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Abstract. Let p(z) be a polynomial of degree n having no zero in |z| < 1. In this paper, by

involving some coefficients of the polynomial, we prove an inequality that not only improves

as well as generalizes the well-known result proved by Rivlin but also has some interesting

consequences.

1. Introduction

Let p(z) be a polynomial of degree n and let M(p, r) = max
|z|=r
|p(z)|. Then

the following inequalities concerning the maximum modulus of a polynomial
on a circle in terms of the maximum modulus of the polynomial on the unit
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circle, are known
M(p,R) ≤ RnM(p, 1), R ≥ 1 (1.1)

and
M(p, r) ≥ rnM(p, 1), r ≤ 1. (1.2)

Inequalities (1.1) and (1.2) are sharp and equality holds for p(z) = λzn, λ 6= 0
being a complex number. Inequality (1.1) is a simple deduction from maximum
modulus principle [12, 16]. Inequality (1.2) is due to Zarantonello and Varga
[19].

If we restrict ourselves to the class of polynomials not vanishing in |z| < 1,
inequality analogous to (1.2) was obtained by Rivlin [17].

Theorem 1.1. Let p(z) be a polynomial of degree n having no zero in |z| < 1.
Then for r ≤ 1,

M(p, r) ≥
(

1 + r

2

)n
M(p, 1). (1.3)

Inequality (1.3) is sharp and equality holds for the polynomial p(z) =
(
α+βz

2

)n
,

where |α| = |β|.

Next, Govil [7, Theorem 1] generalized Theorem 1.1 by proving

Theorem 1.2. Let p(z) be a polynomial of degree n having no zero in |z| < 1.
Then for 0 < r ≤ R ≤ 1,

M(p, r) ≥
(

1 + r

1 +R

)n
M(p,R). (1.4)

The result is best possible and equality holds for the polynomial p(z) =
(
z+1
R+1

)n
.

Another generalization of Theorem 1.1 for polynomial not vanishing inside
the domain |z| < k, k ≥ 1, was proved by Aziz [1].

Theorem 1.3. Let p(z) be a polynomial of degree n having no zero in |z| < k,
k ≥ 1. Then for 0 ≤ r < 1,

M(p, r) ≥
(
r + k

1 + k

)n
M(p,R). (1.5)

The result is best possible and equality holds for the polynomial p(z) = (z+k)n.

For the case k ≤ 1 Aziz [1] further proved.

Theorem 1.4. Let p(z) be a polynomial of degree n having no zero in |z| < k,
k ≤ 1. Then for 0 ≤ r ≤ k2,

M(p, r) ≥
(
r + k

1 + k

)n
M(p,R). (1.6)
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The result is best possible and equality holds for the polynomial p(z) = (z+k)n.

Qazi [14], obtained a generalization of Theorem 1.2 by taking a more general

class of polynomials p(z) = a0 +
n∑

ν=µ

aνz
ν .

Theorem 1.5. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zero in |z| < 1. Then for 0 ≤ r ≤ R ≤ 1,

M(p, r) ≥
(

1 + rµ

1 +Rµ

)n
µ

M(p,R). (1.7)

Inequality (1.7) is best possible and equality holds for p(z) = (zµ + kµ)
n
µ , where

n is a multiple of µ.

Further, Jain [9] obtained a result which provides a generalization of The-
orem 1.5 as well as a generalization of Theorem 1.3 and Theorem 1.4 proved
by Aziz [1].

Theorem 1.6. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zero in |z| < k, k > 0. Then for 0 ≤ r ≤ R ≤ k,

M(p, r) ≥
(
rµ + kµ

Rµ + kµ

)n
µ

M(p,R). (1.8)

Equality holds in (1.8) for p(z) = (zµ + kµ)
n
µ , where n is a multiple of µ.

As a generalization and refinement of Theorem 1.2, Govil and Nwaeze [8]
obtained the following result.

