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Abstract. The main object of this paper is to introduce the sequence spaces [V̂ , λ, f, p]0

(∆r, E), [V̂ , λ, f, p]1(∆r, E), [V̂ , λ, f, p]∞(∆r, E), Ŝλ(∆r, E) and Ŝλ0(∆r, E) where E is a

Banach space which arise from the notion of generalized de la Vellèe Poussin means and

the concept of modulus function, examine them and give various properties and inclusion

relations on these spaces.

1. Introduction

Let ω denote the set of all sequences (real or complex); l∞, c and c0 be
respectively the Banach spaces of all bounded, convergent and null sequences
with the usual norm ‖x‖ = sup

k
|xk|, where k ∈ N = 1, 2, ..., the set of positive

integers. Let λ = (λn) be a non-decreasing sequence of positive numbers
tending to infinity such that λn+1 ≤ λn + 1, λ1 = 1. The generalized de la
Vallèe Poussin means of a sequence x is defined as:

tn(x) =
1

λn

∑
k∈In

xk, where In = [n− λn + 1, n], for n ∈ N.

A sequence x = (xk) is said to be (V, λ)-summable to a number l [7] if tn(x)→
l as n→∞. If λn = n, then (V, λ)-summability and strong (V, λ)-summability
are reduced to (C, 1)-summability and [C, 1]-summability.

Kizmaz [5] defined the difference sequence spaces,

X(∆) = {x = (xk) : ∆x ∈ X} ,
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where X = l∞ , c and c0 and ∆x = (xk − xk+1). Then Et and Colak [2]
generalized the above sequence spaces as:

X(∆r) = {x = (xk) : ∆rx ∈ X} ,
for X = l∞ , c and c0 where r ∈ N and ∆0x = (xk), ∆x = (xk−xk+1),∆rx =

(∆rxk −∆rxk+1), and ∆rxk =
k∑

µ=0

(
n
r

)
xk+µ.

Later on the difference sequence spaces have been studied by Malkowsky
and Parashar [11], Et and Basarir [1] and others.

The concept of paranorm is related to linear metric spaces. It is a gen-
eralization of that of absolute value. Let X be a linear space. A function
p : x→ R is called a paranorm, if

(p.1) p(0) ≥ 0,
(p.2) p(x) ≥ 0, ∀ x ∈ X,
(p.3) p(−x) = p(x), ∀ x ∈ X,
(p.4) p(x+ y) ≤ p(x) + p(y), ∀ x, y ∈ X (triangle inequality),
(p.5) if (λn) is a sequence of scalars with λn → λ (n → ∞) and (xn) is a

sequence of vectors with p(xn−x)→ 0 (n→∞), then p(xnλn−xλ)→
0 (n→∞),(continuity of multiplication of vectors).

A paranorm p for which p(x) = 0 implies x = 0 is called total. It is well
known that the metric of any linear metric space is given by same total para-
norm ([13], Theorem 10.4.2).

Following Wilansky [13] and Maddox [10], a modulus function f is a function
from [0, ∞) to [0, ∞) such that

(i) f(x) = 0 if and only if x = 0,
(ii) f(x+ y) ≤ f(x) + f(y) ∀x, y ≥ 0,

(iii) f is increasing,
(iv) f if continuous from right at x = 0.

Maddox [9] introduced and studied the sets:

[ĉ]0 =

{
x ∈ ω : lim

n

1

n

n∑
k=1

|xk+m| = 0 uniformly in m

}
,

[ĉ] = {x ∈ ω : x− le ∈ [ĉ] for some in l ∈ C}
of sequences that are strongly almost convergent to zero and strongly almost
convergent.

The following inequality will be used throughout this paper. Let p = (pk)
be a sequence of positive real numbers with 0 < pk ≤ supk pk = H and let
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D = max{2, 2H−1}. For ak, bk ∈ C the set of complex numbers. We have
(see, [8]) that

|ak + bk|pk ≤ D{|ak|pk + |bk|pk}. (1.1)

2. Some new sequence spaces defined by modulus function

In this section, we prove some results involving the sequence spaces
[V̂ , λ, f, p]0(∆r, E), [V̂ , λ, f, p]1(∆r, E), [V̂ , λ, f, p]∞(∆r, E).

