying

Vieta’s formula to R(z), we have∣∣∣∣∣ cn−s−1

|cn−s| − |λ|mkn

∣∣∣∣∣ < k(n− s). (2.13)

Using (2.9), (2.13) becomes

|cn−s−1|
|cn−s| − |λ|mkn

< k(n− s),

which implies

(1− k)|cn−s−1| ≤ k(1− k)(n− s)
(
|cn−s| −

|λ|m
kn

)
,

which gives

tm ≤ k. (2.14)

Similarly, for m = 0, we get

t ≤ k, (2.15)

where t is as defined in Theorem 1.3. �

3. Main results

For the last more than 30 years, there is no generalizations and improve-
ments of Theorem 1.1 due to Aziz [1] concerning polar derivative of a polyno-
mial. In this direction, we are able to prove the following generalized Lr-norm
extension of Theorem 1.2, which further gives an improved and a general-
ized Lr-norm analogue in polar derivative of Theorem 1.1. More precisely, we
prove:
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Theorem 3.1. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then for every complex number α with
|α| ≥ k and λ with |λ| < 1 and r > 0,∥∥∥Dα

{
p
(
eiθ
)
− m

kn
λeinθ

}∥∥∥
r
≥ |α| − k

2Er
A
∥∥∥p(eiθ)− m

kn
λeinθ

∥∥∥
r
, (3.1)

where

m = min
|z|=k

|p(z)|,

A =

{
n+ s+

kn|cn−s| − |λ|m− |c0|ks

kn|cn−s| − |λ|m+ |c0|ks

}
and

Er =

{∫ 2π
0 |1 + kneiθ|rdθ

} 1
r

{∫ 2π
0 |1 + eiθ|rdθ

} 1
r

.

Proof. By hypothesis, p(z) has all its zeros in |z| ≤ k, k ≥ 1. For m =
min
|z|=k

|p(z)| 6= 0, consider a polynomial R(z) = p(z) − m
knλz

n, where λ is a

complex number with |λ| < 1.
Now, on |z| = k

|m
kn
λzn| < m

kn
kn ≤ |p(z)|.

Then by Rouche’s theorem, it follows that R(z) has all its zeros in |z| < k
and in case m = 0, R(z) = p(z). Thus, in any case, R(z) has all its zeros in
|z| ≤ k. Then, the polynomial P (z) = R(kz) has all its zeros in |z| ≤ 1. It is
easy to verify that for |z| = 1,

|Q′ (z) | =
∣∣∣nP (z)− zP ′ (z)

∣∣∣ , (3.2)

where

Q(z) = znP

(
1

z̄

)
.

Applying Lemma 2.1 to P (z), we have for |z| = 1∣∣∣Q′(z)∣∣∣ ≤ ∣∣∣P ′(z)∣∣∣ . (3.3)
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Using (3.2) and (3.3), we have for
∣∣α
k

∣∣ ≥ 1 and |z| = 1,∣∣∣Dα
k
P (z)

∣∣∣ =
∣∣∣nP (z) +

(α
k
− z
)
P
′
(z)
∣∣∣

≥
∣∣∣α
k

∣∣∣ |P ′(z)| − ∣∣∣nP (z)− zP ′ (z)
∣∣∣

=
∣∣∣α
k

∣∣∣ |P ′(z)| − |Q′ (z) |
≥

(∣∣∣α
k

∣∣∣− 1
)
|P ′(z)|. (3.4)

Applying Lemma 2.4 to P (z), we have for |z| = 1∣∣∣P ′(z)∣∣∣ ≥ 1

2

{
n+ s+

kn−s|cn−s − m
knλ| − |c0|

kn−s|cn−s − m
knλ|+ |c0|

}
|P (z)|. (3.5)

Now, using the fact that the fuction f(x) = x−|a|
x+|a| is a non-decreasing func-

tion of x and in view of (2.9), we get∣∣∣P ′(z)∣∣∣ ≥ 1

2

{
n+ s+

kn|cn−s| − |λm| − |c0|ks

kn|cn−s| − |λm|+ |c0|ks

}
|P (z)|. (3.6)

Combining (3.6) and (3.4), we get∣∣∣Dα
k
P (z)

∣∣∣ ≥ |α| − k
2k

{
n+ s+

kn|cn−s| − |λm| − |c0|ks

kn|cn−s| − |λm|+ |c0|ks

}
|P (z)|.

