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Abstract. We study the appropriate conditions for the findings of uniqueness and exis-

tence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear

Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-

instantaneous conditions in this paper. The findings are based on the fixed point theorem

of Krasnoselskii and the Banach contraction principle. Finally, the application is provided

to validate our primary findings.

1. Introduction

Fractional calculus (FC) theory, which covers differential equations of frac-
tional order, has produced substantial advancements in research and develop-
ment in recent decades, chiefly by offering appropriate answers for models, par-
ticularly for real-world issues. Furthermore, fractional differential equations
are thought to be generalized differential equations. It is possible to consider
a field of mathematical physics that deals with integro-differential equations
(IDEs) in which the integrals are of the convolution form and also have predom-
inantly power law or logarithm type single kernels, the IDE being an operator
that contains both integer-order integrals and integer-order derivatives as spe-
cial cases, which is the reason why FC is becoming increasingly popular and
many applications arise from the term in the present [2, 8, 9, 10, 11, 12, 21].
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The boundary value problems (BVPs) posing for parabolic nonlinear dif-
ferential and IDEs can explain many natural phenomena in mathematical
modeling (see, for example [1, 4, 5, 13, 14, 15, 16, 23, 25, 26, 27, 28, 29, 30]).
This justifies the use of the fractional Caputo operator and its extension to
IDEs.

Many academics have examined the uniqueness, existence, and stability of
various BVPs using Caputo operators and their generalization in recent years.

In [6], Asawasamrit et al. investigated the ψ-Caputo (or, more precisely,
ψ-Caputo-Liouville) FD and non-instantaneous BVPs. In [17], Ivaz et al.
studied the fractional impulsive ψ-Hilfer derivative with boundary constraints.
In [3], Ali et al. used the HOBW approach to solve fractional V-FIDEs with
mixed boundary conditions. In [18], Kailasavalli et al. proved the existence
of solutions to fractional BVPs using IDEs in Banach spaces. Karthikeyan
et al. studied existence results for FIDEs with Katugampola type integral
conditions in [19].

For the purpose of resolving the non-instantaneous new BVP, Long et al.
[21] addressed the fractional differential equations listed below:


cDp0,ζΩ(ζ) = E(ζ,Ω(ζ)), ζ ∈ (Φ%, ζ%+1] ⊂ [0,Λ], p ∈ (0, 1),

Ω(ζ) = Υ%(ζ,Ω(ζ)), ζ ∈ (ζ%,Φ%] , % = 1, . . . ,m,

Ω(Λ) = Ω(0) + χ
∫ Λ

0 Ω(Φ)dΦ,

where E,Υ% are continuous and χ is constant.

Nuchpong et al. described the fractional Hilfer derivative with boundary
non-local conditions in [22]:{

ΥDp,qΩ(ζ) = Ξ
(
ζ,Ω(ζ), IδΩ(ζ)

)
, ζ ∈ [Λ1,Λ2] ,

Ω (Λ1) = 0, $ +
∫ Λ2

Λ1
Ω(l)dl =

∑%−2
k=1 ςkΩ (ϑk) ,

where the Iδ-R-L, and ΥDp,q-fractional Hilfer derivative.

The BVP for generalized fractional Hilfer derivatives with impulses non-
instantaneous was researched by Salim et al. [24]:

(
αDp,q

τ+
Ω
)

(ζ) = Ξ (ζ,Ω(ζ), (αDp,qΩ) (ζ)) , ζ ∈ ζk,
Ω(ζ) = ∓ι(ζ,Ω(ζ)), ζ ∈ (ψι, ϑι] , ι = 1, · · · , η,
ϕ1

(
αI1−ε

a+1

)
(a1) + ϕ2

(
αI1−ε

τ+

)
(a2) = ϕ3,

where αDp,q
τ+

and αI1−ε
a+1

are the generalized derivative of fractional Hilfer-type

and integral of fractional order.
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The non-instantaneous BVP for generalized fractional Hilfer derivatives
with impulses was researched by Salim et al. [24]:{

cDp;Ψζ Ω(ζ) = µ(ζ,Ω(ζ)), 0 < ζ ≤ ξ,
G(Ω(0),Ω(ξ)) = 0;

where cDp;Ψζ −Ψ-Caputo derivative and µ is continuous.

