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Abstract. This paper presents properties of the cocycle equations via cochains on a semi-
group. And then we offer hyperstability results of related functional equations using the
properties of cocycle equations via cochains. These results generalize hyperstability results
of a class of linear functional equation by Maksa and Pales. The obtained results can be
applied to obtain hyperstability of various functional equations such as Euler-Lagrange type

quadratic equations.

1. INTRODUCTION

In 2001, Maksa and Péles [10] proved a new type of stability of a class of
linear functional equation

1 n
f(5)+f(t) = 7Zf(5wi(t))a (S,tES), (11)

i
where f is a functional on a semigroup S := (S,-) and ¢, , ¢, : S — S
pairwise distinct automorphisms of S such that the set {¢1,--- ,1,} is a group

with the operation of composition of mappings. More precisely, they proved
that if the error bound for the difference of two sides of (1.1) satisfies a certain
asymptotic property, then in fact, the two sides have to be equal. Such a
phenomenon is called the hyperstability of the functional equation on S. Since
then numerous papers on this subject have been published [1]-[9].
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In 2015, Sirouni and Kabbaj [12] investigated of the hyperstability of an
Euler-Lagrange type quadratic functional equation:

flz—y)+ fly—2)
2

flz+y)+ =2f(z) +2f(y) (1.2)

in class of functions from an abelian group into a Banach space. The general
solution and stability of this equation is established by Rassias [11].

Let (G,+) denote a semigroup and X be a real normed space. Note that
the function F' satisfied with the equation:
Flz,y)+ Flx+y,2) = Flz,y+2)+ F(y,2), (2,9,2€G) (1.3)

is called a cocycle on G x G into X and the equation is called the cocycle equa-
tion. If F is the Cauchy difference, that is F(z,y) = f(z) + f(y) — f(x + v),
then F' satisfies the equation (1.3). It is well known that the cocycle equa-
tion plays an important role in the hyperstability. Note that every quadratic
functional equation on G:

fle+y)+ fle—y) =2f(z) +2f(y)
has the cocycle equation-type identity

Flx+y,z)+ Flx —y,2)
2

F(z,y+2)+ F(z,y — 2)
2 )

F(x,y) + =F(y,z) +

where F(x,y) = f(z) + f(y) — w_@

In this paper, we introduce the concept of cocycles via a cochain and present
that cocycles via a cochain play an important role in the hyperstability. As
results, we obtain that if F' is a cocycle via a cochain {p;} on a semigroup
then there is a generating function f such that F' is a coboundary of f. That
is, if f is a generating function such that

1 n
F(ay, oo yam) = fl@) + o+ flam) =~ > flpien, - am)), (14)
i=1
where {p;} is a cochain, then F satisfies the cocycle equation via the cochain:
1 n
F(‘Tla e ,l’m) + = ZF(@l(mla e axﬂl)’ Y1, 7yM*1) (15)
i3

1 n
- gZF(:Ld? 7$m—1;§0i<$maylf" 7ym—1)) +F($m7y1;"' 7ym—1)-
=1
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Also we show that the hyperstability of the functional equation

o)+ 32 @il om)). (1.6)

3

This generalizes the results of a class of linear functional equation by Maksa
and Pdles [10]. Using the properties of cocycle equations via cochains we offer
hyperstability results of related functional equations.

2. COCYCLE EQUATIONS BY COCHAINS

Throughout this paper, let (G,+) denote a semigroup and X be a real
normed space. Also let N, R and C denote the sets of natural numbers, real

numbers and complex numbers, respectively, and let Ry = {x € R|z > 0}
and S, = {1,2,--- ,n}.

Definition 2.1. Let ¢; : G™ — G be a function for each i € S,,. {p;|i € S, }
is called a cochain in m-variables if there exists a bijective function A : S,, x
Sy — Sp xSy, such that if A(4,j) = (aij, bij) for any i, j, ai;, bij € Sy, then

@z(@g(-xl, T 7xm)7y17 te 7ym—1)
= Spaij(xlv co 7$m—1agpbij (Jfrm@/h to 7ym—1) (21)

for all Tl Tmy Y1, 5 Ym—1 € G.

