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Abstract. The first result of this paper is to give a revised proof of Sanatammappa et al.’s

recent result in a b-metric space, under appropriate choice of constants without using the

continuity of the b-metric. The second is to prove a fixed point theorem under a contraction

type condition in an extended b-metric space.

1. Introduction

Let X be a nonempty set and ρ : X ×X → R be such that

(m1) ρ(x, y) ≥ 0 for all x, y ∈ X,
(m2) ρ(x, y) = 0 if and only if x = y,
(m3) ρ(x, y) = ρ(y, x) for all x, y ∈ X,
(m4) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) for all x, y, z ∈ X.

Then the pair (X, ρ) denotes a metric space with metric ρ. Let X = R. Then
the metric ρ(x, y) = |x− y| for all x, y ∈ X is called the usual metric and it
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gives the distance between the points x and y on the number line R1. Let
X = R × R and ρ(x, y) = |x− y| for all x, y ∈ X. Condition (m4) says that
the length of one side in a triangle with vertices x, y and z never exceeds the
sum of the lengths of other sides in it. Hence it is referred to as the triangle
inequality of the metric ρ. The notion of metric space was due to Frechet in
1906.

In the last few decades, fixed point theorems were developed in a metric
space, normed linear space, topological space etc., while the conditions im-
posed on the underlying mappings are usually metrical or compact type con-
ditions. Further, new ambient algebraic structures were formulated to improve
the results. One such was a b-metric, introduced by Bakhtin [1], by general-
izing the triangle inequality (m4). For all the definitions of this section, one
can refer to [2, 7, 8]:

Definition 1.1. ([2]) Let s ≥ 1, X be a nonempty set and ρs : X×X → [0,∞)
be such that

(b1) ρs(x, y) = 0 if and only if x = y for all x, y ∈ X,
(b2) ρs(x, y) = ρs(y, x) for all x, y ∈ X,
(b3) ρs(x, y) ≤ s[ρs(x, z) + ρs(y, z)] for all x, y, z ∈ X.

Then ρs is a b-metric on X, and (X, ρs) denotes a b-metric space.

A b-metric space (X, ρs) reduces to a metric space (X, ρ), if s = 1. However,
a b-metric space is not necessarily a metric space. For instance, consider the
pair (X, ρs), where X = R and ρs(x, y) = |x− y|2 for all x, y ∈ R. Then the
conditions (b1) and (b2) are obvious. Further,

ρs(x, y) = |x− y|2 = |x− z + z − y|2

≤ 2
(
|x− z|2 + |z − y|2

)
= 2[ρs(x, z) + ρs(y, z)]

for all x, y ∈ X. Thus (X = R, ρs) is a b-metric space with s = 2. Since
ρs(1, 3) + ρs(1, 0) = 4 + 1 = 5 and ρs(0, 3) = 9, (m3) fails to hold good,
showing that ρs is not a metric. Thus a b-metric space is not a metric space.

In view of the convexity of f(x) = xp, where x > 0 and 1 < p < ∞, it
follows that (R, |x− y|p) is a b-metric space, which is not a metric space. In
other words, the class of b-metric spaces contains that of metric spaces.

Definition 1.2. ([2]) A b-ball in a b-metric space (X, ρs) is defined by

Bρs(x, r) =
{
y ∈ X : ρs(x, y) < r

}
.

The family of all b-balls forms a base topology, called the b-metric topology
τ(ρs) on X.
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Definition 1.3. ([2]) Let (X, ρs) be a b-metric space with parameter s. A
sequence {xn}∞n=1 in X is said to be

(a) b-convergent, with limit p ∈ X, if it converges to p in the b-metric
topology τ(ρs),

(b) b-Cauchy, if limn,m→∞ ρs(xn, xm) = 0.

Like in a metric space, every b-convergent sequence has a unique limit, and
is necessarily b-Cauchy.

Definition 1.4. ([2]) A b-metric space (X, ρs) is said to be b-complete, if every
b-Cauchy sequence in X is b-convergent in it.

Remark 1.5. A b-metric is not jointly continuous in general in its coordinate
variables x and y, though a metric d is known to be continuous (See Example
2.13, [9]).

