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1. Introduction and preliminaries

Banach [8] in 1922 laid the foundation stone of fixed point theory in metric
spaces. Later, several authors generalized the Banach contraction principle.
Turinici [25] was the first who examined fixed points in ordered sets. In 2004,
Ran and Reurings [22] worked on Banach contraction principle in ordered
sets and assumed the contractive condition only to hold on the comparable
elements instead of the whole space as in Banach contraction principle. There
is vast literature on fixed point in ordered metric spaces, see [1, 4, 5, 7, 14, 18].

Guo et al. [12] introduced the concept of coupled fixed point and after that
several authors gave results on coupled fixed and coupled coincidence point,
see [2, 19]. Recently, Choudhury et al. [11] introduced the idea of couplings.
The main results of Choudhury et al. [11] have been generalized by many
researchers, see [6, 7]. Later, the idea of coupling was further studied by
Rashid et al. [23] and introduced the idea of g-couplings.

The idea of multiplicative metric space(MMS), which is a generalization of
metric space, was first introduced by Bashirov et al. [9] in 2008. The main
idea behind introducing MMS was to replace usual triangular inequality by the
multiplicative triangle inequality. Later, many research papers were reported
on fixed points in MMS, see [3, 13, 15, 16, 17].

Now, in this article, we have shown the existence of coupled coincidence
points and uniqueness of strong coupled coincidence points for g-couplings in
MMS. We illustrate our results by examples and also provide an application
in finding a solution to integral equations.

Definition 1.1. ([9]) For any non-empty set G, multiplicative metric is a
function s : G × G → R satisfying the following axioms:

(M1) s(ξ, η) ≥ 1 for all ξ, η ∈ G and s(ξ, η) = 1 iff ξ = η;
(M2) s(ξ, η) = s(η, ξ) for all ξ, η ∈ G;
(M3) s(ξ, η) ≤ s(ξ, z) · s(z, η) for all ξ, η, z ∈ G.

Example 1.2. ([9]) Let Rn+ be the set of all n-tuples of positive real numbers
and we define s : Rn+ × Rn+ → R by

s(ξ, η) = h(
ξ1
η1

) · h(
ξ2
η2

) · · ·h(
ξn
ηn

),

where ξ = (ξ1, ξ2, ..., ξn), η = (η1, η2, ..., ηn) ∈ Rn+ and h : R+ → R+ is defined
as

h(l) =

{
l, l ≥ 1,
1
l , l < 1.

Then (G, s) is a multiplicative metric space.
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Definition 1.3. ([21]) Let (G, s) be a MMS and {ξn} be a sequence in G.
For ξ ∈ G and ε > 1, a subset Bε(ξ) = {η ∈ G : s(ξ, η) < ε} of G is called
a multiplicative open ball centered at ξ with radius ε. Analogously one can
define multiplicative closed ball as Bε(ξ) = {η ∈ G : s(ξ, η) ≤ ε}.

Definition 1.4. ([21]) Let (G, s) be a MMS, {ξn} be a sequence in G and
ξ ∈ G. If for every multiplicative open ball Bε(ξ) = {η ∈ G : s(ξ, η) < ε},
ε > 1, there exists a natural number N such that for n ≥ N , ξn ∈ Bε(ξ), then
the sequence {ξn} is said to be multiplicative converging to ξ. We denote as
ξn → ξ (n→∞).

Definition 1.5. ([21]) Let (G, s) be a MMS, {ξn} be a sequence in G and
ξ ∈ G. Then

ξn → ξ(n→∞) if and only if s(ξn, ξ)→ 1(n→∞).

Definition 1.6. ([21]) Let (G, s) be a MMS and {ξn} be a sequence in G.
Then {ξn} is said to be a multiplicative Cauchy sequence if for ε > 1, there
exists a positive integer N ∈ N such that s(ξm, ξn) < ε for all n,m ≥ N.

Lemma 1.7. ([21]) Let (G, s) be a MMS and {ξn} be a sequence in G. Then
{ξn} is multiplicative Cauchy if and only if s(ξn, ξm)→ 1(n,m→∞).