Example 2.2. Consider the case m = 2 of the above definition. Let ¢; :
G X G — G be a function for each ¢ € Sy defined by

pr(z,y) =x+y, @2Ax,y) =z -y,
e3(w,y) = —x+y, ¢a(lz,y)=—x-y
for all z,y € G. Also we define a bijectve function A : Sy x Sy — S4 X Sy4 by

A1, 1) =(1,1), A(L,2)=(1,3), A1,3)=3,1), A(1,4)=(4,2),
A2,1)=(L2), A(2,2)=(1,4), A23)=(32), A24)=(41),
AB,1)=(3,3), A(3,2)=(4,4), AB.3)=(22), AGB,4)=(24),
A4,1) =(3,4), A4,2)=(43), A43)=(21), A(4,4)=(2,3).

If A(4,j) = (aij, bi;) for any i, j,a;j, bij € Sa, then we have the equation

@i((pj(ajv y)? Z) = Payy (337 Pbi; (y7 Z))
for all z,y,z € G. Thus {y;|i € S4} is a cochain in 2-variables.
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Example 2.3. Consider the case m = 3 of the above definition. Let ¢; :
G? — G be a function for each i € Sg defined by

e1(@,y,2) = +y+z @az,y2)=x+y—z
o3(x,y,2) =z —y+2, wa(x,y,2)=—x+y+z2,
os(x,y,2) =—x—y—2, vslx,y,2) =—x—y+ 2,
or(z,y,2) =—x+y—2 vs(x,y,2)=c—y—=2

for all z,y € G. Then we can easily find a bijectve function A : Sg x Sg —
Sg X Sg such that if )\(’L,j) = (aij, bij) for any i, j, aij, bij € Sg then

@i((ﬂj($, Y, 2), v, w) = Pai; (z,y, Pbi;j (z,v,w))

for all z,y, z,v,w € G. Thus {¢;|i € S} is a cochain in 3-variales.

Definition 2.4. Let {p;|¢; : G™ — G is a function for each i € S,} be
a cochain in m-variables. Then the function F' : G™ — X satisfied with
the functional equation (1.5) is called a cocycle via the cochain {¢;} and the
equation is called the a cocycle equation via the cochain {p;}.

Example 2.5. Consider the case m = 2 of the above definition. Let {y;|¢; :
G x G — @G is a function for each i € S, } be a cochain in 2-variables. Then
any solution F': G x G — X of the functional equation

Fla,g) + 3 Flolw ), 2) = - Fla iy, 2) + F(y, ), (0,9, € 6)
1=1 i=1

is a cocycle via the cochain {p;} and the equation is the a cocycle equation via
the cochain {p;}.

Example 2.6. Consider the case m = 3 of the above definition. Let {y;|¢; :
G3 — G is a function for each i € S,} be a cochain in 3-variables. Then
any solution F : G2 — X of the functional equation
1 n
F(lU, Y, Z) + ﬁ Zz; F(@Z(l‘a Y, Z)7 v, U))
1 n

= E Z F('x? y7 (PZ(Z7 ’U7 w)) + F(Z7 ’U, w)? (x7 y? Z? v? w e G)

i=1
is a cocycle via the cochain {¢;} and the equation is the a cocycle equation via
the cochain {¢;}.
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Theorem 2.7. Let {¢;} be a cochain in m-variables where p; : G™ — G is
a function for each i € Sy. If there exists a function f: G — X such that f
generate a function F : G™ — X by

Fony ) = flon) + o+ fom) = = Fllar o om) (22

for all x1,- -,z € G, then F satisfies the cocycle equation via the cochain
{i}-

Proof. Suppose that F' is generated by f. Since {p;|i € S,} is a cochain, we
have

