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Abstract. In this paper, an algorithm for approximating zeros of sum of three monotone op-

erators is introduced and its convergence properties are studied in the setting of 2-uniformly

convex and uniformly smooth Banach spaces. Unlike the existing algorithms whose step-sizes

usually depend on the knowledge of the operator norm or Lipschitz constant, a nice feature
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step-size to obtain strong convergence of the iterates to a solution of the problem. Finally,

the proposed algorithm is implemented in the setting of a classical Banach space to support

the theory established.
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1. Introduction

The following notions will appear frequently in this section. We will first
introduce them for familiarity before we introduce the problem. Let E be a
real Banach space with dual E∗. A mapping A : E → 2E

∗
is called monotone

if
〈x− y, u− v〉 ≥ 0, u ∈ Ax, v ∈ Ay, ∀x, y ∈ E

and maximal monotone if its has no monotone extension. A mapping A :
E → E∗ is called β-strongly monotone if there exists β > 0 such that for all
x, y ∈ E,

〈x− y,Ax−Ay〉 ≥ β‖x− y‖2.
It is also called β-cocoercive (or β-inverse strongly monotone) if

〈x− y,Ax−Ay〉 ≥ β‖Ax−Ay‖2.
It is called α-Lipschitz if there exists α > 0 such that

‖Ax−Ay‖ ≤ α‖x− y‖.

Monotone maps were studied by Minty [31], Zarantonello [42], Deepho et al.
[23], Chidume et al. [15, 12], Muangchoo et al. [32] and many other authors
in Hilbert spaces and more general Banach spaces. These mappings have
caught the interest of many authors largely because they are useful in real-
world applications, especially when it comes to solving convex optimization
problems (see, e.g., [3, 4, 7, 18, 27, 28, 40, 41]).

Now, let L : E → 2E
∗

be a set-valued map and M,N : E → E∗ be single-
valued maps. Consider the following inclusion problem:

find x ∈ E such that 0 ∈ (L+M +N)x. (1.1)

The variational inclusion problem (1.1) popularly known as monotone inclu-
sion problem, when the operators involved are monotone was first studied
by Davis and Yin [21] in the setting of real Hilbert spaces, to the best of
our knowledge (see [1, 2]). In theory, one may wonder why the interest in
problem (1.1) since it can be redefined as A := L + M + N and thus the
problem is equivalent to finding a zero of A which the proximal point algo-
rithm (PPA) and its variants have been used to solve such cases (see, e.g.,
[11, 14, 16, 17, 25, 33, 34]). We recall that the PPA of Martinet [30] involving
a maximal monotone operator A generates its iterates by solving the recursive
equation: {

x1 ∈ H,
xn+1 = (I + λnA)−1xn,

where λn > 0, H is a real Hilbert space and I is the identity mapping on
H. However, evaluating the resolvent of A, (I + λA)−1 can be challenging
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in practice especially when A is nonlinear. This challenge is what led to the
introduction of problem (1.1). In the literature, several splitting methods have
been proposed by many authors to overcome this challenge. The idea is to
split A as sum of operators with so that the linear part of A can be used to
compute the resolvent easily and other properties of the remaining operators
can be exploited independently (see, e.g., [3, 5, 13, 22, 24, 26, 36, 43, 44]).

Davis and Yin [21] studied problem (1.1) due to its numerous applications
in solving problems arising from optimization. In particular, they studied the
following 3-objective optimization problem which is to find x ∈ H such that

min
x
f(x) + g(x) + h(Bx), (1.2)

where f , g and h are proper closed and convex functions, h is 1
β -Lipschitz

differentiable and B is a linear mapping. Davis and Yin [21] gave several
interesting applications of problem (1.1). In fact, models arising from image
inpainting which has to do with reconstructing missing regions in an image
appear naturally as the 3-objective minimization problem (see, e.g., [20, 37]).
In [21], Davis and Yin recast problem (1.2) to fit in the setting of problem (1.1)
by setting L = ∂f, M = ∂g and N = ∇(hB). Then, they introduced the fol-
lowing algorithm for solving problem (1.1) and established a weak convergence
result: {

x0 ∈ H,
xn+1 = (1− αn)xn + αnTxn,

(1.3)

where T = JLλ
(
2JMλ − I − λnNJMλ

)
+ I − JMλ , JLλn = (I − λL)−1, L and M

are maximal monotone, N is β-cocoercive, {λ} ⊂ (0, 2β), {αn} ⊂
(

0, 4β−λ2β

)
.

Recently, using the idea of Tseng [38], Malistky and Tam [29] proposed a
simple algorithm for solving problem (1.1) and established weak convergence
result. Their algorithm is the following:{

x0, x1 ∈ H,
xn+1 = JLλ

(
xn − 2λMxn + λMxn−1 + λNxn

)
,

(1.4)

where L is maximal monotone, M is monotone and l1-Lipschitz, N is monotone
and l2-cocoercive and λ ∈

(
0, 2

4l1+l2

)
.

