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1. Introduction

Expansiveness of mappings and their common fixed point results is an inter-
esting and active research aspect of fixed point theory. The class of expansive
mappings in complete metric spaces were introduced by Wang et al. [34].
They proved some interesting fixed point results for these class of mappings,
thereby activating research in expansive mappings in metric spaces and related
abstract spaces.

Kumar [12] proved some interesting theorems on expansive mappings in
several settings, such as metric spaces, generalized metric spaces, probabilistic
metric spaces and fuzzy metric spaces, which generalized the results of some
authors like Ahmad et al. [1], Rhoades [30], Kang et al. [11], Wang et al.
[34] and Vasuki [33]. Kumar [12] results contained some errors, which were
corrected in [5]. However, Kumma [12] did not consider expansive mappings in
the framework of modular ωG-metric spaces, which is the main interest of the
present paper. Gahler [10] proved some interesting results in complete 2-metric
spaces, which is a generalization of the classical metric spaces. Baskaran et
al. [4], established common fixed point theorems for expansive mappings by
using compatibility and sequentially continuous mappings in 2-metric spaces.
Dhage [9], extended the work in [10] and introduced the notion of D-metric
spaces. These authors claimed that their results generalized the concept of
classical metric spaces.

In 2010 Chistyakov [6] introduced the notion of modular metric spaces or
parameterized metric spaces with the time parameter (λ, say) and his intension
was to define the notion of a modular acting on an arbitrary set, and developed
the theory of metric spaces generated by modulars, called modular metric
spaces. Chistyakov [6], developed the theory of metric spaces generated by
modulars, and extended the results given by Nakano [18], Musielak and Orlicz
[28], Musielak [13] to modular metric spaces.

Modular spaces are extensions of Lebesgue, Riesz, and Orlicz spaces of
integrable functions. The introduction of the theory of metric spaces generated
by modulars known as modular metric spaces received the attention of many
mathematicians. Consequently, several interesting results were proved in this
direction of research. Chistyakov [8] also established some fixed point theorems
for contractive mappings in modular spaces and other fixed point results in
modular metric spaces can be found in [7, 8, 24, 29] and the references therein.

Azizi et al. [3] studied some fixed point theorems for S + T , where T
is ρ-expansive and S(B) resides in a compact subset of Xρ, where B is a
closed, convex and nonempty subset of Xρ and T, S : B → Xρ. Their results
also improved the classical version of Krasnosel’skii fixed point theorems in
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modular spaces. However, as an application, they studied the existence of
solution of some nonlinear integral equations in modular function spaces.

In 2001, Ahmad et al. [1] defined expansive mappings in the setting of
D-metric spaces analogous to expansive mappings in complete metric spaces.
They also extended some known results to two mappings in the setting of
D-metric spaces.

In 2003, Mustafa and Sims [16] pointed out that the fundamental topological
properties of D-metric spaces introduced by Dhage [9] were false. To remedy
the drawbacks connected to D-metric spaces, Mustafa and Sims [17] intro-
duced a generalization of metric spaces, called G-metric spaces and proved
some interesting fixed point results in this framework. Mustafa et al. [14]
defined the class of expansive mappings in the setting of G-metric spaces and
proved some fixed point theorems for these class of mappings in G-metric
spaces. Furthermore, Mustafa et al. [15] proved some fixed point results in
the setting of complete G-metric spaces.

In 2013, Azadifar et al. [2] developed the concept of modular ωG-metric
spaces and obtained some fixed point theorems of contractive mappings defined
on modular ωG-metric spaces.

Very recently, Okeke and Francis [22] defined expansive mappings of types
I and II in the setting of modular ωG-metric spaces and proved that their
fixed point exist. Also many fixed point results for the class of expansive
mappings of type I and II defined on a complete modular ωG-metric spaces
were also proved by the authors. Furthermore, Okeke and Francis [19] proved
the existence and uniqueness of fixed point of mappings satisfying Geraghty-
type contractions in the setting of preordered modular ωG-metric spaces and
applied the results in solving nonlinear Volterra-Fredholm-type integral equa-
tions. For other interesting results on generalized modular metric spaces and
extended modular b-metric spaces, interested readers should consult [22]-[27]
and the references therein.

The purpose in this paper is to define three expansive-type mappings in the
setting of modular ωG-metric spaces and prove some common unique fixed
point results for these class of expansive mappings on ωG-complete modular
ωG-metric spaces. Furthermore, we construct some examples to support our
claims.

2. Preliminaries

Throughout the article N = {n ∈ Z|n ≥ 0} is the set of non-negative integers
and R+ = {x ∈ R|x > 0} is the set of positive real numbers. We begin this
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section by recalling some definitions and results which will be useful in this
paper.

Definition 2.1. ([34]) Let (X, d) be a complete metric space. If f is a mapping
of X into itself, then f is called an expansive map if there exists a constant
q > 1 such that

d(f(x), f(y)) ≥ qd(x, y) (2.1)

for each x, y ∈ X.

Definition 2.2. ([1]) Let X be a D-metric space and T be a self-mapping on
X. Then T is called an expansive mapping if there exists a constant a > 1
such that for all x, y, z ∈ X, we have

D(Tx, Ty, Tz) ≥ aD(x, y, z). (2.2)

Definition 2.3. ([14]) Let (X,G) be a G-metric space and T be a self-mapping
on X. Then T is called an expansive mapping if there exists a constant a > 1
such that for all x, y, z ∈ X, we have

G(Tx, Ty, Tz) ≥ aG(x, y, z). (2.3)

Definition 2.4. ([3]) Let Xρ be a modular space and B a nonempty subset
of Xρ. The mapping T : B → Xρ is called a ρ-expansive mapping, if there
exist constants c, k, l ∈ R+ such that c > l, k > 1 and

ρ(l(Tx− Ty)) ≥ kρ(c(x− y)) (2.4)

for all x, y ∈ B.

Definition 2.5. ([2]) Let X be a nonempty set, and let ωG : (0,∞) × X ×
X ×X → [0,∞] be a function satisfying;

(1) ωGλ (x, y, z) = 0 for all x, y, z ∈ X and λ > 0 if x = y = z,

(2) ωGλ (x, x, y) > 0 for all x, y ∈ X and λ > 0 with x 6= y,

(3) ωGλ (x, x, y) ≤ ωGλ (x, y, z) for all x, y, z ∈ X and λ > 0 with z 6= y,

(4) ωGλ (x, y, z) = ωGλ (x, z, y) = ωGλ (y, z, x) = · · · for all λ > 0 (symmetry
in all three variables),

(5) ωGλ+µ(x, y, z) ≤ ωGλ (x, a, a)+ωGµ (a, y, z), for all x, y, z, a ∈ X and λ, ν >
0.

Then the function ωGλ is called a modular ωG-metric on X. The pair (X,ωG)

is called a modular ωG-metric space.

Without any confusion we will take XωG as a modular ωG-metric space.
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Definition 2.6. ([2]) Let (Xω, ω
G) be a modular ωG-metric space. The se-

quence {xn}n∈N in XωG is modular ωG-convergent to x, if it converges to x
in the topology τ(ωGλ ). A function T : XωG → XωG at x ∈ XωG is called

modular ωG-continuous if ωGλ (xn, x, x)→ 0, then ωGλ (Txn, Tx, Tx)→ 0 for all

λ > 0. The sequence {xn}n∈N is modular ωG-convergent to x as n → ∞, if
lim
n→∞

ωGλ (xn, xm, x) = 0. That is, for all ε > 0 there exists n0 ∈ N such that

ωGλ (xn, xm, x) < ε for all n,m ≥ n0. Here we say that x is modular ωG-limit
of {xn}n∈N.

Definition 2.7. ([2]) Let (Xω, ω
G) be a modular ωG-metric space. Then the

sequence {xn}n∈N ⊆ XωG is said to be modular ωG-Cauchy if for every ε > 0,
there exists nε ∈ N such that ωGλ (xn, xm, xl) < ε for all n,m, l ≥ nε and λ > 0.
A modular G-metric space XωG is said to be modular G-complete if every
modular ωG-Cauchy sequence in XωG is modular ωG-convergent in XωG .

Proposition 2.8. ([2]) Let (Xω, ω
G) be a modular ωG-metric space, for any

x, y, z, a ∈ XωG, it follows that:

(1) If ωGλ (x, y, z) = 0 for all λ > 0, then x = y = z.

