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Abstract. Approximation of functions of Lipschitz and Zygmund classes have been consid-

ered by various researchers under different summability means. In the proposed study, we

investigated an estimation of the order of convergence of a function associated with Hardy-

Littlewood series in the weighted Zygmund class W (Z
(ω)
r )-class by applying Euler-Hausdorff

summability means and subsequently established some (presumably new) results. Moreover,

the results obtained here represent the generalization of several known results.

1. Introduction

Summability methods have been used in various fields of mathematics. For
example, summability methods are applied in function theory in connection
with the analytic continuation of holomorphic functions and the boundary be-
havior of a power series, in applied analysis for generation of iteration meth-
ods for finding solutions of a system of equations, and for acceleration of
convergence in approximation theory. Also, it has been used in other fields
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of mathematics like probability theory (Markov chains) and number theory
(Prime number theorem). The approximation analysis of signals (functions)
has great importance in the field of science and engineering. It has also given
a new aspect due to its exhaustive appliance in signal analysis, system design,
modern telecommunications, radar and image processing system. The error
estimation of functions in various function spaces such as Lipschitz, Hölder,
Zygmund, Besov spaces using different summability techniques of Fourier se-
ries has been received a growing interest of several researchers in the last
decades. Functions in Lr (r ≥ 1)-spaces assumed to be most practicable in
signal analysis. Particularly, L1, L2 and L∞ spaces are used by engineers for

designing digital filters. The generalized Zygmund class Z
(ω)
r (r ≥ 1) is a

generalization of Z(α), Z(α),r, Z
(ω)-class.

The generalized Zygmund class Z
(ω)
r (r ≥ 1) is investigated by Leindler [7],

Moricz [9], Moricz and Nemeth [10]. Lal and Shireen [6] established results
on approximation of functions of generalized Zygmund class by Matrix-Euler
summability mean of Fourier series. Pradhan et al. [14] studied on approxima-
tion of signals belonging to generalized Lipschitz class using (N, pn, qn)(E, s)-
summability mean of Fourier series. Singh et al. [16] studied approximation
of functions in the generalized Zygmund class using Hausdorff means. Prad-
han et al. [13] studied on approximation of signals in the generalized Zyg-
mund class via (E, 1)(N, pn) summability means of conjugate Fourier series.
In 2019, Pradhan et al. [15] studied approximation of signals using generalized
Zygmund class using (E, 1)(N, pn) summability means of Fourier series. Das
et al. [1] proved approximation of functions in the weighted Zygmund class
via Euler-Hausdörff product summability means of Fourier series. Again, in
2020, Padhy et al. [12] estimated the degree of approximation of functions
of generalized Zygmund class associated with Hardy-Littlewood series using
Riesz mean. Very recently in 2023, Jena et al. [4] studied on the degree of
approximation of Fourier series based on a certain class of product deferred
summability means.

Motivated by the above mentioned works, to get best approximation and
advance study in this direction, In this proposed paper, we give an estima-
tion of degree of approximation of functions associated with Hardy-Littlewood
series in weighted Zygmund class using Euler-Hausdorff summability means.

2. Preliminaries

Let f(x) be a periodic function of period 2π, which is Lebesgue integrable
in [−π, π] and Fourier series associated with f(x) is given by
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n∑
n=0

An(x) =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx). (2.1)

Let SMn (x) denotes the nth partial sum of the (2.1) is given by

SMn (x) =
n−1∑
k=0

An(x) +
An(x)

2
. (2.2)

Then the Hardy-Littlewood series or HL-series associated with f(x) is given
by

c0
2

+

∞∑
n=1

SMn (x)− f(x)

n
, (2.3)

where

c0 =
2

π

∫ π

0
φ(x, u)

u

2
cot

u

2
du

and φ(x, u) = f(x+ u) + f(x− u)− 2f(x). Let

η(u) =

∫ π

u
φ(x, u)

1

2
cot

u

2
du. (2.4)

Clearly, η(u) is an even function and Lebesgue integrable in [−π, π]. Also, the
HL-series (2.3) is the Fourier series of η(u) at u = 0.