Lemma 1.6. ([4]) Let (X, ρs) be a b-metric space with parameter s. Suppose
that {xn}∞n=1 is b-convergent with limit x and {yn}∞n=1 is b-convergent with
limit y in X. Then

1

s2
ρs(x, y) ≤ lim inf

n→∞
ρs(xn, yn) ≤ lim sup

n→∞
ρs(xn, yn) ≤ s2ρs(x, y). (1.1)

In particular, x = y, then limn→∞ ρs(xn, yn) = 0. Further, for each z ∈ X,
we have

1

s
ρs(x, z) ≤ lim inf

n→∞
ρs(xn, z) ≤ lim sup

n→∞
ρs(xn, z) ≤ sρs(x, z). (1.2)

2. A modified proof of Sanatammappa et al.’s result

Sanatammappa et al. [6] recently proved the following result:

Theorem 2.1. Let s ≥ 1 and (X, ρs) be a complete b-metric space. If a
self-map f on X is such that

ρs(fx, fy) ≤ a1ρs(x, y) + a2ρs(x, fx) + a3ρs(y, fy) + a4ρs(x, fy)

+ a5ρs(y, fx) + a6[ρs(y, fx) + ρs(x, fy)], ∀x, y ∈ X, (2.1)

where aj, 1 ≤ j ≤ 6 are non-negative real numbers, not all zero, with

a1 + a2 + a3 + 2a4 + a5 + 2a6 < 1. (2.2)

Then the sequence {xn}∞n=1 defined by

xn = fxn−1 = fnx0, n ≥ 1, (2.3)

converges to a point p ∈ X, which is a unique fixed point of f .
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In the proof of Theorem 2.1, the authors obtained that for each m > n,

ρs(xn, xm) ≤ ωnρs(x0, fx0), ∀n, (2.4)

where

ω =
a1 + a2 + sa4 + sa6
1− a3 − sa4 − sa6

· (2.5)

Employing the limit as n→∞ in (2.4), they concluded that ρs(xn, xm)→ 0.

We assert that ρs(f
nx0, f

mx0) → 0 as n → ∞ holds good only if ω < 1.
But the choice (2.2) does not guarantee to give ω < 1. Also, the authors
used the continuity of the b-metric ρs in Theorem 2.1, without mentioning it.
However, in view of Remark 1.5, ρs is not continuous. Therefore, we restate
Theorem 2.1 as follows:

Theorem 2.2. Let s ≥ 1, (X, ρs) be a complete b-metric space, and f :
X → X satisfy the inequality (2.1), where aj, 1 ≤ j ≤ 6 are nonnegative real
numbers, not all zero, such that

a1 + a2 + a3 + 2sa4 + a5 + 2sa6 < 1. (2.6)

Then the sequence {xn}∞n=1 defined by (2.3) converges to a point p ∈ X, which
is a unique fixed point of f .

Proof. Given x0 ∈ X, consider the sequence {xn}∞n=1 with the choice (2.3).
Writing x = xn−1 and y = xn in (2.1) and then using (2.3) and (b3),

ρs(xn, xn+1) = ρs(fxn−1, fxn)

≤ a1ρs(xn−1, xn) + a2ρs(xn−1, fxn−1) + a3ρs(xn, fxn)

+ a4ρs(xn−1, fxn) + a5ρs(xn, fxn−1)

+ a6[ρs(xn, fxn−1) + ρs(xn−1, fxn)]

= a1ρs(xn−1, xn) + a2ρs(xn−1, xn) + a3ρs(xn, xn+1)

+ a4ρs(xn−1, xn+1) + a5ρs(xn, xn)

+ a6[ρs(xn, xn) + ρs(xn−1, xn+1)]

≤ (a1 + a2)ρs(xn−1, xn) + a3ρs(xn, xn+1)

+ a4.s[ρs(xn−1, xn) + ρs(xn, xn+1)] + a5.0

+ a6.s[ρs(xn−1, xn) + ρs(xn, xn+1)].