Definition 2.1. Let E be a Banach space. We define ω(E) to be the vector
space of all E-valued sequences that is ω(E) = {x ∈ ω(E) : xk ∈ E} . Let f
be a modulus function and p = (pk) be any sequence of strictly positive real
numbers. We define the following sequence sets:

[V̂ , λ, f, p]1(∆r, E)

=

{
x ∈ ω(E) : lim

n

1

λn

∑
k∈In

[f‖∆rxk+m − l‖]pk = 0 for some l,

uniformly in m

}
.

[V̂ , λ, f, p]0(∆r, E)

=

x ∈ ω(E) : lim
n

1

λn

∑
k∈In

[f‖∆rxk+m‖]pk = 0 uniformly in m

 .

[V̂ , λ, f, p]∞(∆r, E)

=

x ∈ ω(E) : sup
m,n

1

λn

∑
k∈In

[f‖∆rxk+m‖]pk <∞

 .

If x ∈ [V̂ , λ, f, p]1(∆r, E) then we write xk → l[V̂ , λ, f, p]1(∆r, E) and l will
be called λE- difference limit of x with respect to the modulus f .

Throughout the paper Z will denote any of the notation 0, 1, ∞. In
case f(x) = x, pk = 1 for all k ∈ N , we shall write [V̂ , λ]z(∆

r, E) and

[V̂ , λ, f ]z(∆
r, E) instead of [V̂ , λ, f, p]z(∆

r, E).

Theorem 2.2. Let the sequence (pk) be bounded. Then the sequence spaces

[V̂ , λ, f, p]z(∆
r, E) are linear.
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Proof. We shall prove it for [V̂ , λ, f, p]0(∆r, E). The others can be proved in

the same manner. Let x, y ∈ [V̂ , λ, f, p]z(∆
r, E) and β, µ ∈ C. Then there

exists positive numbers Mβ and Mµ such that |β| ≤ Mβ and |µ| ≤ Nµ. Since
f is sub additive and ∆r is linear we have

1

λn

∑
k∈In

[f‖∆r(βxk+m + µyk+m‖]pk

≤ 1

λn

∑
k∈In

[f‖∆r(βxk+m‖]pk +
1

λn

∑
k∈In

[f‖∆r(µyk+m‖]pk

≤ D(Mβ)H
1

λn

∑
k∈In

[f‖∆rxk+m‖]pk +D
1

λn
(Nµ)H

∑
k∈In

[f‖∆ryk+m‖]pk → 0,

as n → ∞, uniformly in m. This proves that [V̂ , λ, f, p]z(∆
r, E) is a linear

space. �

Theorem 2.3. Let f be a modulus function, then

[V̂ , λ, f, p]0(∆r, E) ⊂ [V̂ , λ, f, p]1(∆r, E) ⊂ [V̂ , λ, f, p]∞(∆r, E).

Proof. The first inclusion is obvious. We establish the second inclusion. Let
x ∈ [V̂ , λ, f, p]1(∆r, E). By definition of f we have for all m ∈ N,

1

λn

∑
k∈In

[f‖∆r xk+m‖]pk =
1

λn

∑
k∈In

[f‖∆r xk+m − l + l‖]pk ,

≤ D 1

λn

∑
k∈In

[f‖∆r xk+m − l‖]pk +D
1

λn

∑
k∈In

[f‖l‖]pk .

There exists a positive integer Kl such that ‖l‖ ≤ Kl. Hence we have

1

λn

∑
k∈In

[f‖∆r xk+m‖]pk

≤ D

λn

∑
k∈In

[f‖∆r xk+m − l‖]pk +
D

λn

∑
k∈In

[Klf(1)]Hλn.

Since x ∈ [V̂ , λ, f, p]1(∆r, E) we have x ∈ [V̂ , λ, f, p]∞(∆r, E) and this com-
pletes the proof. �

Theorem 2.4. [V̂ , λ, f, p]0(∆r, E) is a paranormed (need not be total para-
norm) with

g∆(x) = sup
m,n

 1

λn

∑
k∈In

[f‖∆r( xk+m‖]pk

 1
M

,
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where M = max{1, supk pk}.