Let us write ξn(f, x) = 2
π

∫ π
0 η(u)

sin(n+ 1
2
)u

2 sin u
2
du, which represent the nth partial

sum of η(u).

The Lr norm of a function η is defined by

‖η‖r =


(

1
2π

∫ 2π
0 |η(x)|rdx

) 1
r
, 1 ≤ r <∞,

ess sup0<x≤2π |η(x)|, r =∞.

The degree of approximation of a function η : R → R by a trigonometric
polynomial tn of order n under ‖ · ‖L∞ norm is defined as

‖tn − η(x)‖L∞ = sup
x∈R
|tn(x)− η(x)|

and let a function η ∈ Lr, its degree of approximation En(η) is given by

En(η) = min
tn
‖tn − η‖Lr .

Zygmund modulus of continuity [18] of η is defined by

ω(η, h) = sup
o≤h,x∈R

|η(x+ t) + η(x− t)− 2η(x)|.
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Let C2π denote the Banach space of all 2π-periodic continuous functions
defined on [0, 2π] under the supremum norm. For 0 < α ≤ 1, the function
space

Z(α) = {η ∈ C2π : |η(x+ t) + η(x− t)− 2η(x)| = O(|t|α)}
is a Banach space under the norm ‖ · ‖(α) is defined by

‖η‖(α) = sup
0≤x≤2π

|η(x)|+ sup
x,t 6=0

|η(x+ t) + η(x− t)− 2η(x)|
|t|α

.

For η ∈ Lr[0, 2π], r ≥ 1, the integral Zygmund modulus of continuity is defined
by

ωr(η, h) = sup
0<t≤h

{
1

2π

∫ 2π

0
|η(x+ t) + η(x− t)− 2η(x)|rdx

} 1
r

.

Moreover, for η ∈ C2π and r =∞,

ω∞(η, h) = sup
0<t≤h

max
x
|η(x+ t) + η(x− t)− 2η(x)|.

Also, it is known that ωr(η, h)→ 0 as r → 0.

We now define,

Z(α),r=

{
η ∈ Lr[0, 2π] :

(∫ 2π

0
|η(x+t) + η(x−t)−2η(x)|rdx

) 1
r

=O(|t|α)

}
.

The space Z(α),r, r ≥ 1, 0 < α ≤ 1 is a Banach space under the norm ‖ · ‖(α),r
and that,

‖η‖(α),r = ‖η‖r + sup
t6=0

‖η(·+ t) + η(· − t)− 2η(·)‖r
|t|α

.

The class of function Z(ω) is defined as

Z(ω) = {η ∈ C2π : |η(x+ t) + η(x− t)− 2η(x)| = O(ω(t))},

where ω is a Zygmund modulus of continuity, that is, ω is positive, non-
decreasing continuous function with the sub linearity property, that is,

(i) ω(0) = 0,
(ii) ω(t1 + t2) ≤ ω(t1) + ω(t2).

Let ω : [0, 2π] → R be an arbitrary function with ω(t) > 0 for 0 ≤ t < 2π
and let limt→0+ ω(t) = ω(0) = 0, define

Z(ω)
r =

{
η ∈ Lr : 1 ≤ r ≤ ∞, sup

t6=0

‖η(·+ t) + η(· − t)− 2η(·)‖r
ω(t)

<∞

}
,
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where

‖η‖(ω)r = ‖η‖r + sup
t6=0

‖η(·+ t) + η(· − t)− 2η(·)‖r
ω(t)

, r ≥ 1.

Then, clearly ‖ · ‖(ω)r is a norm on Z
(ω)
r . As we know Lr (r ≥ 1) is complete,

the space Z
(ω)
r is also complete. Hence we can say Z

(ω)
r is a Banach space

under the norm ‖ · ‖(ω)r .