Replacing P (z) by R(kz) in the above inequality, we obtain∣∣∣nR(kz) +
(α
k
− z
)
kR
′
(kz)

∣∣∣ ≥ |α| − k
2k

A|R(kz)|, (3.7)

where

A =

{
n+ s+

kn|cn−s| − |λm| − |c0|ks

kn|cn−s| − |λm|+ |c0|ks

}
.

Inequality (3.7) is equivalent to∣∣nR(kz) + (α− kz)R′(kz)
∣∣ ≥ |α| − k

2k
A|R(kz)|,

therefore for any r > 0, we have∣∣∣DαR
(
keiθ

)∣∣∣r ≥ ( |α| − k
2k

A

)r ∣∣∣R(keiθ)
∣∣∣r , 0 ≤ θ < 2π,

and hence{∫ 2π

0

∣∣∣DαR
(
keiθ

)∣∣∣r dθ} 1
r

≥ |α| − k
2k

A

{∫ 2π

0

∣∣∣R(keiθ)
∣∣∣r dθ} 1

r

. (3.8)
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Since P (z) has all its zeros in |z| ≤ 1, Q(z) is a polynomial of degree at
most n having all its zeros in |z| ≥ 1. Applying Lemma 2.5 to Q(z), we get{∫ 2π

0

∣∣∣Q(keiθ)∣∣∣r dθ} 1
r

≤ Er
{∫ 2π

0

∣∣∣Q(eiθ)
∣∣∣r dθ} 1

r

. (3.9)

Now, it can be easily obtained that∣∣∣Q(keiθ)
∣∣∣ = kn

∣∣∣R(eiθ)∣∣∣
and ∣∣∣Q(eiθ)∣∣∣ =

∣∣∣R(keiθ)∣∣∣ .
With the above two relations, (3.9) gives

kn
{∫ 2π

0

∣∣∣R(eiθ)∣∣∣r dθ} 1
r

≤ Er
{∫ 2π

0

∣∣∣R(keiθ)∣∣∣r dθ} 1
r

. (3.10)

Since DαR(z) is a polynomial of degree at most (n− 1), applying Lemma 2.3
to DαR(z) with R = k ≥ 1, we have

1

kn−1

{∫ 2π

0

∣∣∣DαR
(
keiθ

)∣∣∣r dθ} 1
r

≤
{∫ 2π

0

∣∣∣DαR
(
eiθ
)∣∣∣r dθ} 1

r

. (3.11)

Using (3.11) to (3.8), we get

kn−1

{∫ 2π

0

∣∣∣DαR
(
eiθ
)∣∣∣r dθ} 1

r

≥ |α| − k
2k

A

{∫ 2π

0

∣∣∣R(keiθ)
∣∣∣r dθ} 1

r

. (3.12)

Combining (3.10) and (3.12), we have{∫ 2π

0

∣∣∣DαR
(
eiθ
)∣∣∣r dθ} 1

r

≥ |α| − k
2Er

A

{∫ 2π

0

∣∣∣R(eiθ)∣∣∣r dθ} 1
r

,

which is equivalent to{∫ 2π

0

∣∣∣Dα

{
p
(
eiθ
)
−m
kn
λeinθ

}∣∣∣rdθ} 1
r

≥ |α|−k
2Er

A

{∫ 2π

0

∣∣∣p(eiθ)−m
kn
λeinθ

∣∣∣rdθ} 1
r

.

This completes the proof of Theorem 3.1. �

Remark 3.2. Suppose p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≥ 1.