Rearranging the terms and simplifying, this gives

(1− a3 − sa4 − sa6) ρs(xn, xn+1) ≤ (a1 + a2 + sa4 + sa6) ρs(xn−1, xn)

or

ρs(xn, xn+1) ≤ ωρs(xn−1, xn), ∀n,
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where ω is given by (2.5). By induction,

ρs(xn, xn+1) ≤ ωnρs(x0, x1) for all n ≥ 1. (2.7)

Therefore, for all m > n, repeatedly using (b3) and (2.7), we have

ρs(xn, xm) ≤ s [ρs(xn, xn+1) + ρs(xn+1, xm)]

≤ sρs(xn, xn+1) + s2 [ρs(xn+1, xn+2) + ρs(xn+2, xm)]

...

≤ sρs(xn, xn+1) + s2ρs(xn+1, xn+2) + · · ·+ sm−nρs(xm−1, xm)︸ ︷︷ ︸
m−n terms

≤
[
sωn + s2ωn+1 + · · ·+ sm−nωm−1

]
ρs(x0, x1)

= sωn
(
1 + sω + · · ·+ sm−n−1ωm−n−1

)
ρs(x0, x1)

≤ sωn

1− sω
· ρs(x0, x1) for all n.

As m,n→∞, this implies that ρs(xm, xn)→ 0. Thus {xn}∞n=1 is a b-Cauchy
sequence in X. Since X is b-complete, there exists a point z ∈ X such that

lim
n→∞

xn = lim
n→∞

fnx0 = z. (2.8)

Now we show that z is a fixed point of f . In fact, writing x = xn and y = z
in (2.1), the we have

ρs(fxn, fz) ≤ a1ρs(xn, z) + a2ρs(xn, fxn) + a3ρs(z, fz)

+ a4ρs(xn, fz) + a5ρs(z, fxn)

+ a6[ρs(z, fxn) + ρs(xn, fz)]

or

ρs(xn+1, fz) ≤ a1ρs(xn, z) + a2ρs(xn, xn+1) + a3ρs(z, fz)

+ a4ρs(xn, fz) + a5ρs(z, xn+1)

+ a6[ρs(z, xn+1) + ρs(xn, fz)] for all n.

Employing the limit superior as n → ∞ in this and using Lemma 1.6, this
gives

1

s2
ρs(z, fz) ≤ lim sup

n→∞
ρs(xn+1, fz)

≤ a3ρs(z, fz) + (a4 + a6) lim sup
n→∞

ρs(xn+1, fz)

≤ a3ρs(z, fz) + (a4 + a6)sρs(z, fz).
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If ρs(z, fz) > 0, this would give a contradiction that

0 <
1

s2
ρs(z, fz) ≤ (a3 + sa4 + sa6)ρs(z, fz) < ρs(z, fz).

Therefore, ρs(z, fz) = 0. The uniqueness of the fixed point is easily estab-
lished. �

Writing a2 = a3 = a6 = 0 in Theorem 2.2, we have:

Corollary 2.3. Let s ≥ 1, (X, ρs) be a complete b-metric space, and f : X →
X satisfy the inequality

ρs(fx, fy) ≤ αρs(x, y) + βρs(x, fy) + γρs(y, fx) for all x, y ∈ X, (2.9)

where 0 < α+ βs+ γ < 1. Then f has a unique fixed point.

3. Result in extended b-metric space

Kamran et al. ([3]) generalized a b-metric space as an extended b-metric
space as follows:

Definition 3.1. Let s ≥ 1, X be a nonempty set and θ : X × X → [1,∞).
Consider ρθ : X ×X → [0,∞) such that

(eb1) ρθ(x, y) = 0 for all x, y ∈ X,
(eb2) ρθ(x, y) = 0 implies that x = y for all x, y ∈ X,
(eb3) ρθ(x, y) = ρθ(y, x) for all x, y ∈ X,
(eb4) ρθ(x, y) ≤ θ(x, y)[ρθ(x, z) + ρθ(z, y)] for all x, y, z ∈ X.

Then ρθ is called an extended b-metric on X, and (X, ρθ) is an extended
b-metric space.

If θ(x, y) = s ≥ 1 for all x, y ∈ X, then ρθ reduces to a b-metric ρs. In this
paper, we denote an extended b-metric space by (X, ρθ).

The notions of convergence and completeness in an extended b-metric space
are similar to that in a b-metric space.