Now we define the weighted Zygmund class as

W (Z(ω)
r )

=

{
η ∈W (Z(ω)

r ) :1≤r≤∞, sup
t6=0

‖(η(·+t)+η(·−t)−2η(·)) sinβ(·)‖r
ω(t)

≤ ∞

}
,

(2.5)

where

‖η‖(ω)r = ‖η‖r + sup
t6=0

‖(η(·+ t) + η(· − t)− 2η(·)) sinβ(·)‖r
ω(t)

, r ≥ 1. (2.6)

Clearly, ‖·‖∗(ω)r is a norm of Z
(ω)
r . The space Z

(ω)
r is complete because Lr, r ≥ 1

is complete. Hence, we can say that W (Z
(ω)
r ) is complete.

As Z
(ω)
r is a Banach space under ‖ · ‖(ω)r , so W (Z

(ω)
r ) is also a Banach space

under ‖ · ‖(ω)r norm.

(i) If we put β = 0 in W (Z
(ω)
r ) class, then it reduces to Z

(ω)
r class.

(ii) If we put r →∞, then the class Z
(ω)
r reduces to the Z(ω) class.

(iii) If we put ω(t) = tα in Z
(ω)
r class, then it reduces to Z(α),r class.

(iv) If we put ω(t) = tα, the Z(ω) class reduces to Z(α) class.

Here ω(t) and v(t) denotes the Zygmund moduli of continuity such that
(
ω(t)
v(t)

)
is positive, non-decreasing, then

‖η‖(v)r ≤ max

(
1,
ω(2π)

v(2π)

)
‖η‖(ω)r ≤ ∞.

Thus, we have

Z(ω)
r ⊆ Z(v)

r ⊆ Lr (r ≥ 1).

Hence,

W (Z(ω)
r ) ⊆W (Z(v)

r ) ⊆W (Lr, ω(t)).

Hausdorff matrices were first introduced by Hurwitz and Silverman [3] as
the collection of lower triangular matrices that commute the Cesaro matrix of
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order one. A Hausdorff matrix H ≡ (hn,k) is an infinite lower matrix defined
by

hn,k =

{(
n
k

)
∆n−kµk, if 0 ≤ k ≤ n,

0, if k > n,

where the operator ∆ is defined by ∆µn ≡ µn−µn+1 and ∆k+1µn ≡ ∆k(∆µn).

Let
∑∞

n=0 un be an infinite series with partial sum sn =
∑n

k=0 uk. If tHn =∑n
k=0 hn,ksk → s as n → ∞,

∑n
k=0 un is said to be summable to s by the

Hausdorff matrix summability method (∆H means). The Hausdorff matrix H
is regular, that is,, H preserves the limit of each convergent sequence if and
only if ∫ 1

0
|d(α(z))| <∞,

where the mass function α ∈ BV [0, 1], α(0+) = α(0) = 0 and α(1) = 1. In
this case, the µn has the representation

µn =

∫ 1

0
zndαz.

Let E
(q)
n = 1

(1+q)n
∑n

k=0

(
n
k

)
qn−ksk, q > 0. If E

(q)
n → s as n→∞,

∑∞
k=0 un

is said to be summable to s by Euler method, that is, the (E, q) method (see

[1]). The (E, q) transform of tHn transform defines the E(q) ·∆H transform of
(sn). It is denoted by TEHn . Thus,

TEHn =
1

(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

hk,vsv.

If TEHn → s as n → ∞,
∑∞

k=0 un is said to be summable to s by Euler-

Hausdorff summability means (see [5]), that is, the E(q) ·∆H means. As the

Euler method and Hausdorff methods are regular, E(q) ·∆H method is regular.

We use the following notations throughout the papers,

φ(x, t) = f(x+ t) + f(x− t)− f(x),

KEH
n =

1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

hk,v
sin(v + 1

2)t

sin( t2)

=
1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

∫ 1

0
zk(1− z)k−vdα(z)

sin(v + 1
2)t

sin( t2)
.

(2.7)
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3. Main results

To prove the main results, we need the followings lemmas.

