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Abstract. In this paper, we are motivated to evaluate and investigate the necessary condi-

tions for the fractional Volterra Fredholm integro-differential equation involving the ς-Hilfer

fractional derivative. The given problem is converted into an equivalent fixed point problem

by introducing an operator whose fixed points coincide with the solutions to the problem at

hand. The existence and uniqueness results for the given problem are derived by applying

Krasnoselskii and Banach fixed point theorems respectively. Furthermore, we investigate

the convergence of approximated solutions to the same problem using the modified Adomian

decomposition method. An example is provided to illustrate our findings.

1. Introduction

Because of their numerous applications in mathematics, biology, physics,
finance, engineering, dynamical systems and control theory, fractional differ-
ential equations (FDEs) are of great interest, see [7, 13, 20, 25, 28, 33] and the
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references therein. However, because of the complexities of their initial values,
several physical interpretations of FDEs are still unknown, so the theory of
FDEs is still in its infancy. Nonetheless, because of their numerous practi-
cal applications and theoretical significance, these equations have become the
most popular topic of discussion among a number of examiners. There has
also been shown a significant interest in the study of FDEs by many authors,
for instance (see [1, 2, 3, 9, 10, 14, 24, 32]).

Vanterler et al. [16] recently proposed a new type of fractional differential
(FD) operator called a ψ-Hilfer fractional operator, which generalises the Hilfer
fractional operator [21, 26, 29]. It is important to note that the ψ-Hilfer
fractional derivative is defined with respect to another function, and it unifies
the various fractional derivative definitions found in the literature.

Additionally, a lot of study has been done using George Adomian’s approach
of Adomian decomposition to estimate the solution of this type of equation [4]
and other numerical methods for more details see [15, 17, 18, 38]. The style and
simplicity of the Adomian decomposition approach make it appealing. The
answer is given as a series, where each equation may be calculated with ease
using Adomian polynomials that are appropriate for nonlinear components
(see [4, 5, 6, 19, 27, 29]).

In [37], Wazwaz introduced the method of modified Adomian decomposition
(MADM), which entails splitting the 1st term of the series into two 2nd terms,
one of which is kept to define the 2nd term of the series. This approach’s
primary goals are to perform fewer operations and accelerate convergence to
the precise solution to the stated problem. For instance, we quote [23] when
discussing the application of the MADM.

The goal of the current paper is to discuss the uniqueness and existence of
the solution by applying Banach’s and Krasnoselskii’s fixed point theorems,
then we use the MADM for the following ς−Hilfer fractional Volterra Fredholm
integro-differential equation (ς−Hilfer fractional VFIDE)

{
HDν1,ν2;ς

0+
ω(κ) = g(κ) + Π1ω(κ) + Π2ω(κ), κ ∈ ~ = [0, 1],

ω(0) = ω0 + y(ω),
(1.1)

where 0 < ν < 1, HDν1,ν2;ς
0+

is ς−Hilfer fractional derivative of order ν1 and
parameter ν2, g : ~ → R, y : C(~,R) → R, χ1, χ2 : ~× ~ → R are continuous
functions and Nj : R → R, j = 1, 2 are Lipschitz continuous functions. In
brief, we set

Π1ω(κ) :=

∫ κ

0
χ1(κ, ξ)N1(ω(ξ))dξ
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and

Π2ω(κ) :=

∫ 1

0
χ2(κ, ξ)N2(ω(ξ))dξ.

Numerous authors have used fixed point methods to study some findings
on the presence of solutions to ς−Hilfer fractional differential equations (see
[11, 30, 31]).

In this paper, we establish the existence and uniqueness findings of the
ς−Hilfer fractional VFIDE (1.1) using a contemporary methodology. We ar-
rive at a few prerequisites that are necessary for fractional integrodifferential
equations with nonlocal conditions to have solutions. To acquire a rough so-
lution to, the MADM is utilised. The fixed point theorems of Krasnoselskii
and Banach are also used to assess our findings.

The paper is structured as follows. In Section 2, we provide some fun-
damental findings in relation to the hypotheses and various lemmas used in
this paper. In Section 3, we utilise the fixed point theorems of Krasnoselskii
and Banach to demonstrate the existence and uniqueness of solutions to the
proposed problem. In section 4, We discuss the MADM and prove that the
series created by the MADM converges to the precise solution of the ς−Hilfer
fractional VFIDE. In Section 5, we provide an example to further clarify our
findings.