Definition 1.8. ([21]) If every multiplicative Cauchy sequence in (G, s) is
multiplicative convergent in G, then MMS (G, s) is said to be multiplicative
complete.

Definition 1.9. ([10]) For any nonempty set G, let H : G × G → G be a
mapping. Then an element (ξ, η) ∈ G × G is said to be a coupled fixed point
of H, if H(ξ, η) = ξ and H(η, ξ) = η.

Definition 1.10. ([10]) For any nonempty set G, let H : G × G → G and
g : G → G be mappings. Then an element (ξ, η) ∈ G × G is said to be a
coupled coincident point of H and g, if H(ξ, η) = gξ and H(η, ξ) = gη.

Definition 1.11. ([23]) A coupled coincidence point (ξ, η) is said to be a
strong coupled coincidence point, if ξ = η.

Definition 1.12. ([11]) For any nonempty set G, an element (ξ, η) ∈ G × G
is a strong coupled fixed point of the mapping H : G × G → G, if (ξ, η) is a
coupled fixed point and ξ = η, that is, if H(ξ, ξ) = ξ.
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Definition 1.13. ([11]) A mapping H : G×G → G is said to be coupling with
respect to two subsets O and P of G, if

H(ξ, η) ∈ P and H(η, ξ) ∈ O
for ξ ∈ O and η ∈ P .

Definition 1.14. ([23]) For any nonempty set G, let H : G × G → G and
g : G → G be two mappings. Then, H is said to be g-coupling with respect to
two subsets O and P of G, if

H(ξ, η) ∈ g(O) ∩ P and H(η, ξ) ∈ g(P ) ∩O
for ξ ∈ O and η ∈ P .

2. Main results

First, we give a definition before proceeding the main result.

Definition 2.1. Let (G, s) be a MMS, H : G × G → G and g : G → G be two
mappings and O and P be any two subsets of G. Then the mapping H is said
to be a g-contraction with respect to two subsets O and P of G, if

s(H(ξ, η),H($, %)) ≤ [max{s(gξ, g$), s(gη, g%)}]λ (2.1)

for all ξ, % ∈ O, η,$ ∈ P , where λ ∈ (0, 1).

Now, we give an example of Definition 2.1.

Example 2.2. For G = R, define s : G × G → G by s(ξ, η) = e|ξ−η|. Clearly,
(G, s) forms a MMS. Let O and P be any two subsets of G. Define H : G×G →
G by H(ξ, η) = λ

2 | ξ
2 − η2 | and g : G → G by g(ξ) = ξ2. It is known that

for all l,m ∈ [0,∞) and h > 0, we have max{lh,mh} = (max{l,m})h and for

all l,m ∈ R, e|l−m| ≤
{

max{e|l|, e|m|}}2. So, for all ξ, % ∈ O, η,$ ∈ P and
λ ∈ (0, 1), we have

s
(
H(ξ, η),H($, %)

)
= s

( λ

2
| ξ2 − η2 |, λ

2
| $2 − %2 |

)
= e|

λ
2
|ξ2−η2|−λ

2
|$2−%2||

≤ e
λ
2
|(ξ2−η2)−($2−%2)|

= e
λ
2
|ξ2−η2−$2+%2|

= e
λ
2
|(ξ2−$2)−(η2−%2)|

≤
{

max{e
λ
2
|(ξ2−$2)|, e

λ
2
|(η2−%2)|}}2

= [max{e|(ξ2−$2)|, e|(η
2−%2)|}]λ

= [max{s(gξ, g$), s(gη, g%)}]λ.
Hence, H is a g-contraction with respect to two subsets O and P of G.
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Theorem 2.3. Let O and P be any two nonempty subsets of a complete MMS
(G, s). Given H : G × G → G and g : G → G such that H is a g-coupling with
respect to two subsets O and P of G and (2.1) is satisfied. Further, assume that
O and P are invariant by g and g(O), g(P ) are multiplicative closed subsets
of (G, s). Then:

(i) O ∩ P 6= ∅;
(ii) O × P will contain coupled coincidence point of H and g.

If in addition, we choose g is injective map on O ∪ P , then H and g have a
unique strong coupled coincidence point in O × P .