(2) ωGλ (x, y, z) ≤ ωGλ
2

(x, x, y) + ωGλ
2

(x, x, z) for all λ > 0.

(3) ωGλ (x, y, y) ≤ 2ωGλ
2

(y, x, x) for all λ > 0.

(4) ωGλ (x, y, z) ≤ ωGλ
2

(x, a, z) + ωGλ
2

(a, y, z) for all λ > 0.

(5) ωGλ (x, y, z) ≤ 2
3(ωGλ

2

(x, y, a) + ωGλ
2

(x, a, z) + ωGλ
2

(a, y, z)) for all λ > 0.

(6) ωGλ (x, y, z) ≤ ωGλ
2

(x, a, a) + ωGλ
4

(y, a, a) + ωGλ
4

(z, a, a) for all λ > 0.

Proposition 2.9. ([2]) Let (Xω, ω
G) be a modular ωG-metric space and {xn}n∈N

be a sequence in Xω. Then the following are equivalent:

(1) {xn}n∈N is ωG-convergent to x,
(2) ωGλ (xn, x) → 0 as n → ∞, that is, {xn}n∈N converges to x relative to

modular metric ωGλ (.),

(3) ωGλ (xn, xn, x)→ 0 as n→∞ for all λ > 0,

(4) ωGλ (xn, x, x)→ 0 as n→∞ for all λ > 0,

(5) ωGλ (xm, xn, x)→ 0 as m,n→∞ for all λ > 0.

Next, we give the following two definitions, following [1], [32] which will
play some vital roles in Section 3 of this paper.

Definition 2.10. Let (Xω, ω
G) be a modular ωG-metric space and T, S,R :

XωG → XωG be three mappings. Then the mappings T, S,R are called ex-
pansive type I mappings if there exists a constant a > 1 such that for all
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x 6= y 6= z 6= x ∈ XωG and for any λ > 0, we have

ωGλ (Tx, Sy,Rz) ≥ aωGλ (x, y, z). (2.5)

Definition 2.11. Let (Xω, ω
G) be a modular ωG-metric space and T, S,R :

XωG → XωG be three mappings. Then the mappings T, S,R are called ex-
pansive type II mappings if there exists a constant a > 1 such that for all
x, y ∈ XωG and for any λ > 0, we have

ωGλ (Tx, Sy,Ry) ≥ aωGλ (x, y, y). (2.6)

Remark 2.12. Examples of the class of expansive mappings defined in Defi-
nitions 2.10 and 2.11 above will be given after Theorem 3.1 and Theorem 3.10,
respectively.

A point x ∈M is said to be a fixed point of T if x = Tx. And the set of fixed
points of T will be denoted by Fix(T ), that is, Fix(T ) = {x ∈M : x = Tx}.

3. Main results

We begin this section with the following results.

Theorem 3.1. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space and

there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto mappings
on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG such that
ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ aωGλ (x, y, z), ∀ λ > 0. (3.1)

Then T, S,R has a common unique fixed point in XωG.

Proof. Let x0 ∈ Xω . Since T, S,R are onto mappings, there exists x1 ∈ XωG

such that x0 = Tx1, x2 ∈ XωG , x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG ,
continuing this process, we generate a sequence {x3n}n≥1 ∈ XωG such that
x3n = Tx3n+1 for all n ∈ N, so that we have the inverse iterations as x3n =
Tx3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3.

Now since x3n 6= x3n+1 6= x3n+2 implies that for any λ > 0,

ωGλ (x3n, x3n+1, x3n+2) > 0,

so that from inequality (3.1), we have

ωGλ (x3n, x3n+1, x3n+2) = ωGλ (Tx3n+1, Sx3n+2, Rx3n+3)

≥ aωGλ (x3n+1, x3n+2, x3n+3), ∀ λ > 0. (3.2)

Therefore,

ωGλ (x3n+1, x3n+2, x3n+3) ≤ µωGλ (x3n, x3n+1, x3n+2), (3.3)
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where µ = 1
a and for all λ > 0. On continuing the process above, we have

ωGλ (x3n+1, x3n+2, x3n+3) ≤ µnωGλ (x3n, x3n+1, x3n+2) (3.4)

for λ > 0 and n ∈ N.
Suppose that m,n ∈ N and m > n ∈ N. Applying rectangle inequality

repeatedly, that is, condition (5) of Definition 2.5 we have

ωGλ (x3n, x3m, x3m) ≤ ωGλ
m−n

(x3n, x3n+1, x3n+1)+ωGλ
m−n

(x3n+1, x3n+2, x3n+2)

+ωGλ
m−n

(x3n+2, x3n+3, x3n+3)+ωGλ
m−n

(x3n+3, x3n+4, x3n+4)

+ · · ·+ ωGλ
m−n

(x3m−1, x3m, x3m)

≤ ωGλ
n

(x3n, x3n+1, x3n+1) + ωGλ
n

(x3n+1, x3n+2, x3n+2)

+ ωGλ
n

(x3n+2, x3n+3, x3n+3) + ωGλ
n

(x3n+3, x3n+4, x3n+4)

+ · · ·+ ωGλ
n

(x3m−1, x3m, x3m)

≤ (µn + µn+1 + · · ·+ µm−1)ωGλ (x0, x1, x2)

≤ µn

1− µ
ωGλ (x0, x1, x2) (3.5)

for all m > n ≥ N ∈ N, then

ωGλ (x3n, x3m, x3m) ≤ µn

1− µ
ωGλ (x0, x1, x2) (3.6)

for all m, l, n ≥ N for some N ∈ N, so that by condition (2) of Proposition
2.8, we have

ωGλ (x3n, x3m, x3l) ≤ ωGλ
2

(x3n, x3m, x3m) + ωGλ
2

(x3l, x3m, x3m), (3.7)

so that

ωGλ (x3n, x3m, x3l) ≤ωGλ
2

(x3n, x3m, x3m) + ωGλ
2

(x3l, x3m, x3m)

≤ωGλ (x3n, x3m, x3m) + ωGλ (x3l, x3m, x3m)

≤ µn

1− µ
ωGλ (x0, x1, x2) +

µn

1− µ
ωGλ (x0, x1, x2)

=

(
2µn

1− µ

)
ωGλ (x0, x1, x2). (3.8)

Thus, we have
lim

n,m,l→∞
ωGλ (x3n, x3m, x3l) = 0, ∀ λ > 0. (3.9)

Therefore, we can see clearly that {xn}n∈N is modular ωG-Cauchy sequence
in XωG .
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The modular ωG-completeness of (Xω, ω
G) implies that for any λ > 0,

lim
n,m→∞

ωGλ (xn, xm, u) = 0, that is, for any ε > 0, there exists n0 ∈ N such

that ωGλ (xn, xm, u) < ε for all n,m ∈ N and n,m ≥ n0, which implies that
lim
n→∞

xn → u ∈ XωG as n → ∞, or by applying condition (5) of Proposition

2.9. As T, S,R are onto mappings, there exists w, z∗, v ∈ XωG such that
u = Tw, u = Sz∗ and u = Rv. We claim that u = w = z∗ = v.

First, from inequality (3.1) with x = x3n+1 and y = z∗ and z = v, we have
that for all n ≥ 1, λ > 0;

ωGλ (x3n, u, u) = ωGλ (Tx3n+1, Sz
∗, Rv)

≥ aωGλ (x3n+1, z
∗, v), ∀ λ > 0. (3.10)

As n→∞, we have ωGλ (u, z∗, v) = 0, that is, u = z∗ = v.

Secondly, using inequality (3.1) with x = w, y = x3n+2 and z = v, we have
that for all n ≥ 1, λ > 0;

ωGλ (u, x3n+1, u) = ωGλ (Tw, Sx3n+2, Rv)

≥ aωGλ (w, x3n+2, v), ∀ λ > 0. (3.11)

As n→∞, we have ωGλ (w, u, v) = 0, that is, w = u = v.

Lastly, from inequality (3.1) with x = w, y = z∗ and z = x3n+3, we have
that for all n ≥ 1, λ > 0;

ωGλ (u, u, x3n+2) = ωGλ (Tw, Sz∗, Rx3n+3)

≥ aωGλ (w, z∗, x3n+3), ∀ λ > 0. (3.12)

As n→∞, we have ωGλ (w, z∗, u) = 0, that is, w = z∗ = u.
We can see clearly that in the three cases above, u = w = z∗ = v, so that

u is a common fixed point of T, S,R, that is, u = Tu = Su = Ru.