2. Preliminaries

In this section, we setting notations and some introductory facts that will
be applied in the proofs of the subsequent results.

Let C(~,R) and L(~,R) are the Banach spaces of continuous functions and
Lebesgue integrable functions from ~ into R with the norms

‖z‖∞ = sup{|z| : κ ∈ ~}
and

‖z‖L =

∫ b

a
|z(κ)| dκ,

respectively.

For ε = ν1 + 2ν2 − ν1ν2, 0 < ν1 < 1 and 0 ≤ ν2 ≤ 1. Let ς ∈ C1 (~,R) be
an increasing function with ς ′(κ) 6= 0 for all κ ∈ ~.

Definition 2.1. ([25]) Let ν1 > 0 and z ∈ L1(~,R). The ς-RL fractional
integral of order ν1 of a function z is given by

Iν1;ς
0+

z(κ) =
1

Γ(ν1)

∫ κ

a
ς ′(t)(ς(κ)− ς(t))ν1−1z(t)dt,

where Γ(·) denotes the Gamma function.
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Definition 2.2. ([36]) The ς−Hilfer FD of order ν1 and parameter ν2 is defined
by

HDν1,ν2;ς
0+

z(κ) = Iν2(n−ν1);ς

(
1

ς ′(κ)

d

dκ

)n
I(1−ν2)(n−ν1);ςz(κ),

where n− 1 < ν1 < n, 0 ≤ ν2 ≤ 1, κ > a.

Lemma 2.3. ([25, 36]) Let ν1, η, δ > 0. Then

(1) Iν1;ςIη;ςz(κ) = Iν1+η;ςz(κ).

(2) Iν1;ς(ς(κ)− ς(a))δ−1 = Γ(δ)
Γ(ν1+δ)(ς(κ)− ς(a))ν1+δ−1.

We note also that HDν1,ν2;ς(ς(κ)− ς(a))ε−1 = 0, where ε = ν1 + ν2(n− ν1).

Lemma 2.4. ([36]) Let z ∈ L1(~,R), ν1 ∈ (n − 1, n] (n ∈ N) and ν2 ∈ [0, 1].
Then

(Iν1;ς
HDν1,ν2;ςz) (κ) = z(κ)−

n∑
k=0

(ς(κ)− ς(a))ε−k

Γ(ε− k + 1)
z[n−k]
ς

× lim
κ→a

(
I(1−ν2)(n−ν1);ςz

)
(a),

where z
[n−k]
ς (κ) =

(
1

ς′(κ)
d
dκ

)[n−k]
z(κ).

Here we can suffice to refer to Banach’s fixed point theorem and Krasnosel-
skii’s fixed point theorem [34].

3. Existence result via Krasnoselkii’s fixed point theorem

By utilizing Krasnoselkii’s fixed point theorem, we examine the existence of
a solution to the ς−Hilfer fractional VFIDE (1.1) in this section.

We start by assuming the following.

(H1): Let N1(ω(κ)), N2(ω(κ)) can be thought of as continuous nonlin-
earity terms, and constants exist `N1(> 0) and `N2(> 0) such that

|Nj(ω1(κ))−Nj(ω2(κ))| ≤ `Nj |ω1 − ω2| , j = 1, 2, ∀ω1, ω2 ∈ R.

(H2): The kernels χ1(κ, ξ) and χ1(κ, ξ) are continuous on ~ × ~, and
there exist two positive constants χ∗1 and χ∗2 in ~× ~ such that

χ∗j = sup
κ∈~

∫ κ

0
|χj(κ, ξ)| dξ <∞, j = 1, 2.

(H3): g : ~→ R is continuous on ~.
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(H4): y : C(~,R) → R is continuous on C(~) and there exist constant
0 < `y < 1 such that

|y(ω1(κ))− y(ω2(κ))| ≤ `y |ω1 − ω2| , ∀ω1, ω2 ∈ C(~,R), κ ∈ ~.

The problem (1.1) and the integral equation are equivalent according to the
next lemma. Because it resembles a few traditional arguments that are known
from the literature, the proof for this lemma is disregarded.