Proof. (i) From (2.1), we have

s
(
H(ξ, η),H($, %)

)
≤
[

max{s(gξ, g$), s(gη, g%)}
]λ
,

where ξ, % ∈ O, η,$ ∈ P and λ ∈ (0, 1). Also by given assumption, since O
and P are invariant by g and g(P ), we have

gξ, g% ∈ g(O) ⊆ O and gη, g$ ∈ g(P ) ⊆ P.

For ξ0 ∈ O and η0 ∈ P , in view of definition of a g-coupling, H(ξ0, η0) ∈
g(O) ∩ P and H(η0, ξ0) ∈ g(P ) ∩ O. In particular, H(ξ0, η0) ∈ g(O) and
H(η0, ξ0) ∈ g(P ). So, there exist ξ1 ∈ O and η1 ∈ P we have

H(ξ0, η0) = g(ξ1) and H(η0, ξ0) = g(η1),

respectively, in order to get sequences {gξn} and {gηn} in g(O) and g(P ), such
that

g(ξn+1) = H(ξn, ηn) and g(ηn+1) = H(ηn, ξn). (2.2)

Now using (2.1) and (2.2), we get

s
(
gξ1, gη2

)
= s

(
H(ξ0, η0),H(η1, ξ1)

)
≤

[
max{s(gξ0, gη1), s(gη0, gξ1)}

]λ
and

s
(
gη1, gξ2

)
= s

(
H(η0, ξ0),H(ξ1, η1)

)
≤

[
max{s(gη0, gξ1), s(gξ0, gη1)}

]λ
.

From above two inequalities, we have

max
{
s(gξ1, gη2), s(gη1, gξ2)

}
≤
[

max{s(gξ0, gη1), s(gη0, gξ1)}
]λ
.
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Again from (2.1) and (2.2), we get

s
(
gξ2, gη3

)
= s

(
H(ξ1, η1), H(η2, ξ2)

)
≤

[
max{s(gξ1, gη2), s(gη1, gξ2)}

]λ
≤

[
max{s(gη0, gξ1), s(gξ0, gη1)}

]λ2
and

s
(
gη2, gξ3

)
= s

(
H(η1, ξ1),H(ξ2, η2)

)
≤

[
max{s(gη1, gξ2), s(gξ1, gη2)}

]λ
≤

[
max{s(gη0, gξ1), s(gξ0, gη1)}

]λ2
.

Therefore,

max
{
s(gξ2, gη3), s(gη2, gξ3)

}
≤

[
max{s(gξ1, gη2), s(gη1, gξ2)}

]λ
≤

[
max{s(gη0, gξ1), s(gξ0, gη1)}

]λ2
.

Inductively, we obtain

s
(
gξn, gηn+1

)
≤
[

max{s(gξ0, gη1), s(gη0, gξ1)}
]λn

(2.3)

and

s
(
gηn, gξn+1

)
≤
[

max{s(gξ0, gη1), s(gη0, gξ1)}
]λn

. (2.4)

From (2.3) and (2.4), as λ ∈ (0, 1), we get

lim
n→∞

s(gξn, gηn+1) = 1 and lim
n→∞

s(gηn, gξn+1) = 1. (2.5)

Now, we define the sequence {Sn} by Sn = s(gξn, gηn). By using (2.1) and
(2.2), we get

s
(
gξ1, gη1

)
= s

(
H(ξ0, η0),H(η0, ξ0)

)
≤

[
max{s(gξ0, gη0), s(gη0, gξ0)}

]λ
=

[
s(gξ0, gη0)

]λ
. (2.6)
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Again, by using (2.1), (2.2) and (2.6), we have

s
(
gξ2, gη2

)
= s

(
H(ξ1, η1),H(η1, ξ1)

)
≤

[
max{s(gξ1, gη1), s(gη1, gξ1)}

]λ
=

[
s(gξ1, gη1)

]λ
≤

[
s(gξ0, gη0)

]λ2
. (2.7)

Continuing in this way using mathematical induction, we get

s
(
gξn, gηn

)
≤
[
s(gξ0, gη0)

]λn
. (2.8)

As λ ∈ (0, 1), from (2.8), we have

lim
n→∞

s(gξn, gηn) = 1. (2.9)