Theorem 1.7. If p(z) =
n∑

ν=µ

aνz
ν is a polynomial of degree n having no in

|z| < k, k ≥ 1. Then for 0 < r < R ≤ 1,

M(p, r) ≥ (1 + r)n

(1 + r)n+(R+ k)n−(r + k)n

[
M(p,R)+nm ln

(
R+k

r+k

)]
. (1.9)

Recently, Mir et al. [11] have considered a more general class of polynomials

p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, not vanishing in |z| < k, k ≥ 1 and proved

an extension as well as sharpening of Rivlin’s inequality (1.3).
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Theorem 1.8. Let p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree

n having no zero in |z| < k, k ≥ 1. Then for 0 < r < R ≤ 1,

M(p, r) ≥ (1 + rµ)
n
µ

(1 + rµ)
n
µ + {(Rµ + kµ)

n
µ − (rµ + kµ)

n
µ }

×

{
M(p,R) +m ln

(
Rµ + kµ

rµ + kµ

)n
µ

}
, (1.10)

where m = min
|z|=k

|p(z)|.

The improvement and generalization of the inequalities concerning the max-
imum modulus of a polynomial on a circle is a widely studied topic, and for
more informations in this direction, we refer to the recently published papers
[2], [3], [4], [5], [10], [18], etc.

2. Main result

In this paper, by involving certain coefficients of the polynomial, we prove
the following inequality which improves as well as generalizes the bound given
by Theorem 1.8. More precisely, we obtain:

Theorem 2.1. Let p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree

n having no zero in |z| < k, k > 0. Then for 0 < r ≤ R ≤ ρ, ρ ≤ k and for
every non-negative real number λ with 0 ≤ λ < 1,

M(p, r) ≥
[
M(p,R) + nλm

∫ R

r

tµ−1

kµ + tµ
(2.1)

× exp

n
∫ R

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

 dt

−(λ− 1)
n

µ
m ln

(
Rµ + kµ

rµ + kµ

)]
× 1

1+n

[∫ R
r

tµ−1

kµ+tµ exp

{
n
∫ R
r

xµ+µ
n

|aµ|
|a0|−λm

kµ+1xµ−1

xµ+1+kµ+1+µ
n

|aµ|
|a0|−λm

(kµ+1xµ+k2µx)
dx

}
dt

] ,
where m = min

|z|=k
|p(z)|.
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Putting λ = 0 in inequality (2.1) of Theorem 2.1, we get a result recently
proved by Devi et al. [4].

Corollary 2.2. Let p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of

degree n having no zero in |z| < k, k > 0. Then for 0 < r ≤ R ≤ ρ, ρ ≤ k,

M(p, r) ≥
{
M(p,R) +m

n

µ
ln

(
Rµ + kµ

rµ + kµ

)}
(2.2)

× 1

1+n

[∫ R
r

tµ−1

tµ+kµ exp

{
n
∫ t
r

xµ+µ
n

|aµ|
|a0|

kµ+1xµ−1

xµ+1+kµ+1+µ
n

|aµ|
|a0|

(kµ+1xµ+k2µx)
dx

}
dt

] ,
where m = min

|z|=k
|p(z)|.

Putting ρ = 1 in Corollary 2.2, we have the following interesting result
recently proved by Chanam [2].

Corollary 2.3. Let p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of

degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ 1,

M(p, r) ≥
{
M(p,R) +m

n

µ
ln

(
Rµ + kµ

rµ + kµ

)}
(2.3)

× 1

1+n

[∫ R
r

tµ−1

tµ+kµ exp

{
n
∫ t
r

xµ+µ
n

|aµ|
|a0|

kµ+1xµ−1

xµ+1+kµ+1+µ
n

|aµ|
|a0|

(kµ+1xµ+k2µx)
dx

}
dt

] ,
where m = min

|z|=k
|p(z)|.

Remark 2.4. By inequality (3.27) for ρ = 1 of Lemma 3.9, it is evident that
the right hand side of (2.3) dominates over that of (1.10) and thus Corollary
2.3 gives better bound than that of Theorem 1.8.

Remark 2.5. Putting µ = 1 and R = k = 1 in Theorem 1.8, we have under
the same hypotheses, the following improvement of the famous result due to
Rivlin [17].

Corollary 2.6. If p(z) is a polynomial of degree n having no zero in |z| < 1.
Then for 0 < r ≤ 1,

M(p, r) ≥
(

1 + r

2

)n{
M(p, 1) + nm ln

(
2

1 + r

)}
, (2.4)
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where m = min
|z|=1
|p(z)|.