Lemma 3.1. The function ω ∈ C(~,R) is the κ−Hilfer fractional VFIDE’s
(1.1) solution if and only if ω is the integral equation’s solution, which given
by

ω(κ) = ω0 + y(ω) +
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1g(η)dη

+
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

{∫ η

0
χ1(η, ζ)N1(ω(ζ))dζ

+

∫ 1

0
χ2(η, ζ)N2(ω(ζ))dζ

}
dη.

Our first result relates to existence based on the Krasnoselkii’s fixed point
theorem.

Theorem 3.2. Assume (H1)−(H4) hold. Then the ς−Hilfer fractional VFIDE
(1.1) has at least one solution on ~ if

Λ1 :=

(
`y +

∑2
j=1 `Njχ

∗
j

Γ(ν1 + 1)

)
< 1. (3.1)

Proof. Think about the ball

Sγ = {ω ∈ C(~,R) : ‖ω‖∞ ≤ γ} ⊂ C(~,R). (3.2)

Sγ is clearly a nonempty convex closed subset of C(~,R). Choose γ in such a

way that γ ≥ Λ2
1−Λ1

, where Λ1 < 1,

Λ2 := µ0 +
µg +

∑2
j=1 µNjχ

∗
j

Γ(ν1 + 1)
, (3.3)

µg := supκ∈[0,1] |g(κ)| , µ0 := |ω0| + µy, µy = |y(0)| , µN1 := |N1(0)| and

µN2 := |N2(0)| .
According to Lemma 3.1, the equivalent fractional integral equation to

ς−Hilfer fractional VFIDE (1.1) can be expressed as an operator equation
as follows

ω = T1ω + T2ω, ω ∈ Sγ ⊂ C(~,R), (3.4)
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where T1 and T2 are two operators on Sγ defined by

(T1ω)(κ) =
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

×
{∫ η

0
χ1(η, ζ)N1(ω(ζ))dζ +

∫ 1

0
χ2(η, ζ)N2(ω(ζ))dζ

}
dη

and

(T2ω)(κ) = ω0 + y(ω) +
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1g(η)dη.

Now, using the conditions of Theorem 3.2, we obtain the fixed point of the
operator equation (3.4) as follows:

Step 1: We demonstrate T1ω + T2$ ∈ Sγ for each ω,$ ∈ Sγ .
By (H1) and for any ω,$ ∈ Sγ , we have

|Nj(ω(κ))| ≤ |Nj(ω(κ))−Nj(0)|+ |Nj(0)|
≤ `Nj ‖ω‖∞ + |Nj(0)|
≤ `Njγ + µNj , for all j = 1, 2

and

|y($(κ))| ≤ |y($(κ))− y(0)|+ |y(0)|
≤ `y ‖$‖∞ + |y(0)|
≤ `yγ + µy.

Let ω,$ ∈ Sγ . Then

|(T1ω)(κ) + (T2$)(κ)|

≤ 1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

×
{∫ η

0
χ1(η, ζ)N1(ω(ζ))dζ +

∫ 1

0
χ2(η, ζ)N2(ω(ζ))dζ

}
dη

+ |ω0|+ |y($)|+ 1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1 |g(η)| dη

≤ µ0 + `yγ +
µg +

∑2
j=1

(
`Njγ + µNj

)
χ∗j

Γ(ν1 + 1)
(ς(κ))ν1 ,

which implies

‖T1ω + T2$‖∞ ≤ µ0 +
µg +

∑2
j=1 µNjχ

∗
j

Γ(ν1 + 1)
+

(
`y +

∑2
j=1 `Njχ

∗
j

Γ(ν1 + 1)

)
γ

≤ Λ2 + Λ1γ ≤ γ.
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Consequently, we have

T1ω + T2$ ∈ Sγ .

Step 2: We demonstrate that T2 is a contraction on Sγ .
Let ω, ω∗ ∈ Sγ . It follows from (H4) that

‖T2ω − T2ω
∗‖∞ = sup

κ∈~
|T2ω(κ)− T2ω(κ)|

= sup
κ∈~
|y(ω(κ))− y(ω∗(κ))|

≤ `y ‖ω − ω∗‖∞ .

Since `y < 1, T2 is a contraction mapping.