Now, by triangular inequality, (2.4) and (2.8), we get

s(gξn, gξn+1) ≤ s(gξn, gηn) · s(gηn, gξn+1)

≤
[
s(gξ0, gη0)

]λn
×
[

max{s(gξ0, gη1), s(gη0, gξ1)}
]λn

= Kλn , (2.10)

where K = s(gξ0, gη0) · max{s(gξ0, gη1), s(gη0, gξ1)}. Similarly, by (2.3) and
(2.8), we have

s(gηn, gηn+1) ≤ s(gηn, gξn) · s(gξn, gηn+1)

≤
[
s(gξ0, gη0)

]λn
×
[

max{s(gξ0, gη1), s(gη0, gξ1)}
]λn

= Kλn . (2.11)

Instantly, we prove that the sequences {gξn} and {gηn} are the multiplicative
Cauchy in g(O) and g(P ).

For m,n ∈ N with n < m, by using triangular inequality and (2.10), we
have

s(gξn, gξm) ≤ s(gξn, gξn+1)× s(gξn+1, gξn+2)× · · · × s(gξm−1, gξm)

≤ Kλn ×Kλn+1 × · · · ×Kλm−1

< K
λn

1−λ .
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As λ ∈ (0, 1), s(gξm, gξn) → 1 as m,n → ∞. This shows that {gξn} is a
multiplicative Cauchy sequence in g(O). Similarly, by (2.11), we have

s(gηn, gηm) ≤ s(gηn, gηn+1)× s(gηn+1, gηn+2)× · · · × s(gηm−1, gηm)

≤ Kλn ×Kλn+1 × · · · ×Kλm−1

< K
λn

1−λ .

Thus, we get {gηn} is a multiplicative Cauchy sequence in g(P ).
Since g(O) and g(P ) are multiplicative closed in the complete MMS (G, s),

so g(O) and g(P ) are multiplicative complete in (G, s). Therefore, {gξn} and
{gηn} are multiplicative convergent in g(O) and g(P ), respectively. Thus,
there exists $ ∈ g(O) and % ∈ g(P ) such that

gξn → $ and gηn → % as n→∞. (2.12)

From (2.9) and (2.12), we get 1 = lim
n→∞

s(gξn, gηn) = s($, %), thus

$ = %. (2.13)

As $ ∈ g(O) and % ∈ g(P ), there exist l ∈ O and p ∈ P such that gl = $ and
gp = %. By using (2.12) and (2.13),

gξn → gl and gηn → gp (2.14)

and also

gl = gp. (2.15)

Thus gl = gp ∈ O ∩ P , part (i) is completed.

(ii) Now, by (2.1), (2.2), (2.14), (2.15) and triangle inequality, we get

s
(
g(l),H(l, p)

)
≤ s

(
g(l), gηn+1

)
× s
(
gηn+1,H(l, p)

)
= s

(
g(l), gηn+1

)
× s
(
H(ηn, ξn),H(l, p)

)
≤ s

(
g(l), gηn+1

)
×
[

max{s(gηn, gl), s(gξn, gp)}
]λ

→ 1 as n→∞.

We deduce that

H(l, p) = g(l). (2.16)
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Now, by using (2.1), (2.2), (2.14), (2.15) and triangle inequality, we have

s
(
g(p),H(p, l)

)
≤ s

(
g(p), gξn+1

)
× s
(
gξn+1,H(p, l)

)
= s

(
g(p), gξn+1

)
× s
(
H(ξn, ηn),H(p, l)

)
≤ s

(
g(p), gξn+1

)
×
[

max{s(gξn, gp), s(gηn, gl)}
]λ

→ 1 as n→∞.

Thus, we have

H(p, l) = g(p). (2.17)

Hence, we can say that from (2.16) and (2.17), H(l, p) = g(l) and H(p, l) =
g(p), and so (l, p) ∈ O × P is a coupled coincidence point of H and g, this
completes the part (ii).