Proof. From Theorem 2.3, for each x ∈ [V̂ , λ, f, p]0(∆r, E), g∆(x) exists.
Clearly, g∆(x) = g∆(−x). Furthermore g∆(x) = 0 implies ∆rxk = 0 im-
plies x = 0. Since f(x) = 0, we get g∆(x) = 0 for x = 0. Since pk

M ≤ 1 and
M > 1, using the Minkowski’s inequality and definition of f , for each n we
have

g∆(x+ y) = sup
m,n

 1

λn

∑
k∈In

[f (‖∆rxk+m + ∆ryk+m‖)]pk

 1
M

≤ sup
m,n

 1

λn

∑
k∈In

[f (‖∆rxk+m‖) + f (‖∆ryk+m) ‖]pk

 1
M

≤ sup
m,n

 1

λn

∑
k∈In

[f (‖∆rxk+m‖)]pk

 1
M

+ sup
m,n

 1

λn

∑
k∈In

[f (‖∆ryk+m‖)]pk

 1
M

≤ g∆(x) + g∆(y).

Hence g∆(x) is sub additive. Finally, to check the continuity of multiplication,
let us take any complex number β. By definition of f we have

g∆(βx) = sup
m,n

 1

λn

∑
k∈In

[f (‖∆r (βxk+m) ‖)]pk

 1
M

≤ K
H
M
β g∆(x),

where Kβ is a positive integer such that |β| < Kβ. Now, let β → 0 for any
fixed x with g∆(x) 6= 0. By definition of f for |β| < 1, we have

1

λn

∑
k∈In

[f‖∆r(βxk+m‖]pk < ε, (2.1)

for n > n0(ε).
Also, for all n with 1 ≤ n ≤ n0 and for all m, taking β small enough, since

f is continuous we have
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1

λn

∑
k∈In

[f‖∆r(βxk+m‖]pk < ε. (2.2)

(1.1) and (2.1) together imply that g∆(βx)→ 0 as β → 0. �

Theorem 2.5. If r ≥ 1, then the inclusion

[V̂ , λ, f ]Z(∆r−1, E) ⊂ [V̂ , λ, f, p]Z(∆r, E),

is strict. In general

[V̂ , λ, f ]Z(∆i, E) ⊂ [V̂ , λ, f, p]Z(∆r, E), ∀ i = 1, 2, ..., r − 1

and the inclusion is strict.

Proof. We give the proof for z = ∞ only. For Z = 0 and Z = 1, the proof is
similar. Let x ∈ [V̂ , λ, f ]∞(∆r−1, E). Then, we have

sup
m,n

1

λn

∑
k∈In

[f
(
‖∆r−1xk+m‖

)
]pk <∞.

By definition of f , we have

sup
m,n

1

λn

∑
k∈In

[f (‖∆rxk+m‖)]

≤ sup
m,n

1

λn

∑
k∈In

[f
(
‖∆r−1xk+m‖

)
] + sup

m,n

1

λn

∑
k∈In

[f
(
‖∆r−1xk+m‖

)
]

<∞.
Thus,

[V̂ , λ, f ]Z(∆r−1, E) ⊂ [V̂ , λ, f, p]Z(∆r, E).

Proceeding in this way one can show that

[V̂ , λ, f ]Z(∆i, E) ⊂ [V̂ , λ, f, p]Z(∆r, E), ∀ i = 1, 2, ..., r − 1.

Let E = C and λn = n for each n ∈ N . Then the sequence x = (kr), belongs

to [V̂ , λ, f ]Z(∆r, E) but does not belong to [V̂ , λ, f ]Z(∆r−1, E) for f(x) = x.

( If x = (kr) then ∆rxk = (−1)rr! and ∆r−1xk = (−1)r+1r!
(
k + (r−1)

2

)
for

all k ∈ N). �

The proof of the following result is a routine work.

Theorem 2.6. [V̂ , λ, f, p]1(∆r−1, E) ⊂ [V̂ , λ, f, p]0(∆r, E).

Theorem 2.7. Let f, f1, f2 be modulus functions. Then we have

(i) [V̂ , λ, f1, p]Z(∆r, E) ⊂ [V̂ , λ, f ◦ f1, p]Z(∆r, E).
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(ii) [V̂ , λ, f1, p]Z(∆r, E)
⋂

[V̂ , λ, f2, p]Z(∆r, E) ⊂ [V̂ , λ, f1 + f2, p]Z(∆r, E).