Step 3: We show that, T1 is completely continuous on Sγ .
First, we show that T1 is continuous. Let {ωn} be a sequence such that

ωn → ω in C(~,R). Then for each ωn, ω ∈ C(~,R) and for any κ ∈ ~, we have

|(T1ωn)(κ)− (T1ω)(κ)|

≤ 1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

(∫ η

0
|χ1(η, ζ)| |N1(ωn(ζ))−N1(ω(ζ))| dζ

+

∫ 1

0
|χ2(η, ζ)| |N2(ωn(ζ))−N2(ω(ζ))| dζ

)
dη

≤
∑2

j=1 `Njχ
∗
j

Γ(ν1 + 1)
‖ωn − ω‖∞ .

Since ωn → ω as n → ∞, ‖T1ωn − T1ω‖∞ → 0, as n → ∞. This proves that
T1 is continuous on C(~,R).

Next, from Step 1, we observe that

|(T1ω)(κ)| ≤ 1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

(∫ η

0
|χ1(η, ζ)| |N1(ω(ζ))| dζ

+

∫ 1

0
|χ2(η, ζ)| |N2(ω(ζ))| dζ

)
dη

≤
∑2

j=1

(
`Njγ + µNj

)
χ∗j

Γ(ν1 + 1)
(ς(κ))ν1 .

Thus

‖T1ω‖∞ ≤
∑2

j=1

(
`Njγ + µNj

)
χ∗j

Γ(ν1 + 1)
.

This proves that (T1Sγ) is uniformly bounded.
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Finally, we show that (T1Sγ) is equicontinuous. Let ω ∈ Sγ . Then for
κ1,κ2 ∈ ~ with κ1 ≤ κ2, we have

|(T1ω)(κ2)− (T1ω)(κ1)|

=

∣∣∣∣ 1

Γ(ν1)

∫ κ2

0
ς ′(η)(ς(κ2)− ς(η))ν1−1

(∫ η

0
|χ1(η, ζ)| |N1(ω(ζ))| dζ

+

∫ 1

0
|χ2(η, ζ)| |N2(ω(ζ))| dζ

)
dη

− 1

Γ(ν1)

∫ κ1

0
ς ′(η)(ς(κ1)− ς(η))ν1−1

(∫ η

0
|χ1(η, ζ)| |N1(ω(ζ))| dζ

+

∫ 1

0
|χ2(η, ζ)| |N2(ω(ζ))| dζ

)
dη

∣∣∣∣
≤ 1

Γ(ν1)

(∫ κ2

κ1

ς ′(η)(ς(κ2)− ς(κ1))ν1−1

∫ η

0
|χ1(η, ζ)| |N1(ω(ζ))| dζdη

+

∫ κ1

0
ς ′(η)

∣∣(ς(κ2)−ς(η))ν1−1−(ς(κ1)−ς(η))ν1−1
∣∣∫ η

0
|χ1(η, ζ)| |N1(ω(ζ))| dζdη

)
+

1

Γ(ν1)

(∫ κ2

κ1

ς ′(η)(ς(κ2)− ς(η))ν1−1

∫ η

0
|χ2(η, ζ)| |N2(ω(ζ))| dζdη

+

∫ κ1

0
ς ′(η)

∣∣(ς(κ2)−ς(η))ν1−1−(ς(κ1)−ς(η))ν1−1
∣∣∫ η

0
|χ2(η, ζ)| |N2(ω(ζ))| dζdη

)
,

which implies

|(T1ω)(κ2)− (T1ω)(κ1)|

≤ (`N1γ + µN1)χ∗1
Γ(ν1)

(∫ κ2

κ1

ς ′(η)(ς(κ2)− ς(η))ν1−1dη

+

∫ κ1

0
ς ′(η)

∣∣(ς(κ2)− ς(η))ν1−1 − (ς(κ1)− ς(η))ν1−1
∣∣ dη)

+
(`N2γ + µN2)χ∗2

Γ(ν1)

(∫ κ2

κ1

ς ′(η)(ς(κ2)− ς(η))ν1−1dη

+

∫ κ1

0
ς ′(η)

∣∣(ς(κ2)− ς(η))ν1−1 − (ς(κ1)− ς(η))ν1−1
∣∣ dη)
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≤
(

(`N1γ + µN1)χ∗1
Γ(ν1 + 1)

+
(`N2γ + µN2)χ∗2

Γ(ν1 + 1)

)
×
(

(ς(κ2)− ς(κ1))ν1

ν1
+
ς(κ1)