Lemma 3.1. |KEH
n (t)| = O(n+ 1) for 0 ≤ t ≤ 1

n+1 .

Proof. For sinnt ≤ n sin t, we have

|KEH
n (t)| =

∣∣∣∣∣ 1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

∫ 1

0
zk(1− z)k−vdα(z)

sin(v + 1
2)t

sin( t2)

∣∣∣∣∣
≤ 1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

∫ 1

0
zk(1− z)k−vdα(z)

∣∣∣∣∣sin(v + 1
2)t

sin( t2)

∣∣∣∣∣
≤ 1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

∫ 1

0
zk(1− z)k−vdα(z)

(2v + 1) sin 1
2 t

sin( t2)

=
(2n+ 1)N

2π(1 + q)n

(
n

k

)
qn−k

k∑
v=0

∫ 1

0
zk(1− z)k−vdz

= O(n+ 1), (3.1)

where N = sup0<z≤1 |α
′
(z)|. �

Lemma 3.2. |KEH
n (t)| = O

(
1

(n+1)t2

)
for 1

n+1 ≤ t ≤ π.

Proof. For | sinnt| = 1 and sin t
2 ≥

t
π . First we calculate,∫ 1

0

n∑
k=0

(
n

k

)
zk(1− z)n−k sin(n+

1

2
)t dα(z)

=

∫ 1

0
Im

[
n∑
k=0

(
n

k

)
zk(1− z)n−kei(n+

1
2
)t dα(z)

]

=

∫ 1

0
Im

[
ei

t
2 (1− z)n

n∑
k=0

(
n

k

)(
z

1− z

)k
eikt dα(z)

]

=

∫ 1

0
Im
[
ei

t
2 (1− z + zeit)n dα(z)

]
= N Im

(
(1− z + zeit)n+1

ei
t
2 − e−i

t
2 (n+ 1)

)z=1

z=0

= N Im

(
ei(n+1)t − 1

2i sin( t2)(n+ 1)

)
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=
N

2n+ 1
Im

(
cos(n+ 1)t+ i sin(n+ 1)t− 1

2i sin t
2

)

=
N

2n+ 1

(
sin(n+ 1)t

i sin t
2

)

=
N

2n+ 1
× π

t

= O

(
1

(n+ 1)t

)
. (3.2)

Now applying Jordan’s lemma, we have

|KEH
n (t)| =

∣∣∣∣∣ 1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

k∑
v=0

∫ 1

0
zk(1− z)k−vdα(z)

sin(v + 1
2)t

sin( t2)

∣∣∣∣∣
≤ 1

2t(1 + q)n

n∑
k=0

(
n

k

)
qn−k

∣∣∣∣∣
k∑
v=0

∫ 1

0
zk(1− z)k−v sin(v +

1

2
)t dα(z)

∣∣∣∣∣
=

1

2t(1 + q)n

n∑
k=0

(
n

k

)
qn−kO

(
1

(k + 1)t

)

=

(
1

2t2(1 + q)n

n∑
k=0

(
n

k

)
qn−k

(
1

(k + 1)

))

= O

(
1

(n+ 1)t2

)
. (3.3)

�

Lemma 3.3. Let f ∈ Z(ω)
r . Then for 0 < t ≤ π,

(1) ‖φ(·, t)‖r = O(ω(t)),

(2) ‖φ(·+ y, t) + φ(· − y, t)− 2φ(·, t)‖r =

{
O(ω(t)),

O(ω(y)),

(3) If ω and v denotes the zygmund moduli such that (ω(t)v(t) ) is positive and

increasing, then we have

‖φ(·+ y, t) + φ(· − y, t)− 2φ(·, t)‖r = O

(
v(y)

ω(t)

v(t)

)
,

where φ(x, t) = f(x+ t) + f(x− t)− 2f(x).