To prove uniqueness, suppose that there exists an another common fixed
point of T, S,R, that is, there is a u∗ ∈ XωG such that u∗ = Tu∗ = Su∗ = Ru∗.
Suppose it is not the case, that is u 6= u∗, and for all λ > 0, again inequality
(3.1) becomes;

ωGλ (u, u∗, u∗) = ωGλ (Tu, Su∗, Ru∗)

≥ aωGλ (u, u∗, u∗)

> ωGλ (u, u∗, u∗), (3.13)

which is a contradiction since a > 1, hence u = u∗. Therefore T, S,R has a
common unique fixed point in XωG . �
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Remark 3.2. Theorem 3.1 is an expansive form of Theorem 1 in [31]. Mean-
while, Theorem 3.1 is a generalization of Theorem 3.1 in Okeke and Francis
[22].

We know that the following remark from the paper in Remark 3.3 (see
Okeke and Francis [22]).

Remark 3.3. If we let T = S = R, we get a result we have given in [22].
Let (Xω, ω

G) be a ωG-complete modular ωG-metric space. If there exists a
constant a > 1. Let T : XωG → XωG be an onto mapping on XωG for all x 6=
y 6= z 6= x ∈ XωG and there are x0, x1 ∈ XωG such that ωGλ (x0, x1, x1) < ∞,
for which the following condition holds;

ωGλ (Tx, Ty, Tz) ≥ aωGλ (x, y, z), ∀ λ > 0. (3.14)

Then T has a unique fixed point in XωG .

Next, we prove the following corollary.

Corollary 3.4. Let (Xω, ω
G) be a G-complete modular G-metric space and

there exists a constant a > 1. Let T : XωG → XωG be an onto mapping on
XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1 ∈ XωG such that
ωGλ (x0, x1, x1) <∞, for which the following condition holds;

ωGλ (Tx, Ty, Tz) ≥ aωGλ (x, y, z), ∀ λ > 0. (3.15)

Then T has a unique fixed point in XωG.

Proof. It follows from Theorem 3.1 by taken T = S = R. Hence, T has a
unique fixed point in XωG . �

Remark 3.5. Observe that in Theorem 3.1 above, if T = S = R, we get
an extension of Theorem 2.1 in [14] which is our Corollary 3.4 in modular
ωG-metric space.

Example 3.6. Let XωG = R+∪{∞}. Define mappings T, S,R : R+∪{∞} →
R+ ∪ {∞} by Tx = xn + 4x, Sx = xn + 4x − 1 and Rx = xn + 4x − 2
for all x ∈ R+ ∪ {∞} and n ∈ N. Then T, S,R are expansive maps with
nontrivial common fixed point of T, S,R. Indeed, Define modular G-metric
by ωGλ : (0,∞) × R+ ∪ {∞} × R+ ∪ {∞} × R+ ∪ {∞} → R+ ∪ {∞}. For all
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distinct x, y, z ∈ R+ ∪ {∞} and λ > 0, n ∈ N, then

ωGλ (Tx, Sy,Rz) =
1

λ

(
‖Tx− Sy‖+‖Sy −Rz‖+‖Tx−Rz‖

)
=

1

λ

(∥∥xn + 4x− (yn + 4y − 1)
∥∥

+
∥∥yn + 4y + 1− (zn + 4z − 2)

∥∥
+
∥∥xn + 4x− (zn + 4z − 2)

∥∥)
=

1

λ

(∥∥xn − yn + 4(x− y) + 1
∥∥

+
∥∥yn − zn + 4(y − z) + 3

∥∥+
∥∥xn − zn + 4(x− z) + 2

∥∥)
=

1

λ

(∥∥∥(x− y)(xn−1 + yxn−2 + · · ·+ yn−1) + 4(x− y) + 1
∥∥∥

+
∥∥∥(y − z)(yn−1 + zyn−2 + · · ·+ zn−1) + 4(y − z) + 3

∥∥∥
+
∥∥∥(x− z)(xn−1 + zxn−2 + · · ·+ zn−1) + 4(x− z) + 2

∥∥∥)
≥ 1

λ

{
4‖x− y‖+ 4‖y − z‖+ 4‖x− z‖

}
= 4ωGλ (x, y, z). (3.16)

Therefore,

ωGλ (Tx, Sy,Rz) ≥ 4ωGλ (x, y, z), (3.17)

which justifies that T, S,R are expansive mappings with a common expansive
constant 4. Hence inequality (3.1) is satisfied with a = 4 > 1.

Corollary 3.7. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space and

there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto mappings
on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG such that
ωGλ (x0, x1, x2) is finite, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ a
(
ωGλ

2

(x, x, y) + ωGλ
2

(x, x, z)

)
, ∀ λ > 0. (3.18)

Then T, S,R has a common unique fixed point in XωG.

Proof. By condition (2) of Proposition 2.8, we have that

ωGλ
2

(x, x, y) + ωGλ
2

(x, x, z) ≥ ωGλ (x, y, z)
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for all λ > 0. Therefore, from inequality (3.18), we have

ωGλ (Tx, Sy,Rz) ≥ a
(
ωGλ

2

(x, x, y) + ωGλ
2

(x, x, z)

)
≥ aωGλ (x, y, z). (3.19)

So that for all λ > 0 and a > 1, we have

ωGλ (Tx, Sy,Rz) ≥ aωGλ (x, y, z). (3.20)

By proof of Theorem 3.1, T, S,R have a unique common fixed point in XωG .
�

The next corollary is a variant form of Theorem 3.1 which reads as follows;

Corollary 3.8. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space and

there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto mappings
on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG such that
ωGλ (x0, x1, x2) <∞, for which the following condition holds; for some positive
integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ aωGλ (x, y, z), ∀ λ > 0. (3.21)

Then T, S,R has a unique common fixed point in XωG for some positive inte-
ger, m ≥ 1.

Proof. By Theorem 3.1, Tm, Sm, Rm has a common fixed point say u∗ ∈ XωG

for some positive integer m ≥ 1 by using inequality (3.21).
Now, Tm(Tu∗) = Tm+1u∗ = T (Tmu∗) = Tu∗, so Tu∗ is a fixed point of

Tmu∗. Similarly, Su∗ is a fixed point of Smu∗ and Ru∗ is a fixed point of
Rmu∗.

For the uniqueness, suppose if possible that there exists another common
fixed point of Tm, Sm, Rm say v∗ ∈ Xω, that is, Tmv∗ = Smv∗ = Rmv∗ = v∗.
We show that u∗ = v∗. Indeed, suppose that u∗ 6= v∗ implies that for any
λ > 0, ωGλ (u∗, v∗, v∗) > 0, from inequality (3.21), we have

ωGλ (u∗, v∗, v∗) = ωGλ (Tmu∗, Smv∗, Rmv∗)

≥ aωGλ (u∗, v∗, v∗), ∀ λ > 0. (3.22)

So that

ωGλ (u∗, v∗, v∗) ≥ aωGλ (u∗, v∗, v∗)

> ωGλ (u∗, v∗, v∗), (3.23)

which is a contradiction since a > 1, hence T, S,R has a unique common fixed
point in XωG for some positive integer, m ≥ 1. �
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Corollary 3.9. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space and

there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto mappings
on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG such that
ωGλ (x0, x1, x2) <∞, for which the following condition holds; for some positive
integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ a
(
ωGλ

2

(x, x, y) + ωGλ
2

(x, x, z)

)
, ∀ λ > 0. (3.24)

Then T, S,R has a unique common fixed point in XωG, for some positive in-
teger, m ≥ 1.

Proof. By proof of Corollary 3.8, T, S,R has a unique common fixed point in
XωG for some positive integer, m ≥ 1. �

Theorem 3.10. Let (Xω, ω
G) be a G-complete modular G-metric space and

there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for all x, y ∈ XωG and there are x0, x1 ∈ XωG such that
ωGλ (x0, x1, x1) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Ry) ≥ aωGλ (x, y, y), ∀ λ > 0. (3.25)

Then T, S,R has a unique common fixed point in XωG

Proof. Let x0, x1 ∈ XωG . Since T, S,R are onto mappings, there exists x1 ∈
XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2 and x1 = Rx2 for
x2 ∈ XωG . By continuing this process, we can find a sequence {x3n}n≥1 ∈ XωG

such that x3n = Tx3n+1 for all n ∈ N, so that we have the inverse iterations
as x3n = Tx3n+1, x3n+1 = Sx3n+2 = Rx3n+2.