Inequality (2.4) is sharp and equality holds for the polynomial p(z)=
(
α+βz
2

)n
,

where |α| = |β|.

Remark 2.7. If we put λ = 0, ρ = µ = 1 and R = k = 1 in Lemma 3.9, then
we have, in particular, for 0 < r ≤ 1,(

2

1 + r

)n
− 1 ≥ n(

1 + 2
n
|a1|
|a0|r + r2

)n
2

∫ 1

r

(
1 + 2

n
|a1|
|a0| t+ t2

)n
2

1 + t
dt, (2.5)

where m = min
|z|=1
|p(z)|.

Further, if we put µ = ρ = 1 and R = k = 1 in Corollary 2.2, we have:

Corollary 2.8. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having no zero

in |z| < 1, then for 0 < r ≤ 1,

M(p, r) ≥
{
M(p, 1) +mn ln

(
2

r + 1

)}

×

(
1 + 2

n
|a1|
|a0|r + r2

)n
2

(
1 + 2

n
|a1|
|a0|r + r2

)n
2

+ n
∫ 1
r

(
1+ 2

n
|a1|
|a0|

t+t2
)n

2

1+t dt

, (2.6)

where m = min
|z|=1
|p(z)|.

Again, by inequality (2.5) of Remark 2.7, the quantity
(

1 + 2
n
|a1|
|a0|r + r2

)n
2

(
1 + 2

n
|a1|
|a0|r + r2

)n
2

+ n
∫ 1
r

(
1+ 2

n
|a1|
|a0|

t+t2
)n

2

1+t dt


appearing in the right hand side of (2.6) is greater than or equal to

(
1+r
2

)n
and

hence Corollary 2.8 further improves Corollary 2.6, which in turn, improves
Theorem 1.1 due to Rivlin [17].

Remark 2.9. In the same way as the previous two joint conclusions in Re-
marks 2.5 and 2.7, we are further clear that Corollary 2.2 is an improvement
as well as generalization of Theorem 1.2.
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Remark 2.10. Theorem 1.8 has a limitation in the sense that for k in (0, 1),
we do not have analogous bound of inequality (1.10) for 0 < r ≤ R ≤ k. It
is easily seen that this has been supplemented by our result. Moreover, for
k > 1, the limit of r and R extends from (0, 1] to (0, k].

Remark 2.11. If we put λ = ρ = µ = 1 and R = k = 1 in Lemma 3.9, then
we have, in particular, for 0 < r ≤ 1,

(
2

1 + r

)n
− 1 ≥ n(

1 + 2
n
|a1|
|a0|−mr + r2

)n
2

∫ 1

r

(
1 + 2

n
|a1|
|a0|−m t+ t2

)n
2

1 + t
dt, (2.7)

where m = min
|z|=1
|p(z)|.

If we put λ = ρ = µ = 1 and R = k = 1 in Theorem 2.1, we have:

Corollary 2.12. If p(z) =

n∑
ν=0

aνz
ν is a polynomial of degree n having no zero

in |z| < 1, then for 0 < r ≤ 1,

M(p, r) ≥

M(p, 1)+m
n(

1 + 2
n
|a1|
|a0|−mr + r2

)n
2

∫ 1

r

(
1 + 2

n
|a1|
|a0|−m t+ t2

)n
2

1 + t
dt



×


(

1 + 2
n
|a1|
|a0|−mr + r2

)n
2

(
1 + 2

n
|a1|
|a0|−mr + r2

)n
2

+ n
∫ 1
r

(
1+ 2

n
|a1|
|a0|−m

t+t2
)n

2

1+t dt

 , (2.8)

where m = min
|z|=1
|p(z)|.

Again, by inequality (2.7) of Remark 2.11, the quantity
(

1 + 2
n
|a1|
|a0|−mr + r2

)n
2

(
1 + 2

n
|a1|
|a0|−mr + r2

)n
2

+ n
∫ 1
r

(
1+ 2

n
|a1|
|a0|−m

t+t2
)n

2

1+t dt


appearing in the right hand side of (2.8) is greater than or equal to

(
1+r
2

)n
and

hence Corollary 2.12 further improves Corollary 2.6 and Corollary 2.8, which
in turn, improves Theorem 1.1 due to Rivlin [17].
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3. Lemmas

To prove the theorem, the following lemmas are required.