Now,
m = min

|z|=k
|p(z)| ≤ max

|z|=k
|p(z)|. (3.13)

By a simple deduction from Maximum Modulus Principle, we have

max
|z|=k

|p(z)| ≤ kn max
|z|=1

|p(z)|. (3.14)
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Using (3.14) to (3.13), we get

m ≤ kn max
|z|=1

|p(z)|,

that is,
m

kn
≤ max
|z|=1

|p(z)|. (3.15)

For any complex number λ with |λ| < 1, we have

|λ|m
kn

< max
|z|=1

|p(z)|. (3.16)

Remark 3.3. Letting r →∞ in (3.1) and noting the fact that Er → 1+kn

2 as
limit r →∞, then we obtain

max
|z|=1

∣∣∣∣Dα

{
p(z)− mλ

kn
zn
}∣∣∣∣ ≥ |α| − k1 + kn

Amax
|z|=1

∣∣∣∣p(z)− mλ

kn
zn
∣∣∣∣ , (3.17)

that is,

max
|z|=1

∣∣∣∣Dαp(z)−
|α|mnλ
kn

zn−1

∣∣∣∣ ≥ |α| − k1 + kn
Amax
|z|=1

∣∣∣∣p(z)− mλ

kn
zn
∣∣∣∣ . (3.18)

Let z0 on |z| = 1 be such that

max
|z|=1

∣∣∣∣Dαp(z)−
|α|mnλ
kn

zn−1

∣∣∣∣ =

∣∣∣∣Dαp(z0)− |α|mnλ
kn

zn−1
0

∣∣∣∣ . (3.19)

In the right hand side of (3.19), if we choose the argument of λ such that∣∣∣∣Dαp(z0)− |α|mnλ
kn

zn−1
0

∣∣∣∣ = |Dαp(z0)| − n|α||λ|
kn

m. (3.20)

From (3.19) and (3.20), (3.18) becomes

|Dαp(z0)| − n|α||λ|
kn

m ≥ |α| − k
1 + kn

Amax
|z|=1

∣∣∣∣p(z)− mλ

kn
zn
∣∣∣∣ . (3.21)

Since |Dαp(z0)| ≤ max
|z|=1

|Dαp(z)| , (3.21) gives

max
|z|=1

|Dαp(z)| −
n|α||λ|
kn

m ≥ |α| − k
1 + kn

Amax
|z|=1

∣∣∣∣p(z)− mλ

kn
zn
∣∣∣∣ . (3.22)

Let z1 on |z| = 1 be such that max
|z|=1

|p(z)| = |p(z1)|. Then

max
|z|=1

∣∣∣∣p(z)− mλ

kn
zn
∣∣∣∣ ≥ ∣∣∣∣p(z1)− mλ

kn
zn
∣∣∣∣

≥
∣∣∣∣|p(z1)| − m|λ|

kn

∣∣∣∣ . (3.23)
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Using (3.16) to (3.23), we get

max
|z|=1

∣∣∣∣p(z)− mλ

kn
zn
∣∣∣∣ ≥ max

|z|=1
|p(z)| − m|λ|

kn
. (3.24)

Using (3.24) to (3.22), we obtain

max
|z|=1

|Dαp(z)| −
n|α||λ|
kn

m ≥ |α| − k
1 + kn

A

(
max
|z|=1

|p(z)| − |λ|
kn
m

)
. (3.25)

Setting |λ| = l in (3.25), we have

max
|z|=1

|Dαp(z)| −
n|α|l
kn

m ≥ |α| − k
1 + kn

A

(
max
|z|=1

|p(z)| − l

kn
m

)
, (3.26)

which on simplification and letting the limit as l→ 1 gives the following result
recently proved by Abdullah Mir [17, Theorem 1].

Corollary 3.4. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then for every complex number α with
|α| ≥ k,

‖Dαp‖∞ ≥
n

1 + kn

{
(|α| − k) ‖p‖∞ +

(
|α|+ 1

kn−1

)
m

}
+
|α| − k
1 + kn

{
s+

kn|cn−s| −m− |c0|ks

kn|cn−s| −m+ |c0|ks

}{
‖p‖∞ −

m

kn

}
, (3.27)

where m = min
|z|=k

|p(z)|.

Remark 3.5. Using the three facts (3.15), (2.6) and (2.9) in (3.27), it is clear
that Corollary 3.4 gives the improvement of (1.12).

