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Abstract. Common fixed point theorems for a pair of maps under contraction involving

rational expressions in the setting of complex valued metric spaces are proved. Some conse-

quence have also been given of the main results. To illustrate our results and to distinguish

them from the existing ones, we equip the paper with example.

1. Introduction

The Banach contraction principle [2] is a very popular tool in solving exis-
tence problems in many branches of mathematical analysis. Due to simplic-
ity and usefulness of this celebrated theorem, it has become a very popular
source of existence and uniqueness theorems in different branches of math-
ematical analysis. This theorem provides an impressive illustration of the
unifying power of functional analytic methods and their usefulness in various
disciplines. This famous theorem can be stated as follows.

There are in the literature a great number of generalizations of the Banach
contraction principle exist. Some generalizations of the notion of a metric
space have been proposed by some authors, such as, rectangular metric spaces,
semi metric spaces, pseudo metric spaces, probabilistic metric spaces, fuzzy
metric spaces, Quasi metric spaces, Quasi semi metric spaces, D-metric spaces,
cone metric spaces, partially ordered metric spaces (see [3]- [19]).
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Azam et al. [1] introduce the notion of complex valued metric spaces and
established some fixed point results for mappings satisfying a rational inequal-
ity. Though complex valued metric spaces form a special class of cone metric
space, yet this idea is intended to define rational expressions which are not
meaningful in cone metric spaces and thus many results of analysis cannot be
generalized to cone metric spaces. Indeed the definition of a cone metric space
banks on the underlying Banach space which is not a division Ring. However,
in complex valued metric spaces, one can study improvements of a host of
results of analysis involving divisions.

In this paper, an attempt has been made to establish common fixed point
results for a pair of mappings satisfying contractive condition involving a ra-
tional expression, more general than in [1], in the frame of complex valued
metric spaces. An examples is given to support the usability of our results.

2. Preliminaries

Recall the following definitions.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order
- on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is
satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied
and we write z1 ≺ z2 if only (iii) is satisfied. Notice that

0 - z1 � z2 ⇒ |z1| < |z2|
and

z1 � z2, z2 ≺ z3 ⇒ z1 ≺ z3.

The following definition is recently introduced by Azam et al. [1].

Definition 2.1. Let X be a nonempty set whereas C be the set of complex
numbers. Suppose that the mapping d : X × X → C, satisfies the following
conditions:

(d1) 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
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(d3) d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X .
Then d is called a complex valued metric on X , and (X , d) is called a complex
valued metric space.

Definition 2.2. Let (X , d) be a complex valued metric space and B ⊆ X .

(i) b ∈ B is called an interior point of a set B whenever there is 0 ≺ r ∈ C
such that

N (b, r) ⊆ B,
where N (b, r) = {y ∈ X : d(b, y) ≺ r}.

(ii) A point x ∈ X is called a limit point of B whenever for every 0 ≺ r ∈ C,

N (x, r) ∩ (B\X ) 6= ∅.

(iii) A subset A ⊆ X is called open whenever each element of A is an
interior point of A.

A subset B ⊆ X is called closed whenever each limit point of B belongs to B.
The family

F = {N (x, r) : x ∈ X , 0 ≺ r}
is a sub-basis for a topology on X . We denote this complex topology by τc.
Indeed, the topology τc is Hausdorff.

Definition 2.3. Let (X , d) be a complex valued metric space and {xn}n≥1 be
a sequence in X and x ∈ X . We say that

(i) the sequence {xn}n≥1 converges to x if for every c ∈ C, with 0 ≺ c
there is n0 ∈ N such that for all n > n0, d(xn, x) ≺ c. We denote this
by limn xn = x, or xn → x, as n→∞,

(ii) the sequence{xn}n≥1 is Cauchy sequence if for every c ∈ C with 0 ≺ c
there is n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c,

(iii) the metric space (X , d) is a complete complex valued metric space if
every Cauchy sequence is convergent.

Definition 2.4. (cf. [10]) Two families of self-mappings {Ti}mi=1 and {Si}ni=1
are said to be pairwise commuting if:

(I) TiTj = TjTi, i, j ∈ {1, 2, ...m};

(II) SkSl = SlSk, k, l ∈ {1, 2, ...n};

(III) TiSk = SkTi, i ∈ {1, 2, ...m}, k ∈ {1, 2, ...n}.

In [1], Azam et al. established the following two lemmas.
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Lemma 2.5. (cf. [1]) Let (X , d) be a complex valued metric space and let {xn}
be a sequence in X . Then {xn} converges to x if and only if |d(xn, x)| → 0 as
n→∞.

Lemma 2.6. (cf. [1]) Let (X , d) be a complex valued metric space and let
{xn} be a sequence in X . Then {xn} is a Cauchy sequence if and only if
|d(xn, xn+m)| → 0 as n→∞.