Lemma 3.4. ‖(φ(·+y, t)+φ(·−y, t)−2φ(·, t)) sinβ(·)‖r = O
(
tβv(y)

(
ω(t)
v(t)

))
.
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Proof. For v is positive, nondecreasing, t ≤ y, | sinβ t| ≤ tβ and using Lemma
3.3, we obtained

‖(φ(·+ y, t) + φ(· − y, t)− 2φ(·, t)) sinβ(·)‖r = O(tβω(t))

= O

(
tβv(t)

(
ω(t)

v(t)

))
≤ O

(
tβv(y)

(
ω(t)

v(t)

))
.

Since ω(t)
v(t) is positive, non-decreasing, if t ≥ y, then ω(t)

v(t) ≥
ω(y)
v(y) , so that

‖(φ(·+ y, t) + φ(· − y, t)− 2φ(·, t)) sinβ(·)‖r = O(tβω(y))

= O

(
tβv(y)

(
ω(t)

v(t)

))
.

�

The main objective of this paper is to prove the following theorems.

Theorem 3.5. Let η be a 2π periodic function and Lebesgue integrable on

[−π, π] and belonging to weighted Zygmund class W (Z
(ω)
r ), r ≥ 1. Then the

degree of approximation of signal (function) η, using Euler-Hausdorff summa-
bility means of HL-series (2.3) is given by

En(η) = inf ‖TEHn − η‖r = O

(
1

(n+ 1)2

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
, (3.4)

where ω and v denotes the zygmund moduli such that (ω(t)v(t) ) is positive and

increasing.

Proof. Following the results of Titechmalch [17], the Euler-Hausdroff trans-
form of {ξn(f, x)} and is denoted by

τEHn (x)−η(x) =
2

π

∫ π

0
φ(x, t)

1

(1 + q)n

n∑
v=0

(
n

v

)
qn−v{tHn (x)− η(x)}

=
2

π

∫ π

0
φ(x, t)

1

(1 + q)n

n∑
v=0

(
n

v

)
qn−v

×

{
1

2π

∫ π

0
φ(x; t)

k∑
v=0

∫ 1

0

(
k

v

)
zv(1−z)k−vdα(z)

sin(v+ 1
2)t

sin t
2

dt

}

=

∫ π

0
φ(x; t)KEH

n (t)dt

= Ln(x). (3.5)
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Now

Ln(x) = TEHn (x)− f(x) =

∫ π

0
φ(x; t)KEH

n (t)dt. (3.6)

This implies

Ln(x+ y) + Ln(x− y)− 2Ln(x)

=

∫ π

0
[φ(x+ y; t) + φ(x− y; t)− 2φ(x; t)]KEH

n (t)dt, (3.7)

(Ln(·+ y) + Ln(· − y)− 2Ln(·)) sinβ(·)

=

∫ π

0

(
(φ(·+ y; t) + φ(· − y; t)− 2φ(·; t)) sinβ(·)

)
KEH
n (t)dt. (3.8)

Now we can write

‖(Ln(·+ y) + Ln(· − y)− 2Ln(·)) sinβ(·)‖r

=

∫ π

0
‖(φ(·+ y; t) + φ(· − y; t)− 2φ(·; t)) sinβ(·)‖rKEH

n (t)dt

=

∫ 1
n+1

0
‖(φ(·+ y; t) + φ(· − y; t)− 2φ(·; t)) sinβ(·)‖rKEH

n (t)dt

+

∫ π

1
n+1

‖(φ(·+ y; t) + φ(· − y; t)− 2φ(·; t)) sinβ(·)‖rKEH
n (t)dt

:= I1 + I2. (3.9)

Further the function f ∈ W (Z
(ω)
r ) implies φ ∈ W (Z

(ω)
r ) and applying

Lemma 3.1, Lemma 3.4 and monotonicity of ω(t)
v(t) with respect to t, we have

I1 =

∫ 1
n+1

0
‖(φ(·+ y; t) + φ(· − y; t)− 2φ(·; t)) sinβ(·)‖rKEH

n (t)dt

= O

(∫ 1
n+1

0
v(y)

tβω(t)

v(t)
(n+ 1)dt

)