Now, since x3n 6= x3n+1 implies that for any λ > 0, ωGλ (x3n, x3n+1, x3n+1) >
0, so that from inequality (3.25), we have

ωGλ (x3n, x3n+1, x3n+1) = ωGλ (Tx3n+1, Sx3n+2, Rx3n+2)

≥ aωGλ (x3n+1, x3n+2, x3n+2), ∀ λ > 0. (3.26)

Therefore,

ωGλ (x3n+1, x3n+2, x3n+2) ≤ βωGλ (x3n, x3n+1, x3n+1), (3.27)

where β = 1
a and for all λ > 0. On continuing the process above, we have

ωGλ (x3n+1, x3n+2, x3n+2) ≤ βnωGλ (x3n, x3n+1, x3n+1) (3.28)

for λ > 0 and n ∈ N, where β = 1
a < 1.

Following proof of Theorem 3.1 carefully, we see clearly that u is a unique
common fixed point of T, S,R in XωG . �
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Example 3.11. Let XωG = R+∪{∞}. Define mappings T, S,R : R+∪{∞} →
R+∪{∞} by Tx = xp+ 1, Sx = xp and Rx = xp−1 for all x ∈ R+∪{∞} and
p ∈ N. Then T, S,R are expansive maps with nontrivial common fixed point
of T, S,R.

Remark 3.12. If we take p = 1, then the Example 3.11 is clear. In fact, define
modular ωG-metric by ωGλ : (0,∞) × R+ ∪ {∞} × R+ ∪ {∞} × R+ ∪ {∞} →
R+ ∪ {∞}.

Now, for all x, y ∈ R+ ∪ {∞} and λ > 0,

ωGλ (xp + 1, yp, yp − 1) = ωGλ (Tx, Sy,Ry)

=
1

λ

(
‖Tx− Sy‖+‖Sy −Ry‖+‖Tx− Sy‖

)
=

1

λ

(
‖xp + 1− yp‖+

∥∥yp − (yp − 1)
∥∥

+
∥∥xp + 1− (yp − 1)

∥∥)
=

1

λ

(
‖xp − yp + 1‖+‖1‖+‖xp − yp + 2‖

)
≥ 1

λ

(
‖xp − yp‖+‖xp − yp‖+ 1

)
=

1

λ

(
2‖xp − yp‖+ 1

)
≥ 2

λ
‖xp − yp‖

=
2

λ

∥∥∥(x− y)(xp−1 + yxp−2 + · · ·+ yp−1)
∥∥∥

≥ 2

λ
‖x− y‖

= 2ωGλ (x, y, y). (3.29)

Therefore,

ωGλ (Tx, Sy,Ry) ≥ 2ωGλ (x, y, y), ∀ λ > 0, (3.30)

which shows that T, S,R are expansive mappings with common expansive
constant 2. Hence, inequality (3.25) is satisfied with a = 2 > 1.

Corollary 3.13. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space

and there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for all x, y, z ∈ XωG and there are x0, x1 ∈ XωG such that
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ωGλ (x0, x1, x1) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ a
(
ωGλ (x, z, z) + ωGλ (z, z, y)

)
, ∀ λ > 0. (3.31)

Then T, S,R has a unique common fixed point in XωG.

Proof. Observe that by putting y = z in inequality (3.31), we have

ωGλ (Tx, Sy,Ry) ≥ aωGλ (x, y, y), ∀ λ > 0. (3.32)

By proof of Theorem 3.10, T, S,R has a unique common fixed point in XωG .
�

Corollary 3.14. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space

and there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for all x, y ∈ XωG and there are x0, x1 ∈ XωG such that
ωGλ (x0, x1, x1) <∞, for which the following condition holds, for some positive
integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmy) ≥ aωGλ (x, y, y), ∀ λ > 0. (3.33)

Then T, S,R has a unique common fixed point in XωG for some positive inte-
ger, m ≥ 1.

Proof. By Theorem 3.10, Tm, Sm, Rm has a common fixed point say u∗ ∈ XωG

for some positive integer m ≥ 1 by using inequality (3.33). Now Tm(Tu∗) =
Tm+1u∗ = T (Tmu∗) = Tu∗, so Tu∗ is a fixed point of Tmu∗. Similarly,
Su∗ is a fixed point of Smu∗ and Ru∗ is a fixed point of Rmu∗. For the
uniqueness, suppose, if possible that there exists another common fixed point
of Tm, Sm, Rm say v∗ ∈ XωG that is Tmv∗ = Smv∗ = Rmv∗ = v∗ . We show
that u∗ = v∗. Indeed, suppose that u∗ 6= v∗ implies that for any λ > 0,
ωGλ (u∗, v∗, v∗) > 0, from inequality (3.33), we get

ωGλ (u∗, v∗, v∗) = ωGλ (Tmu∗, Smv∗, Rmv∗)

≥ aωGλ (u∗, v∗, v∗), ∀ λ > 0. (3.34)

So that

ωGλ (u∗, v∗, v∗) ≥ aωGλ (u∗, v∗, v∗)

> ωGλ (u∗, v∗, v∗), (3.35)

which is a contradiction since a > 1, hence T, S,R has a common unique fixed
point in XωG for some positive integer, m ≥ 1. �
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Corollary 3.15. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space

and there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ amax


ωGλ

2

(x, z, z) + ωGλ
2

(z, z, y),

ωGλ
2

(z, y, y) + ωGλ
2

(y, y, x),

ωGλ
2

(z, x, x) + ωGλ
2

(x, x, y)

 . (3.36)

Then T, S,R has a common unique fixed point in XωG.

Proof. Let x0, x1, x2 ∈ XωG . Since T, S,R are onto mappings, there exists
x1 ∈ XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3
for x3 ∈ XωG . Continuing this process, we can find a sequence {x3n}n≥1 ∈
XωG such that x3n = Tx3n+1 for all n ∈ N, so that we have the inverse
iterations as x3n = Tx3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since
x3n 6= x3n+1 6= x3n+2 implies that for any λ > 0, ωGλ (x3n, x3n+1, x3n+2) > 0,
so that from inequality (3.36), we have

ωGλ (x3n, x3n+1, x3n+2)

= ωGλ (Tx3n+1, Sx3n+2, Rx3n+3)

≥ amax


ωGλ

2

(x3n+1, x3n+3, x3n+3) + ωGλ
2

(x3n+3, x3n+3, x3n+2),

ωGλ
2

(x3n+3, x3n+2, x3n+2) + ωGλ
2

(x3n+2, x3n+2, x3n+1),

ωGλ
2

(x3n+3, x3n+1, x3n+1) + ωGλ
2

(x3n+1, x3n+1, x3n+2)

 . (3.37)

By condition (2) of Proposition 2.8, we have

amax



ωGλ
2

(x3n+1, x3n+3, x3n+3)

+ ωGλ
2

(x3n+3, x3n+3, x3n+2),

ωGλ
2

(x3n+3, x3n+2, x3n+2)

+ ωGλ
2

(x3n+2, x3n+2, x3n+1),

ωGλ
2

(x3n+3, x3n+1, x3n+1)

+ ωGλ
2

(x3n+1, x3n+1, x3n+2)



≥ aωGλ (x3n+1, x3n+2, x3n+3). (3.38)

Therefore, we have from inequality (3.38) for all λ > 0,

ωGλ (x3n+1, x3n+2, x3n+3) ≤ γωGλ (x3n, x3n+1, x3n+2), (3.39)
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where γ = 1
a < 1. Following the proof of Theorem 3.1, T, S,R has a common

unique fixed point in XωG . �

Corollary 3.16. Let (Xω, ω
G) be a ωG-complete non-symmetric modular ωG-

metric space and there exists a constant a > 2. Let T, S,R : XωG → XωG be
three onto mappings on XωG for all x, y, z ∈ XωG and there are x0, x1 ∈ XωG

such that ωGλ (x0, x1, x1) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ amax



ωGλ
2

(y, x, x) +
1

2
ωGλ

2

(y, z, z),

ωGλ
2

(z, x, x) +
1

2
ωGλ

2

(y, y, z),

ωGλ
2

(z, z, y) +
1

2
ωGλ

2

(z, y, z)


. (3.40)

Then T, S,R has a unique common fixed point in XωG.