Remark 3.6. Dividing both sides of (3.27) of Corollary 3.4 by |α| and letting
|α| → ∞, we get the following result due to Abdullah Mir [17, Corollary 2]
which gives an improvement of (1.7) because of the same three facts (3.15),
(2.6) and (2.9).
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Corollary 3.7. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then∥∥p′∥∥∞ ≥ n

1 + kn
(‖p‖∞ +m)

+
1

1 + kn

{
s+

kn|cn−s| −m− |c0|ks

kn|cn−s| −m+ |c0|ks

}{
‖p‖∞ −

m

kn

}
, (3.28)

where m = min
|z|=k

|p(z)|. The result is sharp and equality in (3.28) holds for

p(z) = zn + kn.

Remark 3.8. Dividing both sides of (3.1) of Theorem 3.1 by |α| and letting
|α| → ∞, we get the following generalized Lr-norm extension of Corollary 3.7.

Corollary 3.9. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then for every complex number λ with
|λ| < 1 and r > 0,

‖p′(eiθ)− mn

kn
λei(n−1)θ‖r ≥

A

2Er
‖p(eiθ)− m

kn
λeinθ‖r, (3.29)

where m, A and Er are as defined in Theorem 3.1.

Remark 3.10. Putting λ = 0 in (3.1) of Theorem 3.1, we get the following
Lr-norm extension of Theorem 1.2 which gives an improved and a generalized
Lr-norm analogue in polar derivative of Theorem 1.1.

Corollary 3.11. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then for every complex number α with
|α| ≥ k and r > 0,

‖Dαp‖r ≥
|α| − k

2Er

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
‖p‖r , (3.30)

where Er is as defined in Theorem 3.1.

Remark 3.12. If we let r →∞ in (3.30), Corollary 3.11 reduces to Theorem
1.2. Further, dividing both sides of it by |α| and letting |α| → ∞, we get the
following improvement of (1.4) which in fact is a result obtained by Govil and
Kumar([12], Corollary 1.2).
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Corollary 3.13. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then

‖p′‖∞ ≥
1

1 + kn

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
‖p‖∞. (3.31)

The result is sharp and equality in (3.31) holds for p(z) = zn + kn.

Remark 3.14. It may be noted that as the polynomial p(z) is of degree n ≥ 1,
the leading coefficient cn can not be zero and using the fact (2.6), it is clear
that inequality (3.31) always gives improved bounds over the bound given by
inequality (1.4). Also, for k = 1, in (3.28) and (3.31), the corresponding results
sharpen (1.2) and (1.1) respectively.

Next, we prove the following Lr-norm inequality, which not only yields the
Lr analog of (1.14) of Theorem 1.3 as a particular case, but also reduces to a
rich number of interesting inequalities as special cases.

Theorem 3.15. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| ≥ k and λ with |λ| < 1 and r > 0,∥∥∥Dα

{
p(eiθ)− m

kn
λeinθ

}∥∥∥
r
≥ (|α| − tm)Bm

∥∥∥p(eiθ)− m

kn
λeinθ

∥∥∥
r
, (3.32)

where

m = min
|z|=k

|p(z)| ,

tm =
(n− s)k2

(
|cn−s| − |λ|mkn

)
+ |cn−s−1|

(n− s)
(
|cn−s| − |λ|mkn

)
+ |cn−s−1|

(3.33)

and

Bm =
n

1 + k

{
1 +

k

n

(
s+

kn|cn−s| − |λ|m− |c0|ks

kn|cn−s| − |λ|m+ |c0|ks

)}
. (3.34)

Proof. By hypothesis, p(z) has all its zeros in |z| ≤ k, k ≤ 1, with s-fold zero
at the origin. Now, consider a polynomial P (z) = p(z)− m

knλz
n, where λ is a

complex number with |λ| < 1, m = min
|z|=k

|p(z)|. Following the similar argument

in the beginning of the proof of Theorem 3.1, it follows that P (z) has all its
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zeros in |z| ≤ k. Since P (z) has all its zeros in |z| ≤ k, k ≤ 1, therefore, by
Lemma 2.2 for µ = 1, we have

δ|P ′(z)| ≥ |Q′(z)| for |z| = 1, (3.35)

where δ =
(n− s)k2|cn−s − λm

kn |+ |cn−s−1|
(n− s)|cn−s − λm

kn |+ |cn−s−1|
and Q(z) = znP

(
1

z

)
.