Definition 3.2. A sequence {xn}∞n=1 ⊂ X is said to be convergent to z ∈ X,
written as limn→∞ xn = z, if for every ε > 0 there exists a natural number N
such that ρθ(xn, z) < ε for all n ≥ N .

If ρθ is continuous, then every convergent sequence in X has a unique limit
in it.

Definition 3.3. A sequence {xn}∞n=1 ⊂ X is said to be Cauchy, if for every
ε > 0 there exists a natural number N such that ρθ(xn, xm) < ε for all m,n ≥
N .
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A Cauchy sequence in X need not be convergent in it. But, if Cauchy
sequence in X is convergent in it, then we say that X is complete. Banach
contraction mapping theorem in an extended b-metric space was proved in [3].
We establish fixed point theorems for some contraction types other than Ba-
nach’s, in an extended b-metric space. In this sequel, we employ the following
notion:

Definition 3.4. Let f be a self-map on an extended b-metric space (X, ρθ)
and x0 ∈ X. Then the orbit Of (x0) at x0 is the sequence of f -iterates
x0, fx0, ..., f

nx0, ... .

We need the following lemmas:

Lemma 3.5. ([5, Theorem 3.22, p. 59]) The infinite series
∑∞

n=1 un of positive
terms converges if and only if, given ε > 0, there is a natural number n0 such
that

∑m
j=n un ≤ ε for all m ≥ n ≥ n0.

Lemma 3.6. ([5, Theorem 3.34, p. 66]) The infinite series
∑∞

n=1 un of positive
terms converges, provided lim supn→∞ (un+1/un) < 1.

Our main result in extended b-metric space (X, ρθ), where ρθ is continuous,
is the following:

Theorem 3.7. Let (X, ρθ) be a complete extended b-metric space, where ρθ is
continuous. Suppose that f : X → X satisfies the condition

ρθ(fx, fy) ≤ αρθ(x, y) + βρθ(x, fy) + γρθ(y, fx) for all x, y ∈ X, (3.1)

where 0 < α+ 2β + γ < 1 is such that for each x0 ∈ X,

lim
n,m→∞

{
α+ βθ(fnx0, f

n+2x0)

1− βθ(fnx0, fn+2x0))

}
θ(fn+1x0, f

mx0) < 1. (3.2)

Then f has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define {xn}∞n=1 ⊂ X by

xn = fxn−1 for n ≥ 1. (3.3)

By induction, (3.3) gives

x1 = fx0, x2 = f2x0, ..., xn = fnx0 for n ≥ 1. (3.4)

Now writing x = xn−1 and y = xn in (3.1) and using (3.4) and (eb4), we
find that

ρθ(xn, xn+1) = ρθ(fxn−1, fxn)

≤ αρθ(xn−1, xn) + βρθ(xn−1, fxn) + γρθ(xn, fxn−1)

= αρθ(xn−1, xn) + βρθ(xn−1, xn+1)

≤ αρθ(xn−1, xn) + βθ(xn−1, xn+1)[ρθ(xn−1, xn) + ρθ(xn, xn+1)]·
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Rearranging and simplifying, this gives

ρθ(xn, xn+1) ≤
α+ βθ(xn−1, xn+1)

1− βθ(xn−1, xn+1)
· ρθ(xn−1, xn)·

By induction, it follows that

ρθ(xn, xn+1) ≤ ψn · ρθ(x0, x1), n = 1, 2 ..., (3.5)

where

ψn = Πn
j=1

{
α+ βθ(xj−1, xj+1)

1− βθ(xj−1, xj+1)

}
for all n. (3.6)

Now for m > n, by using (eb4) repeatedly and (3.6), we obtain

ρθ(xn, xm) ≤ θ(xn, xm)[ρθ(xn, xn+1) + ρθ(xn+1, xm)]

≤ θ(xn, xm) [ψnρθ(x0, x1) + ρθ(xn+1, xm)]

...

≤ ρθ(x0, x1)θ(xn, xm)
[
ψn + ψn+1 · θ(xn+1, xm)

+ · · ·+ ψm−1 · θ(xn+1, xm)θ(xn+2, xm) · · · θ(xm−1, xm)
]
.