ν1
− ς(κ2)

ν1
+

(ς(κ2)− ς(κ1))ν1

ν1

)
≤

2
∑2

j=1

(
`Njγ + µNj

)
χ∗j

Γ(ν1 + 1)
(ς(κ2)− ς(κ1))ν1 ,

which tends to zero as κ2 − κ1 → 0. So, (T1Sγ) is equicontinuous. As a
result of this, as well as the Arzela-Ascoli theorem, it is concluded that T1 :
C(~,R) → C(~,R) is continuous and completely continuous. An application
of Krasnoselskii’s fixed point theorem demonstrates that T1 has a fixed point
ω in Sγ which is a solution of the ς−Hilfer fractional VFIDE (1.1). �

The second result is based on Banach’s fixed point theorem.

Theorem 3.3. Assume (H1)− (H4) hold. If

Λ1 < 1, (3.5)

then the ς−Hilfer fractional VFIDE (1.1) has a unique solution on ~.

Proof. According to Lemma 3.1, the equivalent fractional integral equation
to ς−Hilfer fractional VFIDE (1.1) can be expressed as operator equation as
follows

ω = Υω, ω ∈ C(~,R),

where the operator Υ : C(~,R)→ C(~,R) defined by

(Υω)(κ) = ω0 + y(ω) +
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1g(η)dη

+
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

(∫ η

0
χ1(η, ζ)N1(ω(ζ))dζ

+

∫ 1

0
χ2(η, ζ)N2(ω(ζ))dζ

)
dη

for all κ ∈ ~.
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Let ω, ω∗ ∈ C(~,R). Then for each κ ∈ ~ we have

|Υω(κ)−Υω∗(κ)| ≤ |y(ω(κ))− y(ω∗(κ))|

+
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

×
(∫ η

0
χ1(η, ζ) |N1(ω(ζ))−N1(ω∗(ζ))| dζ

)
dη

+
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1

×
(∫ 1

0
χ2(η, ζ) |N2(ω(ζ))−N2(ω∗(ζ))| dζ

)
dη

≤ `y ‖ω − ω∗‖∞

+
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1χ∗1`N1 ‖ω − ω∗‖∞ dη

+
1

Γ(ν1)

∫ κ

0
ς ′(η)(ς(κ)− ς(η))ν1−1χ∗2`N2 ‖ω − ω∗‖∞ dη

≤
(
`y +

χ∗1`N1 + χ∗2`N2

Γ(ν1 + 1)
(ς(κ))ν1

)
‖ω − ω∗‖∞ ,

which implies

‖Υω −Υω∗‖∞ ≤

(
`y +

∑2
j=1 `Njχ

∗
j

Γ(ν1 + 1)

)
‖ω − ω∗‖∞ .

The inequality (3.5) shows that Υ is a contraction mapping on C(~,R). As a
result of Banach’s fixed point theorem, Υ has a unique fixed point that is the
solution of the ς−Hilfer fractional VFIDE (1.1). �

4. Approximate solution

In this section, we present an approximate solution to the ς−Hilfer fractional
VFIDE (1.1) using the fractional Adomian decomposition technique.

First, we recall the classical Adomian decomposition technique, which yields
the solution to our problem as a series

ω =

∞∑
n=0

ωn (4.1)

and the nonlinear terms N1,N2 and y are decomposed as

N1 =

∞∑
n=0

An, N2 =

∞∑
n=0

Bn, y =

∞∑
n=0

Dn, (4.2)
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where An, Bn, Dn are Adomian polynomials for all n ∈ N, and write

ω = ω(λ) =

∞∑
n=0

λnωn = ω0 + λω1 + λ2ω2 + · · ·+ λkωk + · · ·, (4.3)

N1 = N1(λ) =
∞∑
n=0

λnAn = A0 + λA1 + λ2A2 + · · ·+ λkAk + · · ·, (4.4)

N2 = N2(λ) =

∞∑
n=0

λnBn = B0 + λB1 + λ2B2 + · · ·+ λkBk + · · ·, (4.5)

y = y(λ) =

∞∑
n=0

λnDn = D0 + λD1 + λ2D2 + · · ·+ λkDk + · · ·. (4.6)

Using the previous formulas (4.3), (4.4), (4.5) and (4.6), we can conclude
that

An =
1

n!