Since k ≤ 1, it follows by derivative test that
(n− s)k2x+ |cn−s−1|
(n− s)x+ |cn−s−1|

is a

non-increasing function of x. Therefore, in view of (2.9), it follows that

δ =
(n− s)k2|cn−s − λm

kn |+ |cn−s−1|
(n− s)|cn−s − λm

kn |+ |cn−s−1|

≤
(n− s)k2

(
|cn−s| − |λ|mkn

)
+ |cn−s−1|

(n− s)
(
|cn−s| − |λ|mkn

)
+ |cn−s−1|

= tm.

Therefore, from (3.35), we get

tm|P ′(z)| ≥ |Q′(z)| for |z| = 1. (3.36)

Also, for every real or complex number α with |α| ≥ k, since, |Q′(z)| =
|nP (z)− zP ′(z)| for |z| = 1, we have

|DαP (z)| =
∣∣nP (z) + (α− z)P ′(z)

∣∣
≥
∣∣|α||P ′(z)| − |nP (z)− zP ′(z)|

∣∣
=
∣∣|α||P ′(z)| − |Q′(z)|∣∣ . (3.37)

Using (3.36) and Lemma 2.9, we have for |z| = 1

|α||P ′(z)| − |Q′(z)| ≥
∣∣|α||P ′(z)| − tm|P ′(z)|∣∣

= (|α| − tm)|P ′(z)|. (3.38)

(3.37) on using (3.38), we have

|DαP (z)| ≥ (|α| − tm)|P ′(z)| for |z| = 1. (3.39)

Applying Lemma 2.6 to P (z), we have∣∣∣P ′(z)∣∣∣ ≥ n

1 + k

{
1 +

k

n

(
s+

kn−s|cn−s − λm
kn | − |c0|

kn−s|cn−s − λm
kn |+ |c0|

)}
|P (z)|. (3.40)
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Now, using the fact that y−|c|
y+|c| , is a non-decreasing function of y and (2.9),

we get∣∣∣P ′(z)∣∣∣ ≥ n

1 + k

{
1 +

k

n

(
s+

kn|cn−s| − |λm| − |c0|ks

kn|cn−s| − |λm|+ |c0|ks

)}
|P (z)|. (3.41)

Combining (3.38) and (3.41), we obtain

|DαP (z)| ≥ (|α| − tm)Bm|P (z)| for |z| = 1, (3.42)

where

Bm =
n

1 + k

{
1 +

k

n

(
s+

kn|cn−s| − |λm| − |c0|ks

kn|cn−s| − |λm|+ |c0|ks

)}
.

That is,∣∣∣Dα

{
p(z)− m

kn
λzn

}∣∣∣ ≥ (|α| − tm)Bm

∣∣∣p(z)− m

kn
λzn

∣∣∣ for |z| = 1. (3.43)

For each r > 0, and for each θ, 0 ≤ θ < 2π, (3.43) equivalently gives∣∣∣Dα

{
p(eiθ)− m

kn
λeinθ

}∣∣∣r ≥ (|α| − tm)rBr
m

∣∣∣p(eiθ)− m

kn
λeinθ

∣∣∣r . (3.44)

Integrating both sides of (3.44) with respect to θ from 0 to 2π, we obtain

2π∫
0

∣∣∣Dα

{
p(eiθ)−m

kn
λeinθ

}∣∣∣r dθ ≥ (|α|−tm)rBr
m

2π∫
0

∣∣∣p(eiθ)−m
kn
λeinθ

∣∣∣r dθ,
from which the desired conclusion of the theorem follows. �

Remark 3.16. Suppose p(z) is a polynomial of degree n having all its zeros

in |z| ≤ k, k ≤ 1. Then q(z) = znp
(

1
z

)
has all it zeros in |z| ≥ 1

k ,
1
k ≥ 1, that

is, has no zero in |z| < 1
k ,

1
k ≥ 1, therefore applying Lemma 2.7 to q(z), we get

|q(z)| ≥ min
|z|= 1

k

|q(z)| = 1

kn
min
|z|=k

|p(z)| for |z| ≤ 1

k
,

1

k
≥ 1.