3. Main Result

We will prove now common fixed point results which generalize the results
of Azam et al. [1].

Theorem 3.1. Let (X , d) be a complete complex valued metric space and the
mappings S, T : X → X satisfy:

d(Sx, T y) - αd(x, y) +
βd(y, T y)d(x,Sx)

1 + d(x, y)
+ γ[d(x,Sx) + d(y, T y)]

+δ[d(x, T y) + d(y,Sx)] (3.1)

for all x, y ∈ X where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1.
Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X and define

x2k+1 = Sx2k, x2k+2 = T x2k+1, k = 0, 1, 2, · · · .

Then,

d(x2k+1, x2k+2) = d(Sx2k, T x2k+1)

- αd(x2k, x2k+1) +
βd(x2k+1, T x2k+1)d(x2k,Sx2k)

1 + d(x2k, x2k+1)

+γ[d(x2k,Sx2k) + d(x2k+1, T x2k+1)]

+δ[d(x2k, T x2k+1) + d(x2k+1,Sx2k)]

- αd(x2k, x2k+1) +
βd(x2k+1, x2k+2)d(x2k, x2k+1)

1 + d(x2k, x2k+1)

+γ[d(x2k, x2k+1) + d(x2k+1, x2k+2)]

+δ[d(x2k, x2k+2) + d(x2k+1, x2k+1)]

= αd(x2k, x2k+1) +
βd(x2k+1, x2k+2)d(x2k, x2k+1)

1 + d(x2k, x2k+1)

+γ[d(x2k, x2k+1) + d(x2k+1, x2k+2)] + δd(x2k, x2k+2).
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This implies that

|d(x2k+1, x2k+2)| ≤ α|d(x2k, x2k+1)|+
β|d(x2k+1, x2k+2)||d(x2k, x2k+1)|

|1 + d(x2k, x2k+1)|
+γ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|]
+δ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|].

Since

|d(x2k, x2k+1)| ≤ |1 + d(x2k, x2k+1)|
and by the triangular inequality

|d(x2k, x2k+2)| ≤ |d(x2k, x2k+1) + d(x2k+1, x2k+2)|.
Therefore

|d(x2k+1, x2k+2)| ≤ α|d(x2k, x2k+1)|+ β|d(x2k+1, x2k+2)|
+γ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|]
+δ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|]

=

(
α+ γ + δ

1− β − γ − δ

)
|d(x2k, x2k+1)|.

Similarly,

d(x2k+2, x2k+3) = d(Sx2k+1, T x2k+2)

- α(x2k+2, x2k+1) +
βd(x2k+1,Sx2k+1)d(x2k+2, T x2k+2)

1 + d(x2k+1, x2k+2)

+γ[d(x2k+1,Sx2k+1) + d(x2k+2, T x2k+2)]

+δ[d(x2k+1, T x2k+2) + d(x2k+2,Sx2k+1)]

- αd(x2k+1, x2k+2) +
βd(x2k, x2k+2)d(x2k+2, x2k+3)

1 + d(x2k, x2k+2)

+γ[d(x2k+1, x2k+2) + d(x2k+2, x2k+3)]

+δ[d(x2k+1, x2k+3) + d(x2k+2, x2k+2)]

- αd(x2k+1, x2k+2) +
βd(x2k, x2k+2)d(x2k+2, x2k+3)

1 + d(x2k, x2k+2)

+γ[d(x2k+1, x2k+2) + d(x2k+2, x2k+3)]

+δd(x2k+1, x2k+3).

This implies that

|d(x2k+2, x2k+3)| ≤ α|d(x2k+1, x2k+2)|+
β|d(x2k, x2k+2)||d(x2k+2, x2k+3)|

|1 + d(x2k, x2k+2)|
+γ[|d(x2k+1, x2k+2)|+ |d(x2k+2, x2k+3)|]
+δ|d(x2k+1, x2k+3)|.
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Since
|d(x2k, x2k+2)| ≤ |1 + d(x2k, x2k+2)|

and by the triangular inequality

|d(x2k+1, x2k+3)| ≤ |d(x2k+1, x2k+2) + d(x2k+2, x2k+3)|.
Therefore

|d(x2k+2, x2k+3)| ≤ α|(x2k+1, x2k+2)|+ β|d(x2k+2, x2k+3)|
+γ[|d(x2k+1, x2k+2)|+ |d(x2k+2, x2k+3)|]
+δ[|d(x2k+1, x2k+2)|+ d(x2k+2, x2k+3)|]

=

(
α+ γ + δ

1− β − γ − δ

)
|d(x2k+1, x2k+2)|.