The following lemma is due to Pukhta [13].

Lemma 3.1. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ

{
max
|z|=1

|p(z)| − min
|z|=k

|p(z)|
}
. (3.1)

The next result is due to Rahman and Stankiewicz [15, Theorem 2
′
, p. 180].

Lemma 3.2. Let pn(z) =
n∏
ν=1

(1−zνz) be a polynomial of degree n not vanish-

ing in |z| < 1 and let p
′
n(0) = p

′′
n(0) = ... = pln(0) = 0. If Φ(z) = {pn(z)}ε =

n∑
k=0

bk,εz
k, where ε = 1 or − 1, then

|bk,ε| ≤
n

k
, (l + 1 ≤ k ≤ 2l + 1)

and

|b2l+2,1| ≤
n

2(l + 1)2
(n+ l − 1), |b2l+2,−1| ≤

n

2(l + 1)2
(n+ l + 1).

The following lemma is due to Gardner et al. [6].

Lemma 3.3. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having no zero in

|z| < k, k > 0, then
|p(z)| ≥ m for |z| ≤ k, (3.2)

where m = min
|z|=k

|p(z)|.

Lemma 3.4. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k ≥ 1, and if m = min
|z|=k

|p(z)|, then for every real or

complex number λ with |λ| < 1,

µ

n

|aµ|kµ

|a0| − λm
≤ 1. (3.3)
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Proof. Without loss of generality, we can assume a0 > 0 for otherwise, we can
consider the polynomial P (z) = e−iarga0p(z), which clearly also has no zero in
|z| < k and M(P,R) = M(p,R). Since p(z) 6= 0 for |z| < k, hence, by Lemma
3.3, |p(z)| ≥ m for |z| ≤ k, m = min

|z|=k
|p(z)|. Now, for every real or complex

number λ such that |λ| < 1, |p(z)| > m ≥ |λ|m, ∀ z in |z| < k. Therefore, by
Rouche’s Theorem, the polynomial p(z) − λm 6= 0 in |z| < k, and hence the
polynomial Q(z) = p(kz) − λm 6= 0 for |z| < 1. Applying Lemma 3.2 to the

polynomial Q(z)
a0−λm , which clearly satisfies the hypothesis of Lemma 3.2, we get

|aµ|kµ

a0 − λm
≤ n

µ
,

which is equivalent to

µ

n

|aµ|kµ

a0 − λm
≤ 1.

This completes the proof of Lemma 3.4. �

Lemma 3.5. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k ≥ 1, then the function

f(x) =
1 + µ

n
|aµ|
x kµ+1

1 + kµ+1 + µ
n
|aµ|
x (kµ+1 + k2µ)

(3.4)

is a non-increasing function of x > 0.

Proof. The proof follows simply by using first derivative test. �

The next lemma is due to Qazi [14].

Lemma 3.6. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n
1 + µ

n
|aµ|
|a0|k

µ+1

1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1 + k2µ)
max
|z|=1

|p(z)| (3.5)

and
µ

n

|aµ|
|a0|

kµ ≤ 1. (3.6)
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Lemma 3.7. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ ρ, ρ ≤ k and for every
real number λ with 0 ≤ λ < 1,

M(p,R) ≤ {M(p, r)− λm} r (3.7)

× exp
{
n

∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
dt
}

+ λm,

where m = min
|z|=k

|p(z)|.

Proof. Since the polynomial p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, has no zero in

|z| < k, k > 0, for every real or complex number α with |α| < 1, by Rouche’s
Theorem, for 0 < t ≤ k, the polynomial P (z) = p(tz) + αm has no zero in
|z| < k

t ,
k
t ≥ 1, where m = min

|z|=k
|p(z)|.