 dn

dλn

N1

∞∑
j=0

λjωj


λ=0

,

Bn =
1

n!

 dn

dλn

N2

∞∑
j=0

λjωj


λ=0

and

Dn =
1

n!

 dn

dλn

y ∞∑
j=0

λjωj


λ=0

,

where ω0, ω1, ω2, ... are repeatedly specified by
ω0(κ) = ω0 + Iν1;ς

0+
(g(κ)) ,

ωk+1(κ) = Dk + Iν1;ς
0+

(∫ κ
0 χ1(κ, ξ)Akdξ

)
+Iν1;ς

0+

(∫ 1
0 χ2(κ, ξ)Bkdξ

)
, k ≥ 1.

(4.7)

Now, we use the modified Adomian decomposition method, and the scheme
(4.7) yields 

ω0(κ) = ω0 +R1(κ),
ω1(κ) = R2(κ) +D0 + Iν1;ς

0+

(∫ κ
0 χ1(κ, ξ)A0dξ

)
+Iν1;ς

0+

(∫ 1
0 χ2(κ, ξ)B0dξ

)
,

ωk+1(κ) = Dk + Iν1;ς
0+

(∫ κ
0 χ1(κ, ξ)Akdξ

)
+Iν1;ς

0+

(∫ 1
0 χ2(κ, ξ)Bkdξ

)
, k ≥ 1.

(4.8)

Now, we will investigate the convergence theorem of the solution based on
the MADM.
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Theorem 4.1. Assume that (H1)−(H4) and (3.1) are satisfied, if the solution
ω(κ) =

∑∞
j=0 ωj(κ) and ‖ω‖∞ < ∞ is convergent, then it converges to the

exact solution of the ς−Hilfer fractional VFIDE (1.1).

Proof. We omit the proof because it is similar to some works found in the
literature, see [8]. �

5. An example

Example 5.1. Consider an integro-differential equation with ς−Hilfer frac-
tional derivative CDν1,ν2;ς

0+
ω(κ) = 2√

π

(
4κ

3
2

Γ(6) + κ
1
2

)
+ κ3

Γ(7) + κ
Γ(8)

+1
4

∫ κ
0 (1 + κ − η)ω(η)dη + 5

18

∫ 1
0 e

η−κω2(η)dη

(5.1)

with the nonlocal condition

ω(0) =
1

4
ω(

1

3
), (5.2)

where ν1 = 1
4 , ν2 = 1

3 , ς(κ) = κ, ω0 = 0, y(ω(κ)) = 1
4ω(1

3),

g(κ) =
2√
π

(
4κ

3
2

Γ(6)
+ κ

1
2

)
+

κ3

Γ(7)
+

κ
Γ(8)

,

χ1(κ, ξ) =
1

4
(1 + κ − ξ), χ2(κ, ξ) =

5

18
eξ−κ.

Clearly, `N1 = `N2 = 1, `y = 1
4 ,

µg : = sup
κ∈[0,1]

|g(κ)| = ‖g‖∞

=
2√
π

(
4

Γ(6)
+ 1

)
+

1

Γ(7)
+

1

Γ(8)

=
31

15
√
π

+
1

630
,

χ∗1 =
1

4
sup
κ∈~

∫ κ

0
|1 + κ − ξ| dξ =

1

8
,

χ∗2 =
5

18
sup
κ∈~

∫ κ

0

∣∣∣eξ−κ∣∣∣ dξ =
7

20
sup
κ∈~

e−κ
∫ κ

0

∣∣∣eξ∣∣∣ dξ
=

5

18
(1− 1

e
).

Hence,

Λ1 :=

(
`y +

∑2
j=1 `Njχ

∗
j

Γ(ν1 + 1)

)
≈ 0.581 63 < 1.
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As consequence of Theorem 3.3, the problem (5.1)-(5.2) has a unique solution
on [0, 1].

Applying the operator

(
I

1
4

;ς

0+
, ς(κ) = κ

)
to both sides of equation (5.1),

we get

ω(κ) =
1

4
ω(

1

3
) + I

1
4

;κ
0+

(
2√
π

(
4κ

3
2

Γ(6)
+ κ

1
2

)
+

κ3

Γ(7)
+

κ
Γ(8)

)

+I
1
4

;κ
0+

(
1

4

∫ κ

0
(1 + κ − η)ω(η)dη

)
+ I

1
4

;κ
0+

(
5

18

∫ 1

0
eη−κω2(η)dη

)
.