Now (2.15) and since g is injective map imply that l = p, so H and g have a
strong coupled coincidence point, that is, H(l, l) = g(l) and for the uniqueness,
we suppose that there exist two strong coupled coincidence points w, z ∈ O∩P
of H and g, then

H(w,w) = g(w) and H(z, z) = g(z). (2.18)

From (2.1), we have

s
(
g(w), g(z)

)
= s

(
H(w,w),H(z, z)

)
≤

[
max{s(gw, gz), s(gw, gz)}

]λ
=

[
s(g(w), g(z))

]λ
.

Since λ ∈ (0, 1), we deduce that s(g(w), g(z)) = 1, that is, g(w) = g(z), so
w = z. Hence, g is injective map. Also H and g have the unique strong
coupled coincidence point in O ∩ P . �

The above result can be well understood by the following illustrated exam-
ple.

Example 2.4. Let G = R and metric s(ξ, η) = e|ξ−η|. Take O = [0, 2] and

P = [0, 3]. Let H be defined as H(ξ, η) = ξ+η
10 , where ξ, η ∈ G. We define

g : G → G by g(ξ) = ξ
2 . Then clearly g(O) = [0, 1] and g(P ) = [0, 32 ], so

g(O) and g(P ) have multiplicative closed subsets of G. Also, O and P are
invariant by g as g(O) ⊆ O and g(P ) ⊆ P . Now it remains to prove that
H is a g-coupling. As g(O) ∩ P = [0, 1] and g(P ) ∩ O = [0, 32 ], so for all

ξ ∈ O and η ∈ P , we have 0 ≤ H(ξ, η) ≤ 1
2 and 0 ≤ H(η, ξ) ≤ 1

2 , that is,
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H(ξ, η) ∈ g(O)∩P and H(η, ξ) ∈ g(P )∩O. So, H is a g-coupling with respect
to O and P . Again, for ξ, % ∈ O and η,$ ∈ P , we have

s(H(ξ, η),H($, %)) = e|
ξ+η
10
−$+%

10
|

= e
1
5
|( ξ

2
−$

2
)−( %

2
− η

2
)|

≤
{

max{e
1
5
|( ξ

2
−$

2
)|, e

1
5
|( %

2
− η

2
)|}
}2

=
[

max{s(gξ, g$), s(gη, g%)}
]λ
,

where λ = 2
5 ∈ (0, 1). Thus all the assumptions of Theorem 2.3 hold. So, there

exists (l,m) ∈ O × P such that H(l,m) = g(l) and H(m, l) = g(m), that is

l +m

10
=
l

2
and

m+ l

10
=
m

2
.

Then l = m = 0. Since g is injective map, so (0, 0) is the unique strong
g-coupled coincidence point of H and g.

The following example show that the uniqueness does not necessarily to be
satisfied if g is not injective map.

Example 2.5. Let( G = [−2π, 2π],s) be the MMS when s(ξ, η) = e|ξ−η| for
all ξ, η ∈ G. Take O = (−π, π) and P = (−3π

4 ,
3π
4 ). We define H : G × G → G

by H(ξ, η) = sin ξ+sin η
5 and g : G → G by g(ξ) = sin ξ. Clearly g(O) = g(P ) =

[−1, 1]. Also, O and P are invariant by g as g(O) ⊆ O and g(P ) ⊆ P .
Now, it needs to prove that H is a g-coupling. As g(O) ∩ P = g(P ) ∩ O =

[−1, 1], so for all ξ ∈ O and η ∈ P , we have

−2

5
≤ H(ξ, η) ≤ 2

5
⇒ H(ξ, η) ∈ g(O) ∩ P

and

−2

5
≤ H(η, ξ) ≤ 2

5
⇒ H(η, ξ) ∈ g(P ) ∩O.

Thus, H is a g-coupling with respect to O and P . Again, for ξ, % ∈ O and
η,$ ∈ P , we have

s(H(ξ, η),H($, %)) = e|
sin ξ+sin η

5
− sin$+sin %

5
|

= e
1
5
|(sin ξ−sin$)−(sin %−sin η)|

≤
{

max{e
1
5
|(sin ξ−sin$)|, e

1
5
|(sin %−sin η)|}

}2

=
[

max{s(gξ, g$), s(gη, g%)}
]λ
,
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where λ = 2
5 ∈ (0, 1). Hence we can say that all the conditions of Theorem

2.3 are satisfied, and there are several strong g-coupled coincidence points of
H and g.