Remark 1.1. The algorithm of Malistky and Tam [29] requires only one
computation of the resolvent operator Jλ per iteration, which reduces the
computational cost of implementing the algorithm. On the other hand, the
method of Davis and Yin [21] requires the computation of the resolvent twice
per iteration. In addition to this, one of the shortcomings of these methods is
that the control parameters depend on the knowledge of the Lipschitz constant,
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which is difficult to compute. In most cases, estimations of the constants are
used to implement the algorithm, which affects their performance.

Question A. Can an iteration process be developed that will address the
shortcomings of algorithms (1.3) and (1.4) mentioned in Remark 1.1.

This question was answered in the affirmative by Hieu et al. [39] in the
setting of Hilbert spaces. They introduced the following algorithm:{

x0, x1 ∈ H,
xn+1 = JLλn

(
xn − λnMxn − λn−1(Mxn −Mxn−1)− λnNxn

)
,

(1.5)

where L is maximal monotone, M is α-strongly monotone and l1-Lipschitz
continuous and N is β-cocoercive, {λn} ⊂ (0,∞) such that limn→∞ λn = 0
and

∑∞
n=1 λn = ∞. Then {xn} converges strongly to a solution of problem

(1.1).

Motivated by Question A and the results of Hieu et al. [39], it is our purpose
in this paper to provide an affirmative answer to Question A in the setting of
real Banach spaces. Furthermore, we will provide some numerical illustrations
to compare the performance of the algorithms of Davis and Yin [21], Malistky
and Tam [29] and our proposed algorithm in the setting of Hilbert spaces.
Furthermore, we will give a numerical illustration in the setting of the classical
Banach space `1.5 to support the theory we established. Finally, our proposed
method extend and generalize many iterative techniques for approximating
zeros of sum of two monotone operators in the setting of real Banach spaces.

2. Preliminaries

The following definitions and lemmas will be needed in the proof of our
main theorem.

Definition 2.1. Let E be a strictly convex and smooth real Banach space.
For p > 1, define Jp : E → 2E

∗
by

Jp(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1}.

Jp is called the generalized duality map on E. If p = 2, then J2 := J is called
the normalized duality map and is denoted by J .

In a real Hilbert space H, J is the identity map on H. It is easy to see from
the definition that

Jp(x) = ‖x‖p−2Jx and 〈x, Jp(x)〉 = ‖x‖p, ∀x ∈ E.

It is well known that if E is smooth, then J is single-valued and if E is strictly
convex, J is one-to-one, and J is surjective if E is reflexive.
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The next definition is for the Lyapunov functional φ introduced by Alber
and Ryazantseva [8]. It is useful for estimations involving J and its inverse
J−1 on smooth Banach space.

Definition 2.2. Let E be a real Banach space that is smooth and φ : E×E →
R be a map. The Lyapunov functional φ is defined by

φ(x, y) := ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ X.

Observe that if E is a real Hilbert space, (2.1) reduces to

φ(x, y) = ‖x− y‖2, ∀x, y ∈ E.

The next definition is for the resolvent operator in the setting of a real
Banach space.

Definition 2.3. Let E be a reflexive, strictly convex and smooth real Banach
space and let B : E → 2E

∗
be a maximal monotone operator. Then for

any λ > 0 and u ∈ E, there exists a unique element uλ ∈ E such that
Ju ∈ Juλ + λBuλ. The element uλ is called the resolvent of B and it is
denoted by JBλ u. Alternatively, JBλ =

(
J + λB)−1J for all λ > 0.

It is easy to verify that B−10 = F (JBλ ) for all λ > 0, where F (JBλ ) denotes

the set of fixed points of JBλ .

The next two lemmas will play a central role in establishing the strong
convergence of the sequence generated by our proposed algorithm.

Lemma 2.4. ([9]) Let E be a uniformly convex and smooth real Banach space.
Then the following inequalities holds:

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀x, y, z ∈ E.

Lemma 2.5. ([9]) Let E be a 2-uniformly convex real Banach space. Then
there exists κ > 0 such that

1

κ
‖x− y‖2 ≤ φ(x, y), ∀x, y ∈ E.

3. Main result

Algorithm 3.1. (Three Operator Splitting Algorithm)

Step 0. Choose x0, x1 ∈ E and {λn} ⊂ (0, 1) such that lim
n→∞

λn = 0 and
∞∑
n=0

λn =∞.



1056 A. Adamu, D. Uzun Ozsahin, A. H. Ibrahim and P. Sunthrayuth

Step 1. Having xn−1, xn, compute

xn+1=
(
J+λnL

)−1(
Jxn−λnMxn−λn−1(Mxn−Mxn−1)−λnNxn

)
. (3.1)

Step 2. If max{‖xn+1 − xn‖, ‖xn − xn−1‖} < ε for any ε > 0, STOP else set
n = n+ 1 and return to Step 1.

Theorem 3.2. Let E be a 2-uniformly convex and uniformly smooth real
Banach space. Let L : E → 2E

∗
be a maximal monotone operator, M : E →

E∗ be an η-strongly monotone and γ-Lipschitz operator and N : E → E∗

be µ-inverse strongly monotone. Let {xn} be a sequence in E generated by
Algorithm 3.1. Then {xn} converges strongly to a solution of problem (1.1).