= O

(
(n+ 1) v(y)

∫ 1
n+1

0

tβω(t)

v(t)
dt

)

= O

(
(n+ 1) v(y)

ω( 1
n+1)

v( 1
n+1)

∫ 1
n+1

0
tβdt

)

= O

(
1

(n+ 1)β
v(y)

ω( 1
n+1)

v( 1
n+1)

)
. (3.10)
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Next, using Lemma 3.2 and Lemma 3.4, we get

I2 =

∫ π

1
n+1

‖(φ(·+ y; t) + φ(· − y; t)− 2φ(·; t)) sinβ(·)‖rKEH
n (t)dt

= O

(∫ π

1
n+1

v(y)
tβω(t)

v(t)

1

(n+ 1)t2
dt

)

= O

(
1

(n+ 1)
v(y)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
. (3.11)

Thus using (3.9), (3.10) and (3.11) we can write

‖(Ln(·+ y) + Ln(· − y)− 2Ln(·)) sinβ(·)‖r

= O

(
1

(n+1)β
v(y)

ω( 1
n+1)

v( 1
n+1)

)
+O

(
1

(n+1)
v(y)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
. (3.12)

Therefore, we have

sup
y 6=0

‖Ln(·+ y) + Ln(· − y)− 2Ln(·)‖r
v(y)

= O

(
1

(n+ 1)β
ω( 1

n+1)

v( 1
n+1)

)
+O

(
1

(n+ 1)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
. (3.13)

Clearly,

φ(x; t) = |f(x+ t) + f(x− t)− 2f(x)|.
Now applying Minkowski’s inequality, we have

‖φ(x; t)‖r = ‖f(x+ t) + f(x− t)− 2f(x)‖r. (3.14)

Now using Lemma 3.3, we have

‖(Ln(·)) sinβ(·)‖r

≤

(∫ 1
n+1

0
+

∫ π

1
n+1

)
‖(φ(·, t)) sinβ(·)‖r|KEH

n (t)|dt

= O

(
(n+1)

∫ 1
n+1

0
tβω(t)dt

)
+O

(
1

(n+1)2

∫ π

1
n+1

tβ−2ω(t)dt

)

= O

(
(n+ 1)ω(

1

n+ 1
)

∫ 1
n+1

0
tβdt

)
+O

(
1

(n+ 1)2

∫ π

1
n+1

ω(t)

t2−β
dt

)

= O

(
1

(n+ 1)β
w(

1

n+ 1
)

)
+O

(
1

(n+ 1)2

∫ π

1
n+1

ω(t)

t2−β
dt

)
. (3.15)
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Now from (3.14) and (3.15), we have

‖(Ln(·)) sinβ(·)‖vr = ‖(Ln(·)) sinβ(·)‖r

+ sup
y 6=0

‖(Ln(·+ y) + Ln(· − y)− 2Ln(·)) sinβ(·)‖r
v(y)

= O

(
1

(n+ 1)β
w(

1

n+ 1
)

)
+O

(
1

(n+ 1)2

∫ π

1
n+1

ω(t)

t2−β
dt

)

+O

(
1

(n+ 1)β
ω( 1

n+1)

v( 1
n+1)

)

+O

 1

(n+ 1)

∫ π

1
(n+1)2

tβ−2ω(t)

v(t)
dt


=

4∑
i=1

O(Ji) (say). (3.16)

Now we write J1 in terms of J3 and further J2, J3 in terms of J4.
In view of monotonicity of v(t) for 0 < t ≤ π, we have

ω(t) =
ω(t)

v(t)
· v(t) ≤ v(π)

ω(t)

v(t)
· v(t) = O

(
ω(t)

v(t)

)
for 0 < t ≤ π.

Therefore, we can write for t = (n+ 1)−1.