3. Fixed point results in ordered multiplicative metric spaces
having t-property

First, we give definition before proceeding the result.

Definition 3.1. ([24]) Let (G, s,�) be an ordered metric space. G is said to
be have t-property, if every strictly increasing cauchy sequence {ξn} in G has
a strict upper bound in G, that is, there exists $ ∈ G such that ξn ≺ $, for
all n ∈ N.

Now, we give some examples on Definition 3.1.

Example 3.2. ([24]) Let G = R, Q, (l,m], l,m ∈ R be equipped with the
natural ordering ≤ and the usual metric. Then G has the t-property.

Example 3.3. ([24]) Let G = {(ξ, η) : ξ, η ∈ Q}. We define � in G by
(ξ1, ξ2) � (η1, η2) if and only if ξ1 ≤ η1 and ξ2 ≤ η2. Let s be the Euclidean
metric on G. Then (G, s,�) has the t-property.

Example 3.4. ([24]) Let G = C[l,m] be equipped with the metric s defined
as s(f, g) =

∫m
l | f − g | dξ. Then (G, s) is not a complete metric space. We

define � in G as f � g if and only if f(ξ) ≤ g(ξ) for each ξ ∈ [l,m]. Obviously,
(C[l,m], s,�) has t-property.

Now, we present some fixed point results in ordered MMS having t-property.

Theorem 3.5. Let (G, s,�) be an ordered MMS having t-property. Let f :
G → G be a self-mapping such that for every ξ, η ∈ G with ξ ≺ η and for
λ ∈ (0, 1), we have

s(η, fη) ≤ [s(ξ, fξ)]λ. (3.1)

Further, we consider that f is non-decreasing and there exists ξ0 ∈ G such that
ξ0 � f(ξ0). Then f has at least one fixed point in G. Moreover, any strict
upper bound of a fixed point of f is a fixed point.

Proof. By given condition, we have ξ0 � f(ξ0). If ξ0 = f(ξ0), the proof is
completed. Otherwise, choose ξ1 = f(ξ0) such that ξ0 ≺ ξ1. By monotonicity
of f , we have f(ξ0) � f(ξ1), that is, ξ1 � f(ξ1). If ξ1 = f(ξ1), the proof
is completed. Otherwise, there is ξ2 = f(ξ1) such that ξ1 ≺ ξ2. Again, by
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monotonicity of f , we have f(ξ1) � f(ξ2). Continuing in this process, we have
a strictly increasing sequence {ξn} in G such that

ξn+1 = f(ξn). (3.2)

As ξ0 ≺ ξ1, by (3.1), we get

s(ξ1, f(ξ1)) ≤ [s(ξ0, f(ξ0))]
λ. (3.3)

Again as ξ1 ≺ ξ2, by (3.1), we have

s(ξ2, f(ξ2)) ≤ [s(ξ1, f(ξ1))]
λ. (3.4)

Using (3.3) in (3.4), we have

s(ξ2, f(ξ2)) ≤ [s(ξ0, f(ξ0))]
λ2 .

Continuing in this way, we have

s(ξn, f(ξn)) ≤ [s(ξ0, f(ξ0))]
λn . (3.5)

Now, we prove that {ξn} is a multiplicative Cauchy sequence in G. For
n < m, by using triangular inequality, (3.2) and (3.5), we get

s(ξn, ξm) ≤ s(ξn, ξn+1)× s(ξn+1, ξn+2)× · · · × s(ξm−1, ξm)

= s(ξn, f(ξn))× s(ξn+1, f(ξn+1))× · · · × s(ξm−1, f(ξm−1))

≤ [s(ξ0, f(ξ0))]
λn × [s(ξ0, f(ξ0))]

λn+1 × · · · × [s(ξ0, f(ξ0))]
λm−1

= Kλn ×Kλn+1 × · · · ×Kλm−1

≤ K
λn

1−λ ,

where K = s(ξ0, f(ξ0)).
As λ ∈ (0, 1), s(ξn, ξm) → 1 as n,m → ∞. This shows that {ξn} is an

increasing multiplicative Cauchy sequence in G, which has the t-property, so
there exists $ ∈ G such that ξn ≺ $ for all n. Thus, from (3.1) and (3.5), we
have

s($, f$) ≤ [s(ξn, f(ξn))]λ

≤ [s(ξ0, f(ξ0))]
λn

→ 1 as n→∞.