Inspire by the aforementioned studies, we provide some uniqueness and
existence results for the following problem:

cDp;Ψ$(ζ) = µ(ζ,$(ζ), A$(ζ), B$(ζ)), ζ ∈ (si, ζi+1] ,

$(ζ) = Υi(ζ,$(ζ)), ζ ∈ (ζi, si] , i = 1, . . . ,m,

a$(0) + b$(ξ) = c,

(1.1)

where cDp;Ψ is the fractional of Ψ-Caputo derivative of order 0 < p < 1, and
c, b, a ∈ R with 0 6= b+ a and µ : [0, ξ]× R3 −→ R, and Υi : [ζi, si]× R −→ R
is continuous, and 0 = s0 < ζ1 ≤ ζ2 < . . . < ζm ≤ sm ≤ sm+1 = ξ, pre-fixed.

Also, A$(ζ) =
∫ ζ

0 k(ζ, s)$(s)ds, B$(ζ) =
∫ ξ

0 k1(ζ, s)$(s)ds, k ∈ C (D,R+),

and D =
{

(ζ, s) ∈ R2 : 0 ≤ s ≤ ζ ≤ ξ
}

.

2. An auxiliary result

Let the space PC([0, ξ],R) = {$ : [0, ξ]→ R : $ ∈ C (ζζ , ζk+1]} be continu-

ous and there exist $
(
ζ−k
)
, $

(
ζ+
k

)
such that $

(
ζ−k
)

= $
(
ζ+
k

)
with a norm

‖$‖PC = sup{|$(ζ)| : 0 ≤ ζ ≤ ξ} [5].

Definition 2.1. ([25]) For a continuous function µ, the R-L fractional deriv-
ative of order p > 0, is

Dp
0+
µ(ζ) =

1

Γ(ε− p)

(
d

dζ

)ε ∫ ζ

0
(ζ − Φ)ε−p−1µ(Φ)dΦ, ε− 1 < p < ε.

Definition 2.2. ([25]) The R-L fractional integral for a continuous function
µ, is

J pµ(ζ) =
1

Γ(p)

∫ ζ

0
(ζ − Φ)p−1µ(Φ)dΦ,

where, Γ(p) =
∫∞

0 e−ΦΦp−1dΦ, p > 0.

Definition 2.3. ([25]) The Caputo derivative for a function µ : [0,∞)→ R is
defined by

cDpµ(ζ) =
1

Γ(ε− p)

∫ ζ

0

µ(ε)(s)

(ζ − s)p+1−εds = Iε−pµ(ε)(ζ), ζ > 0, ε− 1 < p < ε.
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Definition 2.4. ([23]) The fractional integral and FD for a function µ are
defined as:

Ip;Ψµ(ζ) =
1

Γ(p)

∫ ζ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ)dΦ

and

Dp;Ψµ(ζ) =
1

Γ(ε− p)

(
1

Θ′(ζ)

d

dζ

)ε ∫ ζ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))ε−p−1µ(Φ)dΦ,

respectively.

Lemma 2.5. ([2]) Let µ : J −→ R be continuous and 0 < α < 1. The $ is a
solution of the Ψ-fractional integral equation(FIE):
$(ζ) =
Υm (Φm) + 1

Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(ζ)dΦ+$0, ζ ∈ [0, ζ1] ,

Υρ(ζ), ζ ∈ (ζρ, Φρ] , ρ = 1, 2, . . . ,m,

Υρ (Φρ) + 1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(ζ)dΦ

− 1
Γ(p)

∫ Φρ
0 Θ′(Φ)

(
ΘΦρ−ΘΦ

)p−1
ω(ζ)dΦ, ζ ∈ (Φρ, ζρ+1] , ρ = 1, 2, . . . ,m

(2.1)

if and only if $ is a solution of initial value problem (IV P ) of the DEs:
cDp;Ψ$(ζ) = ω(ζ), ζ ∈ (Φρ, ζρ+1] ⊂ [0, ξ], 0 < p < 1,

$(ζ) = Υρ(ζ), ζ ∈ (ζρ, Φρ] , ρ = 1, . . . ,m,

$(0) = $0.