%ZZf(SOj(@i(xl,"' ,sz),yl,"- :ym—l)

i=1 j=1
1 n n
= ﬁ Z Zf(@j(mh o Tm—1, (pi($ma Yty ,ym—l))
i=1 j=1
for all x1, - Tm, Y1, ,Ym—1 € G. Then we have

1 n
F('/L.la”' wrm)"‘gZF(‘Pz(mla 7xm)7y17"' 7ym—1)

n

= ) e ) = 3 S )

=1

Z[ @i(@1,,am)) + fy1) + - + f(Ym—1)

Z 80] SO’L X1, - 7$m)7y17“' 7ym—1)):|
j 1

f(@1) + -+ flom) + flyr) + -+ f(Ym—1)

n

1 n
ﬁzz.f (P] SOZ X1, - >$m)7y17"' 73/m—1)
7j=1 =1

1
ﬁz xla"' >$M—1awi($may17"' ;ym—l)) +F($m7yla"' ,ym—l)'

for all 1, Tm,y1, - ,Ym—1 € G. Thus F satisfies the cocycle equation via
the cochain. O

Corollary 2.8. Let {¢;} be a cochain in 2-variables where @; : G x G — G
s a function for each i € S,,. If there exists a function f: G — X such that
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f generates a function F': G x G — X by

n

F(a,y) = () + £5) ~ - > fila,) (2.3)

i=1
for all x,y € G, then F satisfies the cocycle equation via the cochain {p;}.

Proof. Suppose that F' is generated by f. Since {p;|i € S,} is a cochain, we

have
QZZf%%xy 222f803$80zya z))

=1 j=1 =1 j=1

for all z,y,z € G. Then we have

£ 3 Fleile,y), 2)
=1

= 1)+ 10) = S a)

n

+1 Z[ eile ) + 1) = = 3 Flpilailv), 2)]

J=1
n n

= @)+ I+ IG) = Y03 Tty 2)

7j=17=1
1 n
—l-gZF(.T,QOi(y,Z))
=1

for all x,y,z € G. Thus F satisfies the cocycle equation via the cochain. [J

Theorem 2.9. Let {p;} be a cochain, where ¢; : G x G — G is a function
for each i € S,. Also let e : G x G — X be a function for which that there
exists a sequence (sg)ren of elements of G satisfying the following condition:

klim e(wi(sk,x),y) =0, (x,y € G,i € S,). (2.4)
—00

Assume that a function f: G — X satisfies the inequality
1 n
1@ + 1) = = Feitap)|| < clay) (2:5)
i=1

for all x,y € G. Then f is a solution of the equation (2.3).
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Proof. For any z,y € G, let
F(z,y) = f(x) —*Zfsozwy
Note that ||F(z,y)|| < e(x,y) for all z,y € G. By Theorem 2.7, we have
+711§:F(90¢(w,y),2) ZF z, iy, 2
=1
for any z,y,z € G, alnd thus
TR BN » AN S » (< |

Since {y;} is a cochain, there is a bijective function A on S, x S,, such that
A(Zaj) = (aljvaj) and

801(90](3]@, 'Z‘)’ y) = Soaij (Sk7 Spbij (33’, y))
for each 1, j, a;j, bij € Sp. Letting = by ¢;(sg, z) for some j € Sy,

HF(y,z)H < HF(tpj(sk,x),y)H + % z": HF(%(%(Skﬂ)ay),Z))H
i=1

+ % Zn: HF(goj(Sk, ), iy, Z))H
=1

1
5(80j(8ka 'Y + ;Za ‘Pa” 5k’7 i LL‘ y)) )
1=1
1
+ g 25(90](31@733)7902(9,2))
=1
-0
as k — oo. O

Corollary 2.10. Let p; : G x G — G be a function for each i € Sy defined
by

pr(zy) =z +y, ez,y) =z -y,

e3(z,y) = —z+y, palz,y)=-z-y

for all x,y € G. Also let € : G x G — R be a a function for which that there
exists a sequence (Sg)ren of elements of G satisfying the following condition:

khm E(QOZ'(S]C,.’E),y) = Oa ('T)y € Gal € 54)
—00
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Assume that a function f: G — X satisfies the stability inequality

@)+ 1) - iif<¢i<x,y>>1\ < e(a,y)
i=1

for all x,y € G. Then
4

Fl@) + £) = 3 D Floilay)

=1
for all x;y € G, and in the case of even function f, f is a solution of the
equation (1.2).