Hence $ = f($). Now, let % be any other strict upper bound of a fixed point
of f , say $, that is, $ ≺ %. By (3.1), we have

s(%, f%) ≤ [s($, f$)]λ = 1.

This shows that % is again a fixed point of f in G. �
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Example 3.6. Let G = {an : an+1 = 3an + 1 for n ≥ 0 and a0 = −1} ∪
(−1, 0]. Then G = {...,−41,−14,−5,−2,−1} ∪ (−1, 0]. Endow G with the

usual multiplicative metric on R, that is, s(ξ, η) = e|ξ−η| and the natural
ordering ≤. Clearly, (G, s,�) has the t-property. Define f : G → G by

f(ξ) =

{
3ξ + 1, if ξ < −1,

ξ, if ξ ≥ −1.

Obviously, f is non-decreasing. Now, it remains to prove that f satisfies (3.1).
Let ξ, η ∈ G with ξ < η. If η ≥ −1, then f(η) = η, so s(η, f(η)) = 1 and
the proof is completed. Assume now that ξ < η ≤ −2. Then s(η, f(η)) =

e|−(2η+1)| and s(ξ, f(ξ)) = e|−(2ξ+1)|. It should be noted that for ξ, η ∈ X with
ξ < η ≤ −2, we have η ≥ 5

12ξ. Then

s(η, f(η)) = e|−(2η+1|)

≤ e|−
5
6
ξ−1|

=
[
e|−[

5ξ+6
3

]|
] 1

2

≤
[
e|−(2ξ+1)|

] 1
2

= [s(ξ, f(ξ))]λ,

where λ = 1
2 . Hence we say that all the conditions of Theorem 3.5 are satisfied.

Therefore f has at least one fixed point in G. In fact, any element in the set
[−1, 0] is a fixed point of f .

4. Application to integral equations

In this section, we present an application in support of our main results.

Let G = C([0, 1],R) be the set of all continuous functions defined on [0, 1]

and equipped with the metric s(ξ, η) = esup{|ξ(t)−η(t)|} for all t ∈ [0, 1]. Clearly,
(G, s) is a complete MMS. Now consider the following integral equation:

ξ(ς) = h(ς) +

∫ 1

0
k(ς, ϑ)[f1(ϑ, ξ(ϑ)) + f2(ϑ, ξ(ϑ))]dϑ, ς ∈ [0, 1], (4.1)

where h ∈ C([0, 1],R), k : [0, 1]×[0, 1]→ [0,∞) and f1, f2 : [0, 1]×C([0, 1],R)→
C([0, 1],R). Consider two non-empty subsets O,P ⊆ G. Let ξ(t) ∈ O and
η(t) ∈ P , where t ∈ [0, 1]. Suppose there exist 0 < α, β ≤ 1

4 such that for each
t, ς, ϑ ∈ [0, 1], we have

| f1(ς, ξ(t))− f1(ς, η(t)) |≤ α | ξ(t)− η(t) |, (4.2)

| f2(ς, ξ(t))− f2(ς, η(t)) |≤ β | ξ(t)− η(t) |, (4.3)
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k(ς, ϑ) ≤ 1

2
. (4.4)

Theorem 4.1. By using conditions (4.2)-(4.4), the equation (4.1) has the
unique solution in C([0, 1],R).