Proof. We shall only prove (i). Let ε > 0 and choose δ with 0 < δ < 1 such
that f(t) < ε for 0 ≤ t ≤ δ. Write yk = f1 (‖∆rxk+m‖) and consider∑

k∈In

[f(yk+m)]pk =
∑

1

[f(yk+m)]pk +
∑

2

[f(yk+m)]pk ,

where the first summation is over yk ≤ δ and the second summation is over
yk > δ. Since, f is continuous, we have∑

1

[f(yk+m)]pk < λnε
H (2.3)

and for yk > δ, we use the fact that yk <
yk
δ ≤ 1 + yk

δ . By definition of f we
have for yk > δ, f(yk) < 2f(1)ykδ . Hence,

1

λn

∑
2

[f(yk+m)]pk ≤ max
{

1, (2f(1)δ−1)H
} 1

λn

∑
k∈In

yk+m. (2.4)

From (2.2) and (2.3), we obtain [V̂ , λ, f, p]0(∆r, E) ⊂ [V̂ , λ, f, p]0(∆r, E).
The proof of (ii) follows from the following inequality:

[(f1 + f2) (‖∆rxk+m‖)]pk ≤ D [f1 (‖∆rxk+m‖)]pk +D [f2 (‖∆rxk+m‖)]pk .
�

The following result is a consequence of Theorem 2.7 (i).

Theorem 2.8. Let f be modulus function. Then

[V̂ , λ, p]Z(∆r, E) ⊂ [V̂ , λ, f, p]Z(∆r, E).

The idea of statistical convergence was introduced by Fast [3] and studied
by various authors ([4], [6], [12]).

Definition 2.9. A sequence x = (xk) is said to be λrE-statistically convergent
to a number l if for every ε > 0,

1

λn
|{k ∈ In : ‖∆rxk+m − l‖ ≥ ε}| = 0, uniformly in m.

In this case we write Ŝ(∆r, E)− limx = l or xk → lŜ(∆r, E). If λn = n and

l = 0 we shall write Ŝ(∆r, E) and Ŝλ0(∆r, E) instead of Ŝλ(∆r, E)

We establish a relation between the sets Ŝλ(∆r, E) and [V̂ , λ, f, p]1(∆r, E).

Theorem 2.10. The inclusion Ŝλ(∆r, E) ⊂ [V̂ , λ, f, p]1(∆r, E) holds if and
only if f is bounded.
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Proof. We shall assume that f is bounded and x ∈ Ŝλ(∆r, E). Then, there
exists a constant M such that f(x) ≤M for all x ≥ 0. Let ε > 0 be given. We

choose η and δ > 0 such that Mδ + f(η) < ε. Since, x ∈ Ŝλ(∆r, E), there are
l ∈ C and n ≥ n0(η, γ) ∈ N such that 1

λn
|{k ∈ In : ‖∆rxk+m − l‖ ≥ η}| < δ,

for all n ≥ n0 and for all m. Therefore,

1

λn

∑
k∈In

f(‖∆rxk+m − l‖)pk

=
1

λn

∑
k∈In

|∆rxk+m−l|≥η

f(‖∆rxk+m − l‖)pk

+
1

λn

∑
k∈In

|∆rxk+m−l|<η

f(‖∆rxk+m − l‖)pk

≤M 1

λn
|{k ∈ In : ‖∆rxk+m − l‖ ≥ η}|+ f(η)

< Mδ + f(η)

< ε,

for all n ≥ n0 and m. Hence, x ∈ [V̂ , λ, f, p]1(∆r, E).
Conversely, we assume that f is unbounded. Then there exists a positive

sequence (tk) of positive numbers with f(tk) = k2, for k = 1, 2, ... . If we
choose

f(n) =

{
tk, if i = k2,
0, otherwise,

then we have

1

λn
|{k ∈ In : ‖∆rxk+m − l‖ ≥ ε}| ≤

√
λn−1

λn

for all n and m, and so x ∈ Ŝλ(∆r, E) but x /∈ [V̂ , λ, f, p]1(∆r, E) for E =
C. �
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[7] L. Leindler, Über die la Vallee-Pousinsche Summierbarkeit Allgemeiner Orthogonol-
reihen, Acta. Math. Math. Acad. Sci. Hunger, 16 (1965), 375-387.

[8] I.J. Maddox, Elements of Functionls Analysis, Cambridge University Press (1970).
[9] I.J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc., 85 (1979),

345-350.
[10] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100

(1986), 161-166.
[11] E. Malkowsky and S.D. Parashar, Matrix transformatios in spaces of bounded and con-

vergent difference sequence spaces of order m, Analysis, 17 (1997), 87-97.
[12] Mursaleen, λ-statistical convergence, Math. Slovaca, 50 (2000), 111-115.
[13] A. Wilansky, ” Functional Analysis”, Blasdell Publishing Company, New York (1964).