By using inequality (3.5) of Lemma 3.6 to P (z) = p(tz) + αm, we have

max
|z|=1

|P ′(z)| ≤ n
1 + µ

n
|aµ|tµ
|a0+αm|(

k
t )
µ+1

1+(kt )
µ+1+ µ

n
|aµ|tµ
|a0+αm|

(
(kt )

µ+1+(kt )
2µ
) {max
|z|=1

|p(tz)+αm|
}
,

where

m = min
|z|= k

t

|P (z)| = min
|z|= k

t

|p(tz)| = min
|z|=k

|p(z)|,

which gives

tmax
|z|=t
|p′(z)| ≤ n

1 + µ
n
|aµ|

|a0+αm|
kµ+1

t

1 + kµ+1

tµ+1 + µ
n
|aµ|tµ
|a0+αm|

(
kµ+1

t + k2µ

tµ

) {max
|z|=1

|p(tz) + αm|
}
.

(3.8)
Let z0 on |z| = 1 be such that

max
|z|=1

|p(tz) + αm| = |p(tz0) + αm|.

Now, we choose the argument of α suitably such that

|p(tz0) + αm| = |p(tz0)| − |α|m
≤ max

|z|=t
|p(z)| − |α|m. (3.9)
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Combining (3.8) and (3.9), we have

max
|z|=t
|p′(z)| ≤ n

tµ + µ
n
|aµ|

|a0+αm|k
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0+αm| (k
µ+1tµ + k2µt)

×
{

max
|z|=t
|p(z)| − |α|m

}
. (3.10)

By Lemma 3.3, for |z| ≤ k
|p(z)| ≥ m.

In particular,

|p(0)| ≥ m,
which implies

|a0| ≥ m. (3.11)

For any real or complex number α with |α| < 1, inequality (3.11) gives

|a0| ≥ |α|m. (3.12)

Now, using inequality (3.12)

|a0 + αm| ≥ ||a0| − |α|m|
= |a0| − |α|m. (3.13)

By Lemma 3.5, f(x) is a non-increasing function of x, and hence

f(|a0 + αm|) ≤ f(|a0| − |α|m). (3.14)

Using inequality (3.14) in (3.10), we have

max
|z|=t
|p′(z)| ≤ n

tµ + µ
n

|aµ|
|a0|−|α|mk

µ+1tµ−1

tµ+1 + kµ+1 + µ
n

|aµ|
|a0|−|α|m (kµ+1tµ + k2µt)

×
{

max
|z|=t
|p(z)| − |α|m

}
. (3.15)

Since the argument of α is fixed in the above inequality, |α| behaves like a
non-negative real number λ with 0 ≤ λ < 1 and we set |α| = λ, then (3.15)
becomes

max
|z|=t
|p′(z)| ≤ n

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm (kµ+1tµ + k2µt)

{
max
|z|=t
|p(z)| − λm

}
.

(3.16)
Now, for 0 < r ≤ R ≤ ρ, ρ ≤ k and 0 ≤ θ < 2π, we have

|p(Reiθ)− p(reiθ)| ≤
∫ R

r
|p′(teiθ)|dt,
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which implies

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r
|p′(teiθ)|dt

from which it follows that

max
|z|=R

|p(z)| ≤ max
|z|=r
|p(z)|+

∫ R

r
max
|z|=t
|p′(z)|dt. (3.17)

Let max
|z|=r
|p(z)| be denoted by M(p, r). Then using (3.16) in the above

inequality, we get

M(p,R) ≤ M(p, r) + n

∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)

×{M(p, t)− λm} dt. (3.18)

If we denote the right hand side of (3.18) by ϕ(R). Then

ϕ
′
(R) = n

{ Rµ + µ
n
|aµ|

|a0|−λmk
µ+1Rµ−1

Rµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1Rµ + k2µR)

}
{M(p,R)− λm} .

(3.19)
Also by (3.18), we have

M(p,R) ≤ ϕ(R). (3.20)

Combining (3.19) with (3.20), we conclude that

ϕ
′
(R)− n

{ Rµ + µ
n
|aµ|

|a0|−λmk
µ+1Rµ−1

Rµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1Rµ + k2µR)

}
{ϕ(R)− λm} ≤ 0.