Put δ = α+γ+δ
1−β−γ−δ < 1, we have

|d(xn+1, xn+2)| ≤ δ|d(xn, xn+1)| ≤ · · · ≤ δn+1|d(x0, x1)|.
So that for any m > n,

|d(xn, xm)| ≤ |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ |d(xm−1, xm)|
≤ [δn + δn+1 + · · ·+ δm−1]|d(x0, x1)|

≤ δn

1− δ
|d(x0, x1)|

and so

|d(xm, xn)| ≤ δn

1− δ
|d(x0, x1)| → 0, as m, n→∞.

This implies that {xn} is a Cauchy sequence. Since X is complete, there
exists u ∈ X such that xn → u as n → ∞. Let on contrary u 6= Su, so that
d(u,Su) = z > 0 and we can have

z - d(u, x2k+2) + d(x2k+2,Su)

- d(u, x2k+2) + d(T x2k+1,Su)

- d(u, x2k+2) + αd(x2k+1, u) +
βd(u,Su)d(x2k+1, T x2k+1)

1 + d(u, x2k+1)

+γ[d(u,Su) + d(x2k+1, T x2k+1)] + δ[d(u, T x2k+1) + d(x2k+1,Su)]

- d(u, x2k+2) + αd(x2k+1, u) +
βd(u,Su)d(x2k+1, x2k+2)

1 + d(u, x2k+1)

+γ[d(u,Su) + d(x2k+1, x2k+2)] + δ[d(u, x2k+2) + d(x2k+1,Su)].

This implies that

|z| ≤ |d(u, x2k+2)|+ α|d(x2k+1, u)|+ β|z||d(x2k+1, x2k+2)|
|1 + d(u, x2k+1)|

+γ[|z|+ |d(x2k+1, x2k+2)|] + δ|d(u, x2k+2) + d(x2k+1,Su)|.
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Passing limit to n→∞, one gets

|z| ≤ (γ + δ)|z| ≤ (α+ β + 2γ + 2δ)|z| < |z|,
which is a contradiction so that u = Su. Similarly, one can show that u = T u.

We now show that S and T have unique common fixed point. For this,
assume that u∗ in X is a second common fixed point of S and T . Then

d(u, u∗) = d(Su, T u∗)

- αd(u, u∗) +
βd(u,Su)d(u∗, T u∗)

1 + d(u, u∗)
+ γ[d(u,Su) + d(u∗, T u∗)]

+δ[d(u, T u∗) + d(u∗,Su)]

so that

|d(u, u∗)| ≤ α|d(u, u∗)|+ β|d(u,Su)||d(u∗, T u∗)|
|1 + d(u, u∗)|

+γ[|d(u,Su)|+ |d(u∗, T u∗)|] + δ[|d(u, T u∗)|+ |d(u∗,Su)|]
= (α+ 2δ)|d(u, u∗)|.

This implies that u∗ = u, which proves the uniqueness of common fixed point.
This completes the proof of the Theorem 3.1. �

By setting S = T in Theorem 3.1, one deduces the following:

Corollary 3.2. Let (X , d) be a complete complex valued metric space and let
the mapping T : X → X satisfy:

d(T x, T y) - αd(x, y) +
βd(y, T y)d(x, T x)

1 + d(x, y)
+ γ[d(x, T x) + d(y, T y)]

+δ[d(x, T y) + d(y, T x)]

for all x, y ∈ X where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1.
Then T has a unique fixed point.

As an application of Theorem 3.1, we prove the following theorem for two
finite families of mappings.

Theorem 3.3. If {Ti}m1 and {Si}n1 are two finite pairwise commuting fi-
nite families of self-mapping defined on a complete complex valued metric
space (X , d) such that the mappings S and T (with T = T1T2...Tm and S =
S1S2...Sn) satisfy the condition (3.1), then the component maps of the two
families {Ti}m1 and {Si}n1 have a unique common fixed point.

Proof. In view of Theorem 3.1, one can infer that T and S have a unique
common fixed point ` i.e., T ` = S` = `. Now we are required to show that
` is common fixed point of all the components maps of both the families. In
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view of pairwise commutativity of the families {Ti}m1 and {Si}n1 , (for every
1 ≤ k ≤ m) we can write

Tk` = TkS` = ST k` and Tk` = TkT ` = T T k`

which show that Tk` (for every k) is also a common fixed point of T and S. By
using the uniqueness of common fixed point, we can write Tk` = ` (for every
k) which shows that ` is a common fixed point of the family {Ti}m1 . Using the
foregoing arguments, one can also show that (for every 1 ≤ k ≤ n) Sk` = `.
This completes the proof of the Theorem 3.3. �

By setting T1 = T2 = · · · = Tm = F and S1 = S2 = · · · = Sn = G, in
Theorem 3.3, we derive the following common fixed point theorem involving
iterates of mappings.