Hence, in particular, for |z| = 1,

|q(z)| ≥ 1

kn
min
|z|=k

|p(z)|. (3.45)

Also, for |z| = 1, we know

|p(z)| = |q(z)|. (3.46)

From (3.45) and (3.46), we have

max
|z|=1

|p(z)| ≥ 1

kn
min
|z|=k

|p(z)|. (3.47)
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Remark 3.17. Letting the limit as r → ∞ in (3.32) of Theorem 3.15 and
using the fact (3.47) and following the same argument as in Remark 3.3, we
obtain the following generalization of Theorem 1.3 which in fact is a result
recently obtained by Rather et. al. [20, Theorem 2].

Corollary 3.18. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| ≥ k and for each l with 0 ≤ l < 1,

‖Dαp‖∞ ≥
(
n(|α| − tm)

1 + k

)
‖p‖∞ +

nl (k|α|+ tm)

kn(1 + k)
m

+
k(|α| − tm)

1 + k

(
s+

kn|cn−s|−lm−ks|a0|
kn|cn−s|−lm+ks|a0|

)(
‖p‖∞−

lm

kn

)
, (3.48)

where m and tm are as defined in Theorem 3.15.

Remark 3.19. Dividing both sides of (3.48) by |α| and letting |α| → ∞, we
get the following generalization of the result due to Rather [20, Corollary 3].

Corollary 3.20. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for each l with 0 ≤ l < 1,∥∥p′∥∥∞ ≥ n

1 + k

(
‖p‖∞ +

l

kn−1
m

)
+

k

1 + k

(
s+

kn|cn−s| − lm− ks|a0|
kn|cn−s| − lm+ ks|a0|

)(
‖p‖∞ −

lm

kn

)
, (3.49)

where m = min
|z|=k

|p(z)|.

Remark 3.21. Taking limit as l → 1 in (3.49), Corollary 3.20 gives the
improvement of (1.5) and a result proved by Aziz and zargar [5, Theorem 1.2]
by using the facts (3.47), (2.6) and (2.9).

Remark 3.22. If we take λ = 0 in (3.32), we get the following Lr extension
of Theorem 1.3 which improves a result recently proved by Singh et al. [24,
Corollary 1] by using the fact (3.53).
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Corollary 3.23. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| ≥ k,

‖Dαp‖r ≥ (|α| − t)B ‖p‖r , (3.50)

where

t =
(n− s)k2|cn−s|+ |cn−s−1|
(n− s)|cn−s|+ |cn−s−1|

(3.51)

and

B =
n

1 + k

{
1 +

k

n

(
s+

kn|cn−s| − |c0|ks

kn|cn−s|+ |c0|ks

)}
. (3.52)

Remark 3.24. We are also interested to show that Corollary 3.23 is improved
and generalized Lr-norm extension of inequality (1.10) for this it is sufficient
to show |α| − t ≥ |α| − k, B ≥ n+sk

1+k , and the first inequality follows readily

from inequality (2.12). Now,

B =
n

1 + k

{
1 +

k

n

(
s+

kn|cn−s| − |c0|ks

kn|cn−s|+ |c0|ks

)}
=
n+ sk

1 + k
+

k

1 + k

(
kn|cn−s| − |c0|ks

kn|cn−s|+ |c0|ks

)
.

Using (2.11), it follows

B ≥ n+ sk

1 + k
, (3.53)

and hence the claim.

Remark 3.25. Since |α| − t ≥ |α| − k. Using this fact in Corollary 3.23,
we get the following Lr-norm extension of a result due to Rather et. al. [19,
Theorem 1.3] which is also an improvement and generalization of inequality
(1.10).

Corollary 3.26. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then for every complex number α with
|α| ≥ k,

‖Dαp‖r ≥ (|α| − k)B ‖p‖r , (3.54)

where B is as defined in Corollary 3.23.
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Taking the limit as r →∞ in Corollary 3.26 and further dividing both side
by |α| and |α| → ∞, we get the following generalization of a result recently
proved by Rather et al. [19, Theorem 1.2] and improvement of (1.6) by using
the fact (3.53).

Corollary 3.27. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≤ 1, then∥∥p′∥∥∞ ≥ B ‖p‖∞ , (3.55)

where B is as defined in Corollary 3.23.
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