Proof. Observe that if z = y, inequality (3.40) becomes

ωGλ (Tx, Sy,Ry) ≥ aωGλ
2

(y, x, x). (3.41)

Now, we consider the right hand side of inequality (3.40) by applying con-
dition (3) of Proposition 2.8, we get ωGλ (x, y, y) ≤ 2ωGλ

2

(y, x, x) for all λ > 0,

or, putting z = y in condition (2) of Proposition 2.8, we have ωGλ (x, y, y) ≤
ωGλ

2

(y, x, x) + ωGλ
2

(y, x, x) for all λ > 0. So that 1
2ω

G
λ (x, y, y) ≤ ωGλ

2

(y, x, x) for

all λ > 0. From inequality (3.41), we have that

ωGλ (Tx, Sy,Ry) ≥ aωGλ
2

(y, x, x) ≥ a

2
ωGλ (x, y, y). (3.42)

By proof of Theorem 3.10 we are done. Hence, T, S,R has a unique common
fixed point in XωG . �

Corollary 3.17. Let (Xω, ω
G) be a ωG-complete non-symmetric modular ωG-

metric space and there exists a constant a > 1. Let T, S,R : XωG → XωG be
three onto mappings on XωG for all x, y, z ∈ XωG and there are x0, x1, x2 ∈
XωG such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ amax


2ωGλ

2

(y, x, x) + ωGλ
2

(y, z, z),

2ωGλ
2

(z, x, x) + ωGλ
2

(y, y, z),

2ωGλ
2

(z, z, y) + ωGλ
2

(z, y, z)

 . (3.43)

Then, T, S,R has a unique common fixed point in XωG.
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Proof. Following the proof of corollary 3.16, we get

ωGλ (Tx, Sy,Ry) ≥ 2aωGλ
2

(y, x, x) ≥ aωGλ (x, y, y). (3.44)

By Theorem 3.10, the proof is completed. �

Corollary 3.18. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space

and there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ k
(
ωGλ

2

(x, Tx, Tx) + ωGλ
2

(Tx, y, z)

)
, ∀ λ > 0. (3.45)

Then, T, S,R has a unique common fixed point in XωG.

Proof. Using condition (5) of Definition 2.5 for λ = λ
2 + λ

2 > 0, we have

ωGλ
2

(x, Tx, Tx)+ωGλ
2

(Tx, y, z) ≥ ωGλ (x, y, z). Therefore, for all λ > 0, inequality

(3.45) becomes

ωGλ (Tx, Sy,Rz) ≥ k
(
ωGλ

2

(x, Tx, Tx) + ωGλ
2

(Tx, y, z)

)
≥ kωGλ (x, y, z), ∀ λ > 0. (3.46)

Hence,

ωGλ (Tx, Sy,Rz) ≥ kωGλ (x, y, z), ∀ λ > 0, (3.47)

where k > 1. By proof of Corollary 3.7, the proof is completed. �

Corollary 3.19. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space

and there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ k
(
ωGλ

2

(x, Sx, Sx) + ωGλ
2

(Sx, y, z)

)
, ∀ λ > 0. (3.48)

Then, T, S,R has a unique common fixed point in XωG.

Proof. Using condition (5) of Definition 2.5 for λ = λ
2 + λ

2 > 0, we have

ωGλ
2

(x, Sx, Sx)+ωGλ
2

(Sx, y, z) ≥ ωGλ (x, y, z). Therefore, for all λ > 0, inequality

(3.48) becomes

ωGλ (Tx, Sy,Rz) ≥ k
(
ωGλ

2

(x, Sx, Sx) + ωGλ
2

(Sx, y, z)

)
≥ kωGλ (x, y, z), ∀ λ > 0. (3.49)
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Hence,

ωGλ (Tx, Sy,Rz) ≥ kωGλ (x, y, z), ∀ λ > 0, (3.50)

where k > 1. By proof of Corollary 3.7, the proof is completed. �

Corollary 3.20. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space

and there exists a constant a > 1. Let T, S,R : XωG → XωG be three onto
mappings on XωG for allx 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ k
(
ωGλ

2

(x,Rx,Rx) + ωGλ
2

(Rx, y, z)

)
, ∀ λ > 0. (3.51)

Then, T, S,R has a unique common fixed point in XωG.

Proof. Using condition (5) of Definition 2.5 for λ = λ
2 + λ

2 > 0, we have

ωGλ (Tx, Sy,Rz) ≥ kωGλ (x, y, z), ∀ λ > 0, (3.52)

where k > 1. By proof of Corollary 3.7, the proof is completed. �

Corollary 3.21. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ αωGλ (x, y, z) + βωGλ (Tx, x, y)

+ γωGλ (Sy, y, z) + δωGλ (x,Rz, z), (3.53)

where α+ β + γ + δ > 1 and β < 1 for all λ > 0. Then, T, S,R has a unique
common fixed point in XωG.

Proof. Let x0, x1, x2 ∈ XωG . Since T, S,R are onto mappings, there exists
x1 ∈ XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3
for x3 ∈ XωG . By continuing this process, we can find a sequence {x3n}n≥1 ∈
XωG such that x3n = Tx3n+1 for all n ∈ N, so that we have the inverse
iterations as x3n = Tx3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since
x3n 6= x3n+1 6= x3n+2 implies that for any λ > 0, ωGλ (x3n, x3n+1, x3n+2) > 0,
so that from inequality (3.53), we have
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ωGλ (x3n, x3n+1, x3n+2) = ωGλ (Tx3n+1, Sx3n+2, Rx3n+3)

≥ αωGλ (x3n+1, x3n+2, x3n+3)

+ βωGλ (Tx3n+1, x3n+1, x3n+2)

+ γωGλ (Sx3n+2, x3n+2, x3n+3)

+ δωGλ (x3n+1, Rx3n+3, x3n+3)

= αωGλ (x3n+1, x3n+2, x3n+3)

+ βωGλ (x3n, x3n+1, x3n+2)

+ γωGλ (x3n+1, x3n+2, x3n+3)

+ δωGλ (x3n+1, x3n+2, x3n+3)

= (α+ γ + δ)ωGλ (x3n+1, x3n+2, x3n+3)

+ βωGλ (x3n, x3n+1, x3n+2).

Therefore,

ωGλ (x3n+1, x3n+2, x3n+3) ≤ hωGλ (x3n, x3n+1, x3n+2), (3.54)

where h = 1−β
(α+γ+δ) < 1, β < 1 and λ > 0. By continuing this process, we get

ωGλ (x3n+1, x3n+2, x3n+3) ≤ hnωGλ (x3n, x3n+1, x3n+2), ∀ λ > 0 (3.55)

and n ≥ 1. Suppose that m,n ∈ N and m > n ∈ N. Applying rectangle
inequality repeatedly, that is, condition (5) of Definition 2.5 we have

ωGλ (x3n, x3m, x3m) ≤ ωGλ
m−n

(x3n, x3n+1, x3n+1)+ωGλ
m−n

(x3n+1, x3n+2, x3n+2)

+ωGλ
m−n

(x3n+2, x3n+3, x3n+3)+ωGλ
m−n

(x3n+3, x3n+4, x3n+4)

+ · · ·+ ωGλ
m−n

(x3m−1, x3m, x3m)

≤ ωGλ
n

(x3n, x3n+1, x3n+1)+ωGλ
n

(x3n+1, x3n+2, x3n+2)

+ ωGλ
n

(x3n+2, x3n+3, x3n+3)+ωGλ
n

(x3n+3, x3n+4, x3n+4)

+ · · ·+ ωGλ
n

(x3m−1, x3m, x3m)

≤ (hn + hn+1 + · · ·+ hm−1)ωGλ (x0, x1, x2)

≤ hn

1− h
ωGλ (x0, x1, x2) (3.56)

for all m > n ≥ N ∈ N, then

ωGλ (x3n, x3m, x3m) ≤ hn

1− h
ωGλ (x0, x1, x2) (3.57)
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for all m, l, n ≥ N for some N ∈ N, so that by condition (2) of Proposition
2.8, we have