Corollary 3.4. If F and G are two commuting self-mappings defined on a
complete complex valued metric space (X , d) satisfying the condition

d(Fmx,Gny) - αd(x, y)+
βd(x,Fmx)d(y,Gny)

1 + d(x, y)
+γ[d(x,Gnx) + d(y,Fmy)]

+δ[d(x,Fmy) + d(y,Gnx)]

for all x, y ∈ X where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1,
then F and G have a unique common fixed point.

By setting m = n and F = G = T in Corollary 3.4, we deduce the following
corollary.

Corollary 3.5. Let (X , d) be a complete complex valued metric space and let
the mappings T : X → X satisfy (for some fixed n):

d(T mx, T ny) - αd(x, y)+
βd(x, T mx)d(y, T ny)

1 + d(x, y)
+γ[d(x, T nx) + d(y, T my)]

+δ[d(x, T my) + d(y, T nx)]

for all x, y ∈ X where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1.
Then T has a unique fixed point.

Proof. By Corollary 3.2, we obtain v ∈ X such that T nv = v. The result then
follows from the fact that
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d(T v, v) = d(T T nv, T nv) = d(T nT v, T nv)

- αd(T v, v) +
βd(T v, T nT v)d(v, T nv)

1 + d(T v, v)

+γ[d(T v, T nT v) + d(v, T nv)] + δ[d(T v, T nv) + d(v, T nT v)]

- αd(T v, v) +
βd(T v, T T nv)d(v, v)

1 + d(T v, v)

+γ[d(T v, T T nv) + d(v, v)] + δ[d(T v, v) + d(v, T T nv)]

= (α+ 2δ)d(T v, v).

�

We conclude this paper with an illustrative example which one demonstrates
Theorem 3.1.

Example 3.6. Consider

X1 = {z ∈ C : Re(z) ≥ 0, Im(z) = 0},

X2 = {z ∈ C : Im(z) ≥ 0, Re(z) = 0}
and write X = X1 ∪ X2. Define a mapping d : X × X → C as :

d(z1, z2) =



max{x1, x2} − imax{x1, x2} , z1, z2 ∈ X1,

max{y1, y2} − imax{y1, y2}, z1, z2 ∈ X2,

(x1 + y2)− i(x1 + y2), z1 ∈ X1, z2 ∈ X2,

(x2 + y1)− i(x2 + y1), z1 ∈ X2, z2 ∈ X1,

where z1 = x1 + iy1, z2 = x2 + iy2. By a simple calculation, one can easily
verify that (X , d) is a complete complex valued metric space.
Set T = S and define a self-mapping T on X (with z = (x, y)) as

T z =


(x

3
, 0
)
, z ∈ X1,(

0,
y

3

)
, z ∈ X2.

Now, we show that T satisfies condition (3.1). We distinguish the following
cases: Before discussing different cases, one needs to notice that

0 - d(Sz1, T z2), d(z1, z2),
d(z1,Sz1)d(z2, T z2)

1 + d(z1, z2)
, d(z1, T z2) + d(z2,Sz1),

d(z1,Sz1) + d(z2, T z2).
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• If z1, z2 ∈ X1, then we have

d(Sz1, T z2) = d
(

(
x1
3
, 0), (

x2
3
, 0)
)

= max
{x1

3
,
x2
3

}
− imax

{x1
3
,
x2
3

}
= max

{x1
3
,
x2
3

}
(1− i) =

1

3
max{x1, x2}(1− i)

-
1

3
d(z1, z2).

• If z1, z2 ∈ X2, then we have

d(Sz1, T z2) = d
(

(0,
y1
3

), (0,
y2
3

)
)

= max
{y1

3
,
y2
3

}
− imax

{y1
3
,
y2
3

}
= max

{y1
3
,
y2
3

}
(1 + i) =

1

3
max{y1, y2}(1− i)

-
1

3
d(z1, z2).

• If z1 ∈ X1, z2 ∈ X2, then we have

d(Sz1, T z2) = d
(

(
x1
3
, 0), (0,

y2
3

)
)

=
[x1

3
+
y2
3

]
(1− i)

=
1

3
[x1 + y2](1− i) =

1

3
[x1 + y2](1− i)

-
1

3
d(z1, z2).

• If z2 ∈ X1, z1 ∈ X2, then we have

d(Sz1, T z2) = d
(

(0,
y1
3

), (
x2
3
, 0)
)

=
[y1

3
+
x2
3

]
(1− i)

=
1

3
[y1 + x2](1− i) =

1

3
[y1 + x2](1− i)

-
1

3
d(z1, z2).

Thus, condition (3.1) is satisfied with α = 1
3 and 0 < β+2γ+2δ < 2

3 and, in all,
conditions of Theorem 3.1 are satisfied. Notice that the point 0 ∈ X remains
fixed under T and is indeed unique. Thus, in all, this example substantiates
the genuineness of our results proved in this paper.
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