J1 = O(J3). (3.17)

Again by using monotonicity of v(t),

J2 =
1

(n+ 1)2

∫ π

1
n+1

tβ−2ω(t)

v(t)
v(t)dt

≤ 1

(n+ 1)2
v(π)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

≤ 1

(n+ 1)2

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

= O(J4). (3.18)

Now using
(
ω(t)
v(t)

)
is positive and non-decreasing, we have
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J4 =
1

(n+ 1)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

≥ 1

(n+ 1)

ω( 1
n+1)

v( 1
n+1)

∫ π

1
n+1

tβ−2dt

≥ 1

(n+ 1)

ω( 1
n+1)

v( 1
n+1)

1

(n+ 1)β−1

≥ 1

(n+ 1)β
ω( 1

n+1)

v( 1
n+1)

. (3.19)

Hence, we have

J3 = O(J4). (3.20)

Now combining (3.15) and (3.20), we get

‖(Ln(·)) sinβ(·)‖r = O

(
1

(n+ 1)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
. (3.21)

Hence,

En(f) = inf
n
‖(Ln(·)) sinβ(·)‖(v)r = O

(
1

(n+ 1)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
. (3.22)

This completes the proof . �

Theorem 3.6. Let η be a 2π periodic function and Lebesgue integrable on

[−π, π] and belonging to weighted Zygmund class W (Z
(ω)
r ), r ≥ 1. Then the

degree of approximation of signal (function) η, using Euler-Hausdorff summa-
bility means of HL-series (2.3) is given by

En(η) = inf ‖TEHn − η‖r = O

(
1

(n+ 1)

tβω( 1
n+1)

v( 1
n+1)

)
, (3.23)

where ω and v denotes the Zygmund moduli such that ( ω(t)tv(t)) is positive and

decreasing.

Proof. Following the proof of Theorem 3.5, we have

En(f) = O

(
1

(n+ 1)

∫ π

1
n+1

tβ−2ω(t)

v(t)
dt

)
. (3.24)
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From our assumption that
(
ω(t)
tv(t)

)
is positive and non-increasing with t, we

have

En(f) = O

(
1

(n+ 1)
(n+ 1)

ω( 1
n+1)

v( 1
n+1)

∫ π

1
n+1

tβ−1dt

)

= O

(
ω( 1

n+1)

v( 1
n+1)

(πβ − 1

(n+ 1)β
)

)
. (3.25)

This completes the proof. �

4. Applications

Following corollaries can be obtained from Theorem 3.5.

Corollary 4.1. If we replace Euler-Hausdorff mean by (E, 1)(C, 1) mean [11]
in Theorem 3.5, then the degree of approximation of a function f ∈W (Zωr ) by
(E, 1)(C, 1) mean of HL-series (2.3) is given by

En(f) = O

(∫ π

1
n+1

tβ−1ω(t)

v(t)
dt

)
. (4.1)

Corollary 4.2. If we replace Euler-Hausdorff mean by (E, q)(N, pn, qn) mean
[8] in Theorem 3.5, then the degree of approximation of a function f ∈W (Zωr )
by (E, q)(N, pn, qn) mean of HL-series (2.3) is given by

En(f) = O

(∫ π

1
n+1

tβ−1ω(t)

v(t)
dt

)
. (4.2)

Corollary 4.3. If we replace Euler-Hausdorff mean by Hausdorff mean [5] in
Theorem 3.5, then the degree of approximation of a function f ∈ W (Zωr ) by
Hausdorff mean of HL-series (2.3) is given by

En(f) = O

(
1

(n+ 1)

∫ π

1
n+1

tβ−1ω(t)

v(t)
dt

)
. (4.3)

5. Conclusion

There are various types of results exist in the literature concerning the
degree of approximations of periodic functions belonging to different Zygmund
classes and weighted Zygmund classes. The established theorem in this paper
is an attempt to study the approximation of signals (functions) belonging to
weighted Zygmund class via Euler-Hausdorff summability means for Hardy-
Littlewood series, which generalizes several known results. Further, the result
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can be extended for other functions belonging to weighted Zygmund class
using Fourier series, conjugate Fourier series, derived Fourier series.
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