Suppose

R(κ) = I
1
4

;κ
0+

(
2√
π

(
4κ

3
2

Γ(6)
+ κ

1
2

)
+

κ3

Γ(7)
+

κ
Γ(8)

)

=
2√
π

4

Γ(6)

(
I

1
4

;κ
0+

η
3
2

)
(κ) +

2√
π

(
I

1
4

;κ
0+

η
1
2

)
(κ)

+
1

Γ(7)

(
I

1
4

;κ
0+

η3

)
(κ) +

1

Γ(8)

(
I

1
4

;κ
0+

η

)
(κ)

=
2√
π

4

Γ(6)

(
Γ(5

2)

Γ(5
2 + 1

4)
κ

5
2

)
+

2√
π

(
Γ(1

2)

Γ(1
4 + 1

2)
κ−

1
4

)

+
1

Γ(7)

(
Γ(4)

Γ(1
4 + 4)

κ
13
4

)
+

1

Γ(8)

(
Γ(2)

Γ(3
4)
κ

5
4

)
.

Now, we apply the modified Adomian decomposition method,

R(κ) = R1(κ) +R2(κ),

where

R1(κ) =
8√
πΓ(6)

Γ(5
2)

Γ(11
4 )

κ
5
2

and

R2(κ) =
2√
π

(
Γ(1

2)

Γ(3
4)
κ−

1
4

)
+

1

Γ(7)

(
Γ(4)

Γ(17
4 )

κ
13
4

)
+

1

Γ(8)

(
Γ(2)

Γ(3
4)
κ

5
4

)
.

The modified recursive relation

ω0(κ) = R1(κ) =
8√
πΓ(6)

Γ(5
2)

Γ(11
4 )

κ
5
2 ,
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ω1(κ) = R2(κ) + I
1
4

;κ
0+

(
1

4

∫ κ

0
(1 + κ − η)A0(η)dη

)
+I

1
4

;κ
0+

(
5

18

∫ 1

0
eη−κB0(η)dη

)
+D0(κ)

=
2√
π

(
Γ(1

2)

Γ(3
4)
κ−

1
4

)
+ +

1

Γ(7)

(
Γ(4)

Γ(17
4 )

κ
13
4

)
+

1

Γ(8)

(
Γ(2)

Γ(3
4)
κ

5
4

)

+I
1
4

;κ
0+

(
1

4

∫ κ

0
(1 + κ − η)ω0(η)dη

)
+I

1
4

;κ
0+

(
5

18

∫ 1

0
eη−κω0(η)dη

)
+

1

5
ω0(

1

4
)

=
2√
π

(
Γ(1

2)

Γ(3
4)
κ−

1
4

)
+ +

1

Γ(7)

(
Γ(4)

Γ(17
4 )

κ
13
4

)
+

1

Γ(8)

(
Γ(2)

Γ(3
4)
κ

5
4

)

+I
1
4

;κ
0+

1

4

∫ κ

0
(1 + κ − η)

 15√
π

Γ(11
2 )(

1
3

) 1
2 Γ(7)Γ(6)

η
5
3

 dη


+I

1
4

;κ
0+

(
5

18

∫ 1

0
eη−κ

(
8√
πΓ(6)

Γ(5
2)

Γ(11
4 )
η

5
2

)
dη

)

+
1

4

(
8√
πΓ(6)

Γ(5
2)

Γ(11
4 )

)(
1

3

) 5
2

= 0,

ω2(κ) = 0,

...

ωn(κ) = 0.

Therefore, the obtained solution is

ω(κ) =

∞∑
j=0

ωj(κ) =
8√
πΓ(6)

Γ(5
2)

Γ(11
4 )

κ
5
2 .

6. Conclusion

In this work, we have already studied the fractional Volterra Fredholm in-
tegrodifferential equation involving ς−Hilfer fractional derivative. Also, we
have derived the solution representation of the problem (1.1). Moreover, the
convergence of approximated solutions and existence solutions has been ob-
tained. The theoretical analysis is based on some classic fixed point theories
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such as Banach and Krasnoselskii and the fractional Adomian decomposition
technique. An example was provided as relevant to the results.
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