(3.21)
Multiplying both sides of (3.21) by

exp
{
− n

∫ Rµ + µ
n
|aµ|

|a0|−λmk
µ+1Rµ−1

Rµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1Rµ + k2µR)
dR
}
,

we get

d

dR

[
{ϕ(R)− λm}

× exp
{
− n×

∫ Rµ + µ
n
|aµ|

|a0|−λmk
µ+1Rµ−1

Rµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1Rµ + k2µR)
dR
}]
≤ 0.

(3.22)
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It is concluded from (3.22) that the function

ψ(R) = {ϕ(R)− λm}

× exp
{
− n

∫ Rµ + µ
n
|aµ|

|a0|−λmk
µ+1Rµ−1

Rµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1Rµ + k2µR)
dR
}

is a non-increasing function of R in (0, ρ], ρ ≤ k. Hence for 0 < r ≤ R ≤ ρ,
ρ ≤ k,

ψ(r) ≥ ψ(R). (3.23)

Since ϕ(R) ≥M(p,R) and ϕ(r) = M(p, r), it follows from (3.23) that

M(p, r) ≥M(p,R) exp
{
− n
∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
dt
}

+λ
[
1−exp

{
− n
∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1+kµ+1+ µ
n
|aµ|

|a0|−λm(kµ+1tµ+k2µt)
dt
}]
m,

which is equivalent to

M(p,R) ≤ {M(p, r)− λm}

× exp
{
n

∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
dt
}

+ λm.

This completes the proof of Lemma 3.7. �

Lemma 3.8. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ ρ, ρ ≤ k and for every
real number λ with 0 ≤ λ < 1,

exp
{
− n

∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
dt
}
≥
(
kµ + rµ

kµ +Rµ

)n
µ

.

(3.24)

Proof. Since p(z) 6= 0 in |z| < k, k > 0, the polynomial P (z) = p(tz) 6= 0 in
|z| < k

t ,
k
t ≥ 1 where 0 < t ≤ k. Hence, applying inequality (3.3) of Lemma

3.4 to P (z), we get

|aµ|tµ

|a0| − λm

(
k

t

)µ
≤ n

µ
, (3.25)
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where

m = min
|z|= k

t

|P (z)| = min
|z|= k

t

|p(tz)| = min
|z|=k

|p(z)|.

Now (3.25) becomes

|aµ|kµ

|a0| − λm
≤ n

µ
,

which is equivalent to

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
≤ tµ−1

tµ + kµ
. (3.26)

Integrating both sides of (3.26) with respect to t from r to R where
0 < r ≤ R ≤ ρ, ρ ≤ k, we have

∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
≤
∫ R

r

tµ−1

tµ + kµ
,

which is equivalent to

−n
∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
≥ −n

∫ R

r

tµ−1

tµ + kµ
.

Hence we have

exp

−n
∫ R

r

tµ + µ
n
|aµ|

|a0|−λmk
µ+1tµ−1

tµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1tµ + k2µt)
dt


≥ exp

{
−n
µ

∫ R

r

µtµ−1

tµ + kµ
dt

}
=

(
kµ + rµ

kµ +Rµ

)n
µ

,

which completes the proof of Lemma 3.8. �

Lemma 3.9. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ ρ, ρ ≤ k and for every
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real number λ with 0 ≤ λ < 1,(
Rµ + kµ

ρµ + rµ

)n
µ

−
(
rµ + kµ

ρµ + rµ

)n
µ

(3.27)

≥n
∫ R

r

tµ−1

tµ + kµ
exp

n
∫ t

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

 dt.

Proof. Since 0 < r ≤ t ≤ R ≤ ρ, ρ ≤ k, on applying inequality (3.24) of
Lemma 3.8, for r ≤ t with R = t, we have

(
kµ + tµ

kµ + rµ

)n
µ

≥ exp

n
∫ t

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

 dt,

which is equivalent to

n(kµ + tµ)
n
µ
−1

(kµ + rµ)
n
µ

tµ−1 (3.28)

≥ ntµ−1

kµ + tµ
exp

n
∫ t

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

 dt.