(2.2)

Lemma 2.6. A function $ ∈ PC([0, ξ],R) is given by
$(ζ) =

Υm (Φm) + 1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ

− 1
a+b

[
b

Γ(p)

∫ ξ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ− c

]
, ζ ∈ [0, ζ1] ,

Υρ(ζ), ζ ∈ (ζρ, Φρ] , ρ = 1, 2, . . . ,m,

Υρ (Φρ) + 1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ

− 1
Γ(p)

∫ Φρ
0 Θ′(Φ)

(
ΘΦρ−ΘΦ

)p−1
ω(Φ)dΦ, ζ ∈ (Φρ, ζρ+1] , ρ = 1, 2, . . . ,m

(2.3)
is a solution of

cDp;Ψ$(ζ) = ω(ζ), ζ ∈ (Φρ, ζρ+1] , 0 < p < 1,

$(ζ) = Υρ(ζ), ζ ∈ (ζρ, Φρ] , ρ = 1, . . . ,m,

a$(0) + b$(ξ) = c.

(2.4)
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Proof. Assume that $(ζ) is satisfied (2.4). Integrating in (2.4) for ζ ∈ [0, ζ1],
we get

$(ζ) = $(ξ) +
1

Γ(p)

∫ ζ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ (2.5)

and if ζ ∈ (Φρ, ζρ+1] , ρ = 1, 2, . . . ,m and again integrating (2.4), we get

$(ζ) = $ (Φρ) +
1

Γ(p)

∫ ζ

Φρ

Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ. (2.6)

Now, by applying impulsive condition, $(ζ) = Υρ(ζ), ζ ∈ (ζρ, Φρ], we get,

$ (Φρ) = Υρ (Φρ) . (2.7)

Consequently, from (2.6) and (2.7), we obtain

$(ζ) = Υρ (Φρ) +
1

Γ(p)

∫ ζ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ (2.8)

and

$(ζ) = Υρ (Φρ) +
1

Γ(p)

∫ ζ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ

− 1

Γ(p)

∫ Φρ

0

(
Θ′(Φ)ΨΦρ −ΨΦ

)p−1
ω(Φ)dΦ, ζ ∈ (Φρ, ζρ+1] . (2.9)

Using the BCs a$(0) + b$(ξ) = c, we get

$(ξ) = Υm (Φm)− 1

a + b

[
b

Γ(p)

∫ ξ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1ω(Φ)dΦ− c

]
.

(2.10)

As a result, the FDs, lemmas and definitions have immediate applicability, It
is obvious that (2.5),(2.9) and (2.10) imply (2.3). Hence the proof is completed.

�

Theorem 2.7. (Banach FPT) ([23]) Let Q be a nonempty closed subset of a
Banach space B and N : Q → Q, be a contraction mapping. Then N has a
unique fixed point in Q.

Theorem 2.8. (Krasnoselkii’s FPT) ([20]) Let ϑ be a nonempty, convex,
bounded and closed subset of a Banach space B. Let A1 and A2 be functions
from ϑ into itself with the following conditions:

(1) A1x+A2y ∈ ϑ with x, y ∈ ϑ;
(2) A1 be continuous and compact;
(3) A2 be a contraction.

Then, there exist z ∈ ϑ such that z = A1z +A2z.
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3. Main results

Theorem 3.1. Aassume the following condition is satisfied:

(Al1): There exist L,G, h,M,M1, Lhρ > 0 such that

|µ (ζ,$1, ω1, u1)− µ (ζ,$2, ω2, u2)| ≤ L |$1 −$2|+G |ω1 − ω2|+ h |u1 − u2| ,
|k(ζ, Φ, ϑ)− k(ζ, Φ, v)| ≤M |ϑ− v|, for ζ ∈ [ζρ, Φρ] , ϑ, v ∈ R,
|k1(ζ, Φ, ϑ)− k1(ζ, Φ, v)| ≤M1|ϑ− v|, for ζ ∈ [ζρ, Φρ] , ϑ, v ∈ R,
|Υρ (ζ, v1)−Υρ (ζ, v2)| ≤ Lhρ |v1 − v2| , for v1, v2 ∈ R.