ωGλ (x3n, x3m, x3l) ≤ ωGλ
2

(x3n, x3m, x3m) + ωGλ
2

(x3l, x3m, x3m), (3.58)

so that

ωGλ (x3n, x3m, x3l) ≤ωGλ
2

(x3n, x3m, x3m) + ωGλ
2

(x3l, x3m, x3m)

≤ωGλ (x3n, x3m, x3m) + ωGλ (x3l, x3m, x3m)

≤ hn

1− h
ωGλ (x0, x1, x2) +

hn

1− h
ωGλ (x0, x1, x2)

=

(
2hn

1− h

)
ωGλ (x0, x1, x2). (3.59)

Thus, we have

lim
n,m,l→∞

ωGλ (xn, xm, xl) = 0, ∀ λ > 0. (3.60)

Therefore, we can see clearly that {xn}n∈N is modular ωG-Cauchy sequence.
The modular ωG-completeness of (Xω, ω

G) implies that for any λ > 0,

lim
n,m→∞

ωGλ (xn, xm, u) = 0,

that is, for any ε > 0, there exists n0 ∈ N such that ωGλ (xn, xm, u) < ε for all
n,m ∈ N and n,m ≥ n0, which implies that lim

n→∞
xn → u ∈ XωG as n → ∞,

or by applying condition (5) of Proposition 2.9.
As T, S,R are onto mappings, there exists w, p, v ∈ XωG such that u =

Tw, u = Sp and u = Rv. We claim that u = w = p = v.
First, from inequality (3.53) with x = x3n+1 and y = p, z = v, we have that

for all n ≥ 1, λ > 0;

ωGλ (x3n, u, u) = ωGλ (Tx3n+1, Sp,Rv)

≥ αωGλ (x3n+1, p, v) + βωGλ (Tx3n+1, x3n+1, p)

+ γωGλ (Sp, p, v) + δωGλ (x3n+1, Rv, v)

= αωGλ (x3n+1, p, v) + βωGλ (x3n, x3n+1, p)

+ γωGλ (Sp, p, v) + δωGλ (x3n+1, Rv, v)

= αωGλ (x3n+1, p, v) + βωGλ (x3n, x3n+1, p)

+ γωGλ (u, p, v) + δωGλ (x3n+1, u, v), ∀ λ > 0. (3.61)

As n→∞, inequality (3.61) becomes

αωGλ (u, p, v) + βωGλ (u, u, p) + γωGλ (u, p, v) + δωGλ (u, u, v) ≤ 0,
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so that

(α+ γ)ωGλ (u, p, v) + βωGλ (u, u, p) + δωGλ (u, u, v) = 0.

Therefore, since α+ γ 6= 0, ωGλ (u, p, v) = 0, that is, u = p = v, similarly, since

β, δ 6= 0, ωGλ (u, u, p) = 0 and ωGλ (u, u, v) = 0, that is, u = p = v.
Secondly, using inequality (3.53) with x = w and y = x3n+2 and z = v, we

have that for all n ≥ 1, λ > 0;

ωGλ (u, x3n+1, u) = ωGλ (Tw, Sx3n+2, Rv)

≥ αωGλ (w, x3n+2, v) + βωGλ (Tw,w, x3n+2)

+ γωGλ (Sx3n+2, x3n+2, v) + δωGλ (w,Rv, v)

= αωGλ (w, x3n+2, v) + βωGλ (Tw,w, x3n+2)

+ γωGλ (x3n+1, x3n+2, v) + δωGλ (w,Rv, v)

= αωGλ (w, x3n+2, v) + βωGλ (u,w, x3n+2)

+ γωGλ (x3n+1, x3n+2, v) + δωGλ (w, u, v), ∀ λ > 0. (3.62)

As n→∞, we have

(α+ δ)ωGλ (w, u, v) + βωGλ (u,w, u) + γωGλ (u, u, v) ≤ 0.

Since α+ δ 6= 0, β 6= 0 and γ 6= 0, w = u = v.
Lastly, from inequality (3.53) with x = w and y = p and z = x3n+3, we

have that for all n ≥ 1, λ > 0;

ωGλ (u, u, x3n+2) = ωGλ (Tw, Sp,Rx3n+3)

≥ αωGλ (w, p, x3n+3) + βωGλ (Tw,w, p)

+ γωGλ (Sp, p, x3n+3) + δωGλ (w,Rx3n+3, x3n+3)

= αωGλ (w, p, x3n+2) + βωGλ (Tw,w, p)

+ γωGλ (Sp, p, x3n+3) + δωGλ (w, x3n+2, x3n+3)

= αωGλ (w, p, x3n+3) + βωGλ (u,w, p)

+γωGλ (u, p, x3n+3)+δωGλ (w, x3n+2, x3n+3), ∀ λ > 0. (3.63)

As n→∞, inequality (3.63) becomes

(α+ β)ωGλ (u,w, p) + γωGλ (u, p, u) + δωGλ (w, u, u) ≤ 0,

hence, ωGλ (u,w, p) = 0, i.e., u = w = p. We can see clearly that in the three
cases above, u = w = p = v, so that u is a common fixed point of T, S,R, that
is, u = Tu = Su = Ru.

To prove uniqueness, suppose that there exists an another common fixed
point of T, S,R, that is, there is a u∗ ∈ XωG such that u∗ = Tu∗ = Su∗ = Ru∗.
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Suppose that u 6= u∗, and for all λ > 0, again inequality (3.53) becomes;

ωGλ (u, u∗, u∗) = ωGλ (Tu, Su∗, Ru∗)

≥ αωGλ (u, u∗, u∗) + βωGλ (Tu, u, u∗)

+ γωGλ (Su∗, u∗, u∗) + δωGλ (u,Ru∗, u∗)

= αωGλ (u, u∗, u∗) + βωGλ (u, u, u∗)

+ γωGλ (u∗, u∗, u∗) + δωGλ (u, u∗, u∗)

= (α+ δ)ωGλ (u, u∗, u∗) + βωGλ (u, u, u∗)

≥ (α+ δ)ωGλ (u, u∗, u∗)

> ωGλ (u, u∗, u∗), (3.64)

which is a contradiction, hence u = u∗. �

Remark 3.22. Corollary 3.21 is an extension of Theorem 3.11 in Okeke and
Francis [22].

Corollary 3.23. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds for some positive integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ αωGλ (x, y, z) + βωGλ (Tmx, x, y)

+ γωGλ (Smy, y, z) + δωGλ (x,Rmz, z), (3.65)

where α+β+ γ+ δ > 1 and β < 1 for all λ > 0. Then, T, S,R has a common
unique fixed point in XωG for some positive integer, m ≥ 1.

Proof. By corollary 3.21, Tm, Sm and Rm has common fixed point say u ∈ XωG

for some positive integer m ≥ 1 by using inequality (3.65), we have that
Tmu = Smu = Rmu = u for some positive integer m ≥ 1. For uniqueness,
suppose that there exist another common fixed point u∗ ∈ XωG of Tm, Sm and
Rm for some positive integer, m ≥ 1 such that Tmu∗ = Smu∗ = Rmu∗ = u∗.
Suppose that u 6= v, which implies that for any λ > 0, from inequality (3.65),
for some positive integer, m ≥ 1, we get
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ωGλ (u, u∗, u∗) = ωGλ (Tmu, Smu∗, Rmu∗)

≥ αωGλ (u, u∗, u∗) + βωGλ (Tmu, u, u∗)

+ γωGλ (Smu∗, u∗, u∗) + δωGλ (u,Rmu∗, u∗)

= αωGλ (u, u∗, u∗) + βωGλ (u, u, u∗)

+ γωGλ (u∗, u∗, u∗) + δωGλ (u, u∗, u∗)

= (α+ δ)ωGλ (u, u∗, u∗) + βωGλ (u, u, u∗)

≥ (α+ δ)ωGλ (u, u∗, u∗)

> ωGλ (u, u∗, u∗), (3.66)

which is a contradiction, hence u = u∗. �

Remark 3.24. Corollary 3.23 is an extension of Theorem 3.12 in Okeke and
Francis [22].