Proof. Define a function F': G x G — X by

4
Fla,y) = f@)+ f6) ~ 3 3 Feile,y) (0,,7 € G).
=1

Also we define a bijective function A : .Sy x Sy — Sy X Sy by

AL =(1,1), AL2) =(13), AL3) =1, L4 =(42),
A2,1) = (1,2), A2.2)=(1,4), A2.3)=(3,2), A2.4) =(41),
AB,1) =(3,3), A3,2) = (4,4), A(3.3)=(2,2), A3.4)=(2,4),
A1) = (3,4), A4,2)=(4,3), A43)=(21), A44) =(23).

Then, for the case of A(i,7) = (k,1)

vi(pj(z,y),2) = or(z, @i(y, 2))

for all z,y,z € G. Thus {y;|i € S4} is a cochain. By Theorem 2.9, the result
holds. O

Lemma 2.11. Let (S,-) be a semigroup and for each i € Sy, let ¢; : S — S
be pairwise distinct automorphisms of S such that the set {¢;|i € S,} is a
group with respect to the composition as a group operation. If p; : S xS — 8
is a function defined by p;(x,y) = x;(y) for all x,y € S and for each i € Sy,
then {¢;|i € Sp} is a cochain.

Proof. Note that for any z,y,z € S and i, j, k € S,, we have
@ (@, (Y, 2)) = 2 (y)hive(2).

Since 1); is an automorphism for each j € S,, and {¢;v5|i € S} is a permu-
tation of {1;]i € S,}, there is a unique k such that 1, = 1;. Thus we can
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define a bijective function A by (i, j) = (4, k) for i, j, k € S, such that for any
x,y,z €8

vi(pj(z,y),2) = ¢j(z, or(y, 2))-
O

Theorem 2.12. Let (S, ) be a semigroup and for eachi € Sy, let; : S — S
be pairwise distinct automorphosms of S such that the set {y;|i € S,} is
a group with respect to the composition as a group operation. Also let € :
S xS — R be a a function for which that there exists a sequence (sk)ken Of
elements of G satisfying the following condition:

lim e(sgz,y) =0, (z,y€S).
k—o0

Assume that a function f S — X satisfies the inequality
1 n
1@+ 1) = > Faviw)|| < @ y)
i=1

forallxz,y € S. Then f is a solution of the equation (1.1).

Proof. Let ; : S x S — S be a function defined by ¢;(z,y) = z;(y) for all
z,y € S and for each i € S,. By Lemma 2.11, {y;]i € S,} is a cochain. By
Theorem 2.9, the result holds. Il

Remark 2.13. In Theorem 2.9, the inequality condition (2.2) can be replace
by

klim e(x,i(sk,y) =0 or e(pi(s,z),y) <qge(x,y) (0<qg<1,i€S,).

—

Let us go through the same procedure as in Theorem 2.9. If we define F'
by (2.1) then limg_,o F'(z, ¢i(sk,y)) = 0 and eventually F(z,y) = 0 for all
z,y € G. If e(pi(s,z),y) < qe(xz,y) (0<¢g<1,i€S,), then

€(80z‘(<ﬂj(37 S),:L’), y) = E(‘Paij (37 Pb;; (s,x)),y) < qE(‘:Dbij (Sax)7y) < QZE(IL’,y)
for all 4, j, aij,bij € Sy. Letting