If

Z : max

{
max

ρ=1,2,...,m
Lhρ +

(L+GM + hM1)

Γ(p + 1)

(
ζpρ+1 + Φp

ρ

)
,

Lhρ +
(L+GM + hM1)(Θ(ξ))p

Γ(p + 1)

[
1 +
|b|(L+GM + hM1)

|a + b|

]}
< 1, (3.1)

then problem (1.1) has a unique solution on [0, ξ].

Proof. Let N : PC([0, ξ],R) −→ PC([0, ξ],R) be define by

(N$)(ζ) =

Υm (Φm, $ (Φm)) + 1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1

×µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

− 1
a+b

[
b

Γ(p)

∫ ξ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

]
,

ζ ∈ [0, ζ1] ,Υρ(ζ), ζ ∈ (ζρ, Φρ] , ρ = 1, 2, . . . ,m,

Υρ (Φρ)+ 1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

− 1
Γ(p)

∫ Φi
0 Θ′(Φ) (ΘΦρ −ΘΦ)p−1 µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ,

ζ ∈ (Φρ, ζρ+1] .

Then it is obvious that N$ ∈ PC([0, ξ],R) and N is well defined. Now we
show that N is a contraction mapping.

Case 1: For ζ ∈ [0, ζ1] and $, $̄ ∈ PC([0, ξ],R), we get
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|(N$)(ζ)− (N$̄)(ζ)|
≤ Lhρ |$ (Φm)− $̄ (Φm)| dΦ

+
(L+GM + hM1)

Γ(p + 1)

∫ ζ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1|$ − $̄|dΦ

+
|b|(L+GM + hM1)

|a + b|Γ(p)

∫ ξ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1|$ − $̄|dΦ

≤ Lhρ +
(L+GM + hM1)(Θ(ξ))p

Γ(p + 1)

[
1 +

|b|
|a + b|

]
‖$ − $̄‖PC .

Case 2: For ζ ∈ (ζρ, Φρ], we get

|(N$)(ζ)− (N$̄)(ζ)| ≤ |Υρ(ζ,$(ζ))−Υi(ζ, $̄(ζ))|
≤ Lhρ‖$ − $̄‖PC .

Case 3: For ζ ∈ (Φρ, ζρ+1], we get

|(N$)(ζ)− (N$̄)(ζ)|
≤ |Υρ(Φρ, $(Φρ)−Υρ(Φρ, $̄(Φρ)|

+
1

Γ(p)

∫ ζ

0
(ζ − Φ)p−1|µ(Φ,$(Φ), A$(Φ), B$(Φ))− µ(Φ, $̄(Φ),

A$̄(Φ), B$̄(Φ))|dΦ

+
1

Γ(p)

∫ Φρ

0
(Φρ − Φ)p−1 |µ(Φ,$(Φ), A$(Φ), B$(Φ))− µ(Φ, $̄(Φ),

A$̄(Φ), B$̄(Φ))|dΦ,

≤
[
Lhρ +

(L+GM + hM1)

Γ(p + 1)

(
ζpρ+1 + Φp

ρ

)]
‖$ − $̄‖Pb.

As can be seen from the inequality above, N is a contraction.

Z =

[
Lhρ +

(L+GM + hM1)

Γ(p + 1)

(
ζpρ+1 + Φp

ρ

)]
< 1.

Then, problem (1.1) has a unique solution for all $ ∈ PC([0, ξ],R). �

Theorem 3.2. Let’s assume the (Al1) is satisfied and the following premise
below is also satisfied:

Al2 : There exist Lgi > 0 such that

|µ (t, w1, ω1, u1)| ≤ Lgi (1 + |w1|+ |ω1|+ |u1|) , t ∈ [si, ti+1] , ∀w1, ω1, u1 ∈ R.