Since, θ(x, y) ≥ 1 for all x and y, this can be written as

ρθ(xn, xm) ≤ ρθ(x0, x1)
[
ψn · θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)

+ ψn+1 · θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)

+ · · ·+ ψm−1 · θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)

× θ(xn+1, xm)θ(xn+2, xm) · · · θ(xm−1, xm)
]
. (3.7)

Consider the series P =
∑∞

n=1 ψn · Πn
i=1θ(xi, xm) for each m ≥ 1. Write vn =

ψn ·Πn
i=1θ(xi, xm) for each m and n ≥ 1. Then

lim
n→∞

vn+1

vn
= lim

n→∞

ψn+1 ·Πn+1
i=1 θ(xi, xm)

ψn ·Πn
i=1θ(xi, xm)

= lim
n→∞

{
α+ βθ(xn, xn+2)

1− βθ(xn, xn+2)

}
θ(xn+1, xm) for each m. (3.8)

Now, from (3.2), we find that limn→∞
vn+1

vn
< 1, and hence in view of Lemma

3.6, the series P converges. Also, the partial sums of P , given by

Pn =
n∑
j=1

ψj ·Πj
i=1θ(xi, xm), n = 1, 2, · · · , for each m (3.9)

are bounded. Using (3.9) in (3.7), it follows that

ρθ(xn, xm) ≤ ρθ(x0, x1)
(
Pm−1 − Pn

)
for m > n. (3.10)
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Given ε > 0, using the convergence of P and Lemma 3.5, (3.10) implies that

ρθ(xn, xm) ≤ ρθ(x0, x1)ε for m > n ≥ n0, (3.11)

for some natural number n0. Thus {xn}∞n=1 is a Cauchy sequence in X. Since
X is complete, we can find a point z ∈ X such that

lim
n→∞

xn = lim
n→∞

fxn−1 = z. (3.12)

Now we establish that z is a fixed point of f . In fact, writing x = xn−1 and
y = z, the inequality (3.1) gives

ρθ(fxn−1, fz) ≤ αρθ(xn−1, z) + βρθ(xn−1, fz) + γρθ(z, fxn−1)

or

ρθ(xn, fz) ≤ αρθ(xn−1, z) + +βρθ(xn−1, fz) + γρθ(z, xn).

Applying the limit as n → ∞ and using (3.12) and the continuity of ρθ, we
obtain

ρθ(z, fz) ≤ β ρθ(z, fz)

or ρθ(z, fz) = 0. That is, fz = z.
To establish the uniqueness of the fixed point, let q 6= z be also a fixed point

of f . Then with x = z and y = z in (3.1),

0 < ρθ(z, q) = ρθ(fz, fq) ≤ αρθ(z, q) + βρθ(z, fq) + γρθ(q, fz)

= (α+ β + γ)ρθ(q, z) < ρθ(z, fq),

which is a contradiction. Hence z = q, and the fixed point is unique. �

Writing β = 0 and γ = 0 in Theorem 3.7, we get the following version of
Banach’s contraction mapping theorem in extended b-metric space, proved in
[3]:

Corollary 3.8. Let (X, ρθ) be a complete extended b-metric space, where ρθ
is continuous. Suppose that f : X → X satisfies the condition

ρθ(fx, fy) ≤ αρθ(x, y) for all x, y ∈ X, (3.13)

where 0 < α < 1 is such that for each x0 ∈ X,

lim
n,m→∞

αθ(fn+1x0, f
mx0) < 1. (3.14)

Then f has a unique fixed point.

Now, writing θ(x, y) = s ≥ 1 in Theorem 3.7, we obtain Corollary 2.3. It
may be noted from the proof of Theorem 2.2 that the continuity of ρs(x, y) is
not needed to obtain a unique fixed point.
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Conclusion

In the first result of this paper, a revised proof has been given to a recent
theorem of Sanatammappa et al. in a b-metric space, under appropriate choice
of constants, without using the continuity of the b-metric. As a second result,
a general fixed point theorem has been proved in an extended b-metric space
under a contraction type condition.

Acknowledgements: The authors express sincere thanks to the referees for
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