QDJ‘(S,S) = S1, @j(@j(8,3)78)282,
SOJ(SDJ( T Pj (873)7'”)78) = Sk,
k k+1

we have

Jim e(pi(sg,z),y) =0, (z,y€G,i€S,).
—00



874 Y. W. Lee

Therefore (2.2) is satisfied and the statement follows from Theorem 2.9. Now
we extend to n-variables by using a permutation. For all P = (p1,p2,...,pn),
Q=(q1,92,---,qn) € G", let 0; : G — G™ be a permutation given by

o1(p1;p2; - pn) = (P1,D2,- -+, Pn),

0i(p1, P2, Pn) = (Pis- - - P P1: D2, - -5 Pi-1),

Ont1(P) =01 P,

On+ti(P) = o;P
for each i € S, and P+ Q = (p1 + q1,p2 + g2, - - -, Pn + qn)-
Lemma 2.14. Let i € S, and ¢; : G x G™ — G" be functions defined by

¢i(P,Q) =P +0i(Q)
= (p1 + GisP2 + Qit1s " Pn—it1 + Gny 0 Pt Gim1)

for all P,Q € G™. Then {p;i|i € Sp} is a cochain.

Proof. It can be easily checked that for all P,Q,W € G™,i,j € Sy,
(a) @i(pj(P,Q),W) =P +0;(Q) + o:s(W),
() »i(Ppi(Q,W)) =P +0;(Q) +0j0i(W) = P +0;(Q) + irj—1(W).

Define a bijective function A : S, x S, — S,, X S, such that if \(z,j) =
(aij, bij) for any i, j, a;j, bij € Sy, where
ajj=j—1i+1 (if j —i+11is negative, a;;j =n+j—i+1),
bij = 1.
Then
¢1(¢](P7 Q)7 W) = Spa,ij (P, (Pbi]. (Q, W))
for all P,Q,W € G™. 0

Lemma 2.15. Let f: G" — X be an arbitrary function and p; : G x G — G
a function defined by Lemma 2.14 for each i € S,. Then the function F :
G" — X defined by

F(P,Q) = [(P)+ (@)~ = 3" f(@i(P.Q)). (P.QeG"
=1

satisfies the following functional equation

n

F(P.Q)+ S F@i(P.Q),W) = FQ.W) + - > F(P.pi(@ W)
1=1 =1
for all P,Q,W € G™.
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Proof. By Lemma 2.14, {¢;|i € Sy} is a cochain. By the same procedure of
Theorem 2.9, we complete the proof. O

By Lemma 2.14 and 2.15, we have the following theorem.

Theorem 2.16. Let ¢; : G x G — G be a function defined by Lemma 2.14 for
each i € S, and e : G Xx G™ — R be function for which there exists a sequence
{Witren of elements of G™ satisfying the following condition:

khm €(¢Z(Wk7P)7Q) = 07 (PaQ € Gnaz € Sn)
—00

Assume also that a function f: G™ — X satisfies the inequality
1 n

1P+ 7@ = -3 FleWi P)LQ)|| < (P.Q)
i=1

for all P,Q € G™. Then f is a solution of the functional equation (1.5). That
is, for all P,Q € G"

F(P)+ (@) = -3 flei(Wi, P), Q)
=1

Example 2.17. Assume that a function f : Ri — X satisfies the inequality

Hf(pl +qu,p2 + 42,03+ q3) + f(p1 + @2, 02 + ¢3.03 + 1)

+ f(p1 +a3,p2 + q1. 03 + q2) — 3f(p1, P2, p3) — 3f(q1, q2, %)H
< 914243
b1p2p3

for all P = (p1,p2,03),Q = (41,42, 43) € R} and let £(P,Q) = 2% and
Wi, = (k,k, k) for any k € N. Then by Theorem 2.16, we have

f(p1+qi,p2+q2,p3+q3) + f(p1 + 2,02 + g3, 3 + q1)
+ f(p1 + 3,02+ q1,p3 + q2)
=3f(p1,p2,p3) +3f(q1,92,q3)

for all P = (p17p25p3)>Q = (Q1aQQaQ3) € Ri’-
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