Al3 : There exist κi(t), i = 1, 2, . . . ,m such that

|Υi (t, w1)| ≤ κi(t), t ∈ [ti, si] , ∀w1 ∈ R.
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Let Mi := supt∈[ti,si] κi(t) < ∞, and K := maxLhi < 1 for all i = 1, 2, ..,m.

Then, problem (1.1) has a solution on [0, ξ].

Proof. Assume that Bp,r = {$ ∈ PC([0, ξ],R) : ‖$‖PC ≤ r}. Let Q and R be
two operators on Bp,r defined as follows:

Q$(ζ) =

 Υm (Φm, $ (Φm)) , ζ ∈ [0, ζ1] ,
Υρ(ζ,$(ζ)), ζ ∈ (ζρ, Φρ] , ρ = 1, 2, . . . ,m,
Υρ (Φρ, $ (Φρ)) , ζ ∈ (Φρ, ζρ+1] , ρ = 1, 2, . . . ,m

and

R$(ζ)=



1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

− 1
a+b

[
b

Γ(p)

∫ ξ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

]
,

ζ ∈ [0, ζ1] , 0, ζ ∈ (ζρ,, Φρ] , ρ = 1, 2, . . . ,m,

1
Γ(p)

∫ ζ
0 Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

− 1
Γ(p)

∫ Φρ
0 Θ′(Φ)

(
ΨΦ(i) −Θ(Φ)

)p−1
µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ,

ζ ∈ (Φρ, ζρ+1] .

Step 1: If $ ∈ Bp,r then Q$ +R$ ∈ Bp,r.

Case 1: For ζ ∈ [0, ζ1],

|Q$ +R$̄|

≤ |Υm (Φm, $ (Φm))|+ 1

Γ(p)

∫ ζ

0
(ζ − Φ)p−1|µ(Φ,$(Φ), A$(Φ), B$(Φ))|dΦ

+
1

a + b

[
b

Γ(p)

∫ ξ

0
Θ′(Φ)(Θ(ζ)−Θ(Φ))p−1µ(Φ,$(Φ), A$(Φ), B$(Φ))dΦ

]
≤
[
Lgρ +

Lgρ(Θ(ξ))p

Γ(p + 1)

[
1 +

|b|
|a + b|

]]
(1 + r) ≤ r.

Case 2: For ζ ∈ (ζρ, Φρ],

|Q$ +R$| ≤ |Υi (ζ,W1(ζ))| ≤Mi.
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Case 3: For ζ ∈ (Φρ, ζρ+1],

|Q$ +R$(ζ)|

≤ |Υρ (Φρ, $ (Φρ))|+
1

Γ(p)

∫ ζ

0
(ζ − Φ)p−1|µ(Φ,$(Φ), A$(Φ), B$(Φ))|dΦ

+
1

Γ(p)

∫ Φρ

0
(Φρ − Φ)p−1 |µ(Φ,$(Φ), A$(Φ), B$(Φ))|dΦ

≤Mρ +

Lgρ

(
Φp
ρ + ζpρ+1

)
Γ(p + 1)

 (1 + r) ≤ r.

Thus

Q$ +R$ ∈ Bp,r.

Step 2: $ be contraction on Bp,r.

Case 1: For $1, $2 ∈ Bp,r, ζ ∈ [0, ζ1],

|Q$1(ζ)−Q$2(ζ)| ≤ Lgm |$1 (Φm)−$2 (Φm)| ≤ Lgm ‖$1 −$2‖PC.

Case 2: For ζ ∈ (ζρ, Φρ] , ρ = 1, 2, . . . ,m,

|Q$1(ζ)−Q$2(ζ)| ≤ Lgρ ‖$1 −$2‖PC .

Case 3: For ζ ∈ (Φi, ζρ+1],

|Q$1(ζ)−Q$2(ζ)| ≤ Lgρ ‖$1 −$2‖PC .

The following may be inferred from the above inequalities:

|Q$1(ζ)−Q$2(ζ)| ≤ K ‖$1 −$2‖PC·

Then, Q is a contraction.