Integrating both sides of (3.28) with respect to t from r to R, we have

n

(kµ + rµ)
n
µ

∫ R

r
(kµ + tµ)

n
µ
−1
tµ−1dt (3.29)

≥ n
∫ R

r

tµ−1

kµ + tµ
exp

n
∫ t

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

 dt.

As 0 < r ≤ t ≤ R ≤ ρ, ρ ≤ k, ρµ + rµ ≤ rµ + kµ for µ = 1, 2, 3..., n, we have

n

(rµ + kµ)
n
µ

∫ R

r
(tµ + kµ)

n
µ
−1
tµ−1dt ≤ n

(ρµ + rµ)
n
µ

∫ R

r
(tµ + kµ)

n
µ
−1
tµ−1dt

=
1

(ρµ+rµ)
n
µ

{
(Rµ+kµ)

n
µ−(rµ+kµ)

n
µ

}
.

(3.30)

Combining (3.29) and (3.30), we obtain the required result. �
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4. Proof of the theorem

Proof of Theorem 2.1. For 0 < t ≤ k, kt ≥ 1. Here, p(z) has no zero in |z| < k,

the polynomial P (z) = p(tz) has no zero in |z| < k
t , where k

t ≥ 1. Hence,
applying Lemma 3.1 to the polynomial P (z), we get

max
|z|=1

|P ′(z)| ≤ n

1 +
(
k
t

)µ
{

max
|z|=1

|P (z)| − min
|z|= k

t

|P (z)|

}
,

which implies

max
|z|=t
|p′(z)| ≤ ntµ−1

(kµ + tµ)

{
max
|z|=1

|p(tz)| − min
|z|= k

t

|p(tz)|

}
.

Hence we have

max
|z|=t
|p′(z)| ≤ ntµ−1

(kµ + tµ)

{
max
|z|=t
|p(z)| − min

|z|=k
|p(z)|

}
. (4.1)

Now for 0 < r ≤ t ≤ R ≤ ρ, ρ ≤ k and 0 ≤ θ ≤ 2π, we have

|p(Reiθ)− p(reiθ)| ≤
∫ R

r
|p′(teiθ)|dt,

which implies

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r
|p′(teiθ)|dt.

Using (4.1) leads to

|p(Reiθ)| ≤ |p(reiθ)|+
{∫ R

r

ntµ−1

(kµ + tµ)

{
max
|z|=t
|p(z)| − min

|z|=k
|p(z)|

}
dt

}
,

which implies on considering maximum over θ that

M(p,R) ≤M(p, r)+

∫ R

r

ntµ−1

(kµ + tµ)
M(p, t)dt−min

|z|=k
|p(z)|

∫ R

r

ntµ−1

(kµ + tµ)
dt. (4.2)

Since r ≤ t, by applying Lemma 3.7 with R = t, we have

M(p, t) ≤ {M(p, r)− λm} (4.3)

×exp

n
∫ t

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

+λm.
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Using (4.3) to (4.2), we obtain

M(p,R)

≤M(p, r) + n {M(p, r)− λm}
∫ R

r

tµ−1

(kµ + tµ)

×

exp

n
∫ R

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

+ λm

 dt
−mn

µ
ln

(
Rµ + kµ

rµ + kµ

)
. (4.4)

Inequality (4.4) is equivalent to

M(p, r) ≥
[
M(p,R) + nλm

∫ R

r

tµ−1

kµ + tµ
(4.5)

× exp

n
∫ R

r

xµ + µ
n
|aµ|

|a0|−λmk
µ+1xµ−1

xµ+1 + kµ+1 + µ
n
|aµ|

|a0|−λm(kµ+1xµ + k2µx)
dx

 dt

−(λ− 1)
n

µ
m ln

(
Rµ + kµ

rµ + kµ

)]
× 1

1+n

[∫ R
r

tµ−1

kµ+tµ exp

{
n
∫ R
r

xµ+µ
n

|aµ|
|a0|−λm

kµ+1xµ−1

xµ+1+kµ+1+µ
n

|aµ|
|a0|−λm

(kµ+1xµ+k2µx)
dx

}
dt

] ,
and hence the proof of Theorem 2.1 is completed. �

Acknowledgments: We are grateful to the referee for his/her useful sugges-
tions.
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