Corollary 3.25. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ αωGλ (x, y, z)

+ β

(
ωGλ (Tx, x, y) + ωGλ (Sy, y, z) + ωGλ (x,Rz, z)

)
, (3.67)

where α+3β > 1 and β < 1 for all λ > 0. Then, T, S,R has a unique common
fixed point in XωG.

Proof. Putting β = γ = δ, then by proof Corollary 3.21, T, S,R has a unique
common fixed point in XωG . �

Corollary 3.26. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds for some positive integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ αωGλ (x, y, z)

+β

(
ωGλ (Tmx, x, y)+ωGλ (Smy, y, z)+ωGλ (x,Rmz, z)

)
,

(3.68)

where α+3β > 1 and β < 1 for all λ > 0. Then, T, S,R has a unique common
fixed point in XωG for some positive integer, m ≥ 1.
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Proof. By proof Corollary 3.25, T, S,R has a unique common point in XωG

for some positive integer, m ≥ 1. �

Corollary 3.27. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are (x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ αωGλ (x, y, z) + βωGλ (x,Rz, Tx)

+ γωGλ (y, Sy, z) + δωGλ (z, Sy,Rz), (3.69)

where α+ β + γ + δ > 1 and β < 1 for all λ > 0. Then, T, S,R has a unique
common fixed point in XωG.

Proof. Let (x0, x1, x2 ∈ XωG . Since T, S,R are onto mappings, there exists
x1 ∈ XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3
for x3 ∈ XωG By continuing this process, we can find a sequence {x3n}n≥1 ∈
XωG such that x3n = Tx3n+1 for all n ∈ N, so that we have the inverse
iterations as x3n = Tx3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since
x3n 6= x3n+1 6= x3n+2 implies that for any λ > 0, ωGλ (x3n, x3n+1, x3n+2) > 0,
so that from inequality (3.69), and after some simplifications, we get

ωGλ (x3n+1, x3n+2, x3n+3) ≤ kωGλ (x3n, x3n+1, x3n+2), (3.70)

where k = 1−β
(α+γ+δ) < 1, β < 1 and λ > 0. Following proof of Corollary 3.21,

we conclude that T, S,R has a unique common fixed point in XωG . �

Corollary 3.28. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds for some positive integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ αωGλ (x, y, z) + βωGλ (x,Rmz, Tx)

+ γωGλ (y, Smy, z) + δωGλ (z, Smy,Rmz), (3.71)

where α+ β + γ + δ > 1 and β < 1 for all λ > 0. Then, T, S,R has a unique
common fixed point in XωG for some positive integer, m ≥ 1.

Proof. By proof Corollary 3.27, we can conclude that T, S,R has a unique
common fixed point in XωG for some positive integer, m ≥ 1. �

Corollary 3.29. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

If there exists a constant a > 1 and let T, S,R : XωG → XωG be three onto
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mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ amax

ωGλ (x, y, z), ωGλ (Tx, y, y),

ωGλ (Sy, y, z), ωGλ (x,Rz, z)

 . (3.72)

Then, T, S,R has a unique common fixed point in XωG.

Proof. Let x0 ∈ XωG be arbitrary. Since T, S,R are onto mappings, there
exists x1 ∈ XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2
and x2 = Rx3 for x3 ∈ XωG . By continuing this process, we can find
a sequence {x3n}n≥1 ∈ XωG such that x3n = Tx3n+1 for all n ∈ N, so
that we have the inverse iterations as x3n = Tx3n+1, x3n+1 = Sx3n+2 and
x3n+2 = Rx3n+3. Now, since x3n 6= x3n+1 6= x3n+2 implies that for any
λ > 0, ωGλ (x3n, x3n+1, x3n+2) > 0, so that from inequality (3.72), we have,
with x = x3n+1 and y = x3n+2 and z = x3n+3 for all n ≥ 1, λ > 0,

ωGλ (x3n, x3n+1, x3n+2) = ωGλ (Tx3n+1, Sx3n+2, Rx3n+3)

≥ amax



ωGλ (x3n+1, x3n+2, x3n+3),

ωGλ (Tx3n+1, x3n+2, x3n+2),

ωGλ (Sx3n+2, x3n+2, x3n+3),

ωGλ (x3n+1, Rx3n+3, x3n+3)


. (3.73)

So that

ωGλ (x3n, x3n+1, x3n+2) ≥ amax



ωGλ (x3n+1, x3n+2, x3n+3),

ωGλ (x3n, x3n+2, x3n+2),

ωGλ (x3n+1, x3n+2, x3n+3),

ωGλ (x3n+1, x3n+2, x3n+3)


. (3.74)

Therefore,

ωGλ (x3n+1, x3n+2, x3n+3) ≤ bωGλ (x3n, x3n+1, x3n+2) (3.75)

for all λ > 0 and b = 1
a < 1. By proof of Corollary 3.21, T, S,R has a unique

common fixed point in XωG . �

Corollary 3.30. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

If there exists a constant a > 1 and let T, S,R : XωG → XωG be three onto
mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds for some
positive integer m ≥ 1;
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ωGλ (Tmx, Smy,Rmz) ≥ amax

ωGλ (x, y, z), ωGλ (Tmx, y, y),

ωGλ (Smy, y, z), ωGλ (x,Rmz, z)

 . (3.76)

Then, T, S,R has a unique common fixed point in XωG for some positive in-
teger m ≥ 1.

Proof. By Corollary 3.29, we can see that Tmu = Smu = Rmu = u for
some positive integer m ≥ 1. Suppose that there exists v ∈ XωG such that
Tmv = Smv = Rmv = v for some positive integer m ≥ 1. Now, we claim that
u 6= v implies that for any λ > 0, we have ωGλ (u, v, v) > 0, then for uniqueness,
inequality (3.76) we get a contradiction, since a > 1, hence u = v. �

Corollary 3.31. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ αωGλ (x, y, z) + βωGλ (Sx, Tx, Tx)

+ γωGλ (Ry, Sy, Sy) + δωGλ (Tz,Rz,Rz), (3.77)

where α > 1 and for all λ > 0. Then, T, S,R has a unique common fixed point
in XωG.

Proof. Let x0, x1, x2 ∈ XωG . Since T, S,R are onto mappings, there exists
x1 ∈ XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3
for x3 ∈ XωG . By continuing this process, we can find a sequence {x3n}n≥1 ∈
XωG such that x3n = Tx3n+1 for all n ∈ N, so that we have the inverse
iterations as x3n = Tx3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since
x3n 6= x3n+1 6= x3n+2 implies that for any λ > 0, ωGλ (x3n, x3n+1, x3n+2) > 0.
From inequality (3.77), with x = x3n+1 and y = x3n+2 and z = x3n+3, we have
that for all n ≥ 1, λ > 0,

ωGλ (x3n, x3n+1, x3n+2) = ωGλ (Tx3n+1, Sx3n+2, Rx3n+3)

≥ αωGλ (x3n+1, x3n+2, x3n+3)

+ βωGλ (Sx3n+1, Tx3n+1, Tx3n+1)

+ γωGλ (Rx3n+2, Sx3n+2, Sx3n+2)

+ δωGλ (Tx3n+3, Rx3n+3, Rx3n+3)
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= αωGλ (x3n+1, x3n+2, x3n+3)

+ βωGλ (x3n, x3n, x3n)

+ γωGλ (x3n+1, x3n+1, x3n+1)

+ δωGλ (x3n+2, x3n+2, x3n+2)

= αωGλ (x3n+1, x3n+2, x3n+3). (3.78)

Therefore,

ωGλ (x3n+1, x3n+2, x3n+3) ≤ rωGλ (x3n, x3n+1, x3n+2), (3.79)

where r = 1
α and for all λ > 0, r < 1. By continuing this process, we get

ωGλ (x3n+1, x3n+2, x3n+3) ≤ rnωGλ (x3n, x3n+1, x3n+2), ∀ λ > 0 (3.80)

and n ≥ 1. By Corollary 3.21, we are done. �

Remark 3.32. Corollary 3.31 is an extension of Corollary 3.5 in [32]. Corol-
lary 3.31 is an extension of Corollary 3.16 in Okeke and Francis [22].

Corollary 3.33. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S : XωG → XωG be two onto mappings on XωG for all x 6= y 6= z 6= x ∈
XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for which
the following condition holds;

ωGλ (Tx, Sy, z) ≥ αωGλ (x, y, z) + βωGλ (Sx, Tx, Tx)

+ γωGλ (y, Sy, Sy) + δωGλ (Tz, z, z), (3.81)

where α > 1 and for all λ > 0. Then, T, S has a unique common fixed point
in XωG.