Step 3: R is continuous:
Let {$n} be a sequence such that $n → $̄ in PC([0, ξ],R).

Case 1: For all ζ ∈ [0, ζ1],

|Q$n(ζ)−Q$(ζ)| ≤
[ (Θ(ξ))p

Γ(p + 1)

[
1 +

|b|
|a + b|

]]
× ||µ(., $n(.), ., ., )− µ(., $(.), ., ., )||PC .

Case 2: For all ζ ∈ (ζρ, Φρ], we get

|Q$n(ζ)−Q$(ζ)| = 0.
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Case 3: For all ζ ∈ (Φρ, ζρ+1] , ρ = 1, 2, . . . ,m,

|Q$n(ζ)−Q$(ζ)| ≤ (ζρ+1 − Φρ)
Γ(p + 1)

‖µ (., $n(.), ., ., )− µ(., $(.), ., ., )‖PC .

Thus, we conclude from the above cases that ‖Q$n(ζ)−Q$(ζ)‖PC −→ 0 as
n→∞.

Step 4: Q is compact:
First Q is bounded uniformly on Bp,r.

Since ‖Q$‖ ≤ Lgρ (ξ)

Γ(1+p) < r, we prove that Q maps a bounded set to a Bp,r

equicontinuous set.

Case 1: For interval ζ ∈ [0, ζ1] , 0 ≤ E1 ≤ E2 ≤ ζ1, $ ∈ Br, we obtain

|QE2 −QE1 | ≤
Lgρ(1 + r)

Γ(p + 1)
(E2 − E1) .

Case 2: For each ζ ∈ (ζρ, Φρ] , ζρ < E1 < E2 ≤ Φρ, $ ∈ Bp,r, we obtain

|QE −QE1 | = 0.

Case 3: For each ζ ∈ (Φρ, ζρ+1] , Φρ < E1 < E2 ≤ ζρ+1, $ ∈ Bp,r, we
establish

|QE2 −QE | ≤
Lgρ(1 + r)

Γ(p + 1)
(E2 − E1) .

The aforementioned instances lead us to |QE −QE1 | −→ 0 as E2 −→ E1 and
Q is equicontinuous. Then Q (Bp,r) is compact relatively, which completes the
proof. �

4. An example

Assume that the fractional BVP:

Dp$(ζ) =
e−ζ |w|

9 + eζ(1 + |$|
+

1

3

∫ ζ

0
e−(Φ−ζ)$(Φ)dΦ

+
1

6

∫ 1
2

0
e(ζ−Φ)$(Φ)dΦ, ζ ∈ (0,

1

2
], (4.1)

$(ζ) =
|$(ζ)|

2(1 + |$(ζ)|)
, ζ ∈ (

1

2
, 1], (4.2)

$(0) +$(1) = 0, (4.3)

and L = G = h = 1
10 ,M = 1

3 ,M1 = 1
6 , p = 5

7 , Lh1 = 1
3 . We can see that (1.1)

is satisfied with a = b = ξ = 1 for p ∈ (0, 1]. Indeed, we establish that using
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Lhρ +
(L+GM + hM1)

Γ(p + 1)

(
ζpρ+1 + Φp

ρ

)
= 0.59 < 1

and{
Lhρ +

(L+GM + hM1)(Θ(ξ))p

Γ(p + 1)

[
1 +
|b|(L+GM + hM1)

|a + b|

]}
= 0.67 < 1.

Hence, all assumptions of Theorem 3.2 are satisfied, so the FIDEs (4.1)-(4.3)
has a unique solution in [0, ξ].

5. Conclusions

In this study, we examined a class of V − FIDEs with an impulsive frac-
tional and a closed linear operator boundary value problems. Then, under
some appropriate circumstances, we looked at the current result using the
Krasnoselskii fixed point theorem. In addition, we introduced and then demon-
strated the results of the uniqueness of the V −FIDEs with non-instantaneous
symmetric boundary conditions for the Ψ-Caputo fractional nonlinear equa-
tions. The appropriate problem has been proven, and the outcomes have been
validated. We will in the future extend the periods of our work.
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