Proof. Let H : G × G → G and g : G → G be defined as

H(ξ, η)(ς) = h(ς) +

∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, ξ(ϑ)) + f2(ϑ, ξ(ϑ))

]
dϑ

+

∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, η(ϑ)) + f2(ϑ, η(ϑ))

]
dϑ

and

g(ξ)(ς) =

{
ξ(ς), ξ(ς) ∈ O,
2ξ(ς) + 3, elsewhere,

where ς ∈ [0, 1] and O = {ξ(ς) ∈ G : ξ(ς) ≤ h(ς) + s, s ∈ R} is a multiplicative
closed subset in G. Taking P = O, we have g(O) ⊂ O and g(P ) ⊆ P . Also,
g(O) and g(P ) are multiplicative closed subsets in G. Now, we show that H
is a g-coupling. For ξ(ς) ∈ O and η(ς) ∈ P , we have

H(ξ, η)(ς) = h(ς) +

∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, ξ(ϑ)) + f2(ϑ, ξ(ϑ))

]
dϑ

+

∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, η(ϑ)) + f2(ϑ, η(ϑ))

]
dϑ

≤ h(ς) + r1 + r2

∈ g(O) ∩ P = O, r1, r2 ∈ R

and

H(η, ξ)(ς) = h(ς) +

∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, η(ϑ)) + f2(ϑ, η(ϑ))

]
dϑ

+

∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, ξ(ϑ)) + f2(ϑ, ξ(ϑ))

]
dϑ

≤ h(ς) + s1 + s2

∈ g(P ) ∩O = P, s1, s2 ∈ R.

Hence, H is a g-coupling with respect to O and P . We will prove that H is
g-contraction. For this, let ξ, % ∈ O and η,$ ∈ P . Using (4.2)–(4.4) and the
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fact that e|l−m| ≤
{

max{e|l|, e|m|}}2, we have∣∣∣H(ξ, η)(ς)−H($, %)(ς)
∣∣∣ =

∣∣∣∫ 1

0

k(ς, ϑ)

2

[
f1(ϑ, ξ(ϑ))+f2(ϑ, ξ(ϑ))+f1(ϑ, η(ϑ))

+ f2(ϑ, η(ϑ))
]
dϑ−

[ ∫ 1

0

k(ς, ϑ)

2
[f1(ϑ,$(ϑ))

+ f2(ϑ,$(ϑ)) + f1(ϑ, %(ϑ)) + f2(ϑ, %(ϑ))
]]
dϑ
∣∣∣

=
∣∣∣ ∫ 1

0

k(ς, ϑ))

2

{(
[f1(ϑ, ξ(ϑ))− f1(ϑ,$(ϑ))]

+ [f2(ϑ, ξ(ϑ))− f2(ϑ,$(ϑ))]
)

−
(
[f1(ϑ, %(ϑ))− f1(ϑ, η(ϑ))]

+ [f2(ϑ, %(ϑ))− f2(ϑ, η(ϑ))]
)}
dϑ
∣∣∣

≤ 1

4

∣∣∣ ∫ 1

0

[{
[f1(ϑ, ξ(ϑ)− f1(ϑ,$(ϑ))]

+ [f2(ϑ, ξ(ϑ))− f2(ϑ,$(ϑ))]
}

−
{

[f1(ϑ, %(ϑ))− f1(ϑ, η(ϑ))]

+ [f2(ϑ, %(ϑ))− f2(ϑ, η(ϑ))]
}]
dϑ
∣∣∣.

Now, using the fact that e|l−m| ≤
{

max{e|l|, e|m|}}2, we have

e|H(ξ,η)ς−H($,%)ς| ≤
{

max{e
1
4
|
∫ 1
0 [([f1(ϑ,ξ(ϑ)−f1(ϑ,$(ϑ))]+[f2(ϑ,ξ(ϑ))−f2(ϑ,$(ϑ))]dϑ|,

e
1
4
|
∫ 1
0 [([f1(ϑ,%(ϑ)−f1(ϑ,η(ϑ))]+[f2(ϑ,%(ϑ))−f2(ϑ,η(ϑ))]dϑ|}

}2

≤
{

max{e
1
4
[α|ξ−$|+β|ξ−$|], e

1
4
[α|η−%|+β|η−%|]}

}2

=
[

max{e|ξ−$|, e|η−%|}
]α+β

2

≤
[

max{s(gξ, g$), s(gη, g%)
]λ
,

where λ = 1
4 ∈ (0, 1). Now we say that all the conditions of Theorem 2.3 are

satisfied. Also, since g is one-one, there exists a unique j(t) ∈ O such that
F (j(t), j(t)) = g(j(t)) = j(t). Thus (4.1) has a unique solution in O. �
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