Proof. Take R = I in Corollary 3.31, we can conclude that T, S has a unique
common fixed point in XωG . �

Corollary 3.34. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let S,R : XωG → XωG be two onto mappings on XωG for all x 6= y 6= z 6= x ∈
XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for which
the following condition holds;

ωGλ (x, Sy,Rz) ≥ αωGλ (x, y, z) + βωGλ (Sx, x, x)

+ γωGλ (Ry, Sy, Sy) + δωGλ (z,Rz,Rz), (3.82)

where α > 1 and for all λ > 0. Then, S,R has a unique common fixed point
in XωG.

Proof. Take T = I in Corollary 3.31, we can conclude that S,R has a unique
common fixed point in XωG . �
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Corollary 3.35. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T,R : XωG → XωG be two onto mappings on XωG for all x 6= y 6= z 6= x ∈
XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for which
the following condition holds;

ωGλ (Tx, y,Rz) ≥ αωGλ (x, y, z) + βωGλ (x, Tx, Tx)

+ γωGλ (Ry, y, y) + δωGλ (Tz,Rz,Rz), (3.83)

where α > 1 and for all λ > 0. Then, T, S,R has a unique common fixed point
in XωG.

Proof. Take S = I in Corollary 3.31, we can conclude that T,R has a unique
common fixed point in XωG . �

Corollary 3.36. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let R : XωG → XωG be an onto mapping on XωG for all x 6= y 6= z 6= x ∈
XωG and there are x0, x1 ∈ XωG such that ωGλ (x0, x1, x1) < ∞, for which the
following condition holds;

ωGλ (x, y,Rz) ≥ αωGλ (x, y, z)

+ γωGλ (Ry, y, y) + δωGλ (z,Rz,Rz), (3.84)

where α > 1 and for all λ > 0. Then, R has a unique fixed point in Xω.

Proof. Take S = T = I in Corollary 3.31, we can conclude that R has a unique
fixed point in XωG . �

Corollary 3.37. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T : XωG → XωG be an onto mapping on XωG for all x 6= y 6= z 6= x ∈
XωG and there are x0, x1 ∈ XωG such that ωGλ (x0, x1, x1) < ∞, for which the
following condition holds;

ωGλ (Tx, y, z) ≥ αωGλ (x, y, z) + βωGλ (x, Tx, Tx) + δωGλ (Tz, z, z), (3.85)

where α > 1 and for all λ > 0. Then, T has unique fixed point in XωG.

Proof. Take R = S = I in Corollary 3.31, we can conclude that T has a unique
fixed point in XωG . �

Corollary 3.38. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds for some positive integer, m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ αωGλ (x, y, z) + βωGλ (Smx, Tmx, Tmx)

+γωGλ (Rmy, Smy, Smy)+δωGλ (Tmz,Rmz,Rmz),
(3.86)



Existence and uniqueness of fixed point of some expansive-type mappings 985

where α > 1 and for all λ > 0. Then, T, S,R has a unique common fixed point
in XωG for some positive integer, m ≥ 1.

Proof. By Corollary 3.31, we can see that Tmu = Smu = Rmu = u for
some positive integer m ≥ 1. Suppose that there exists v ∈ XωG such that
Tmv = Smv = Rmv = v for some positive integer m ≥ 1. Now, we claim that
u 6= v implies that for any λ > 0, we have ωGλ (u, v, v) > 0, then for uniqueness,
inequality (3.86) we get a contradiction, hence u = v. �

Corollary 3.39. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

Let T, S,R : XωG → XωG be three onto mappings on XωG for all x 6= y 6= z 6=
x ∈ XωG and there are x0, x1, x2 ∈ XωG such that ωGλ (x0, x1, x2) < ∞, for
which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ αωGλ (x, y, z)

+β

(
ωGλ (Sx, Tx, Tx)+ωGλ (Ry, Sy, Sy)+ωGλ (Tz,Rz,Rz)

)
,

(3.87)

where α > 1 for all λ > 0. Then, T, S,R has a unique common fixed point in
XωG.

Proof. Putting β = γ = δ, then by Corollary 3.31, T, S,R has a unique com-
mon fixed point in XωG . �

Corollary 3.40. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

If there exists a constant a > 1 and let T, S,R : XωG → XωG be three onto
mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds;

ωGλ (Tx, Sy,Rz) ≥ amax

ωGλ (x, y, z), ωGλ (Sx, Tx, Tx),

ωGλ (Ry, Sy, Sy), ωGλ (Tz,Rz,Rz)

 . (3.88)

Then, T, S,R has a unique common fixed point in XωG.

Proof. Let x0, x1, x2 ∈ XωG . Since T, S,R are onto mappings, there exists
x1 ∈ XωG such that x0 = Tx1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3
for x3 ∈ XωG . By continuing this process, we can find a sequence {x3n}n≥1 ∈
XωG such that x3n = Tx3n+1 for all n ∈ N, so that we have the inverse
iterations as x3n = Tx3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now, since
x3n 6= x3n+1 6= x3n+2 implies that for any λ > 0, ωGλ (x3n, x3n+1, x3n+2) > 0.
From inequality (3.88) with x = x3n+1 and y = x3n+2 and z = x3n+3, we have
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that for all n ≥ 1, λ > 0,

ωGλ (x3n, x3n+1, x3n+2) = ωGλ (Tx3n+1, Sx3n+2, Rx3n+3)

≥ amax



ωGλ (x3n+1, x3n+2, x3n+3),

ωGλ (Sx3n+1, Tx3n+1, Tx3n+1),

ωGλ (Rx3n+2, Sx3n+2, Sx3n+2),

ωGλ (Tx3n+3, Rx3n+3, Rx3n+3)


, (3.89)

hence,

ωGλ (x3n, x3n+1, x3n+2) ≥ amax



ωGλ (x3n+1, x3n+2, x3n+3),

ωGλ (x3n, x3n, x3n),

ωGλ (x3n+1, x3n+1, x3n+1),

ωGλ (x3n+2, x3n+2, x3n+2)


. (3.90)

Therefore,

ωGλ (x3n+1, x3n+2, x3n+3) ≤ κωGλ (x3n, x3n+1, x3n+2), (3.91)

for all λ > 0 and κ = 1
a < 1. Proof of Corollary 3.31 completes Corollary 3.40.

Hence T, S,R has a unique common fixed point in XωG . �

Corollary 3.41. Let (Xω, ω
G) be a ωG-complete modular ωG-metric space.

If there exists a constant a > 1 and let T, S,R : XωG → XωG be three onto
mappings on XωG for all x 6= y 6= z 6= x ∈ XωG and there are x0, x1, x2 ∈ XωG

such that ωGλ (x0, x1, x2) <∞, for which the following condition holds for some
positive integer m ≥ 1;

ωGλ (Tmx, Smy,Rmz) ≥ amax



ωGλ (x, y, z),

ωGλ (Smx, Tmx, Tmx),

ωGλ (Rmy, Smy, Smy),

ωGλ (Tmz,Rmz,Rmz)


. (3.92)

Then, T, S,R has unique common fixed point in XωG for some positive integer
m ≥ 1.

Proof. By Corollary 3.40, we can see that Tmu = Smu = Rmu = u for
some positive integer m ≥ 1. Suppose that there exists v ∈ XωG such that
Tmv = Smv = Rmv = v for some positive integer m ≥ 1. Now, we claim that
u 6= v implies that for any λ > 0, we have ωGλ (u, v, v) > 0, then for uniqueness,
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inequality (3.92) we have

ωGλ (u, v, v)=ωGλ (Tmu, Smv,Rmv)≥amax



ωGλ (u, v, v),

ωGλ (Smu, Tmu, Tmu),

ωGλ (Rmv, Smv, Smv),

ωGλ (Tmv,Rmv,Rmv)


, (3.93)

which implies that

ωGλ (u, v, v) ≥ amax



ωGλ (u, v, v),

ωGλ (u, u, u),

ωGλ (v, v, v),

ωGλ (v, v, v)


= aωGλ (u, v, v) > ωGλ (u, v, v). (3.94)

This is a contradiction, since a > 1, hence u = v. �
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