Proof. Let x∗ be a solution of problem (1.1). Observe that from (3.1), we have

Jxn − λnMxn−λn−1(Mxn −Mxn−1)− λnNxn ∈ Jxn+1 + λnLxn+1.

Set

wn = Jxn − Jxn+1 − λnMxn − λn−1(Mxn −Mxn−1)− λnNxn
∈ λnLxn+1.

Furthermore, since x∗ is a solution, we get

w∗ = −λnMx∗ − λnNx∗ ∈ λnLx∗.
Therefore, by the monotonicity of L, we have that

〈wn − w∗, xn+1 − x∗〉 ≥ 0.

That is

〈Jxn − Jxn+1, xn+1 − x∗〉 − λn〈Mxn −Mx∗, xn+1 − x∗〉
−λn−1〈Mxn−Mxn−1, xn+1−x∗〉−λn〈Nxn−Nx∗, xn+1−x∗〉 ≥ 0. (3.2)

We estimate the first three terms of inequality (3.2) above as follows. By
Lemma 2.4,

2〈Jxn+1 − Jxn, x∗ − xn+1〉 = φ(x∗, xn)− φ(x∗, xn+1)− φ(xn+1, xn). (3.3)

Also, using the η-strong monotonicity of M , we get

〈Mxn −Mx∗, xn+1 − x∗〉 = 〈Mxn+1 −Mx∗, xn+1 − x∗〉 (3.4)

+ 〈Mxn −Mxn+1, xn+1 − x∗〉
≥ η‖xn+1 − x∗‖2 + 〈Mxn −Mxn+1, xn+1 − x∗〉.

Furthermore,

〈Mxn −Mxn−1, x
∗ − xn+1〉 = 〈Mxn −Mxn−1, x

∗ − xn〉
+ 〈Mxn −Mxn−1, xn − xn+1〉. (3.5)
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Substituting, equations (3.3) and (3.5), inequality (3.4) in inequality (3.2), we
get

0 ≤ φ(x∗, xn)− φ(x∗, xn+1)− φ(xn+1, xn)− 2λnη‖xn+1 − x∗‖2

− 2λn〈Mxn −Mxn+1, xn+1 − x∗〉+ 2λn−1〈Mxn −Mxn−1, x
∗ − xn〉

+ 2λn−1〈Mxn −Mxn−1, xn − xn+1〉 − 2λn〈Nxn −Nx∗, xn+1 − x∗〉.

Thus

2λnη‖xn+1 − x∗‖2 ≤ φ(x∗, xn)− φ(x∗, xn+1)− φ(xn+1, xn)

− 2λn〈Mxn −Mxn+1, xn+1 − x∗〉
+ 2λn−1〈Mxn−1 −Mxn, xn − x∗〉
+ 2γλn−1‖xn − xn−1‖‖xn+1 − xn‖
− 2λn〈Nxn −Nx∗, xn+1 − x∗〉. (3.6)

Next, we estimate the last term in inequality (3.6). Now,

2〈Nxn −Nx∗, xn+1 − x∗〉 = 2〈Nxn −Nx∗, xn+1 − xn〉
+ 2〈Nxn −Nx∗, xn − x∗〉
≥ −2‖Nxn −Nx∗‖‖xn+1 − xn‖

+ 2µ‖Nxn −Nx∗‖2

≥ −2µ‖Nxn −Nx∗‖2 −
1

2µ
‖xn+1 − xn‖2

+ 2µ‖Nxn −Nx∗‖2

= − 1

2µ
‖xn+1 − xn‖2.

Substituting this inequality in (3.6) and using Lemma 2.5, we get

2λnη‖xn+1 − x∗‖2 ≤ φ(x∗, xn)− φ(x∗, xn+1)− φ(xn+1, xn)

− 2λn〈Mxn −Mxn+1, xn+1 − x∗〉
+ 2λn−1〈Mxn−1−Mxn, xn−x∗〉+γλn−1‖xn−xn−1‖2

+ γλn−1‖xn+1 − xn‖2 +
λn
2µ
‖xn+1 − xn‖2

≤ φ(x∗, xn) + γλn−1‖xn − xn−1‖2

+ 2λn−1〈Mxn−1 −Mxn, xn − x∗〉 − φ(x∗, xn+1)

−
(1

κ
− γλn−1 −

λn
2µ

)
‖xn+1 − xn‖2

− 2λn〈Mxn −Mxn+1, xn+1 − x∗〉. (3.7)
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Let Θn = φ(x∗, xn) + γλn−1‖xn − xn−1‖2+2λn−1〈Mxn−1 −Mxn, xn − x∗〉.
Then inequality (3.7) can rewritten as

2λnη‖xn+1 − x∗‖2+
(1

κ
− γλn−1 −

λn
2µ
− λnγ

)
‖xn+1 − xn‖2 ≤ Θn −Θn+1.

(3.8)

Observe that

Θn = φ(x∗, xn) + γλn−1‖xn − xn−1‖2 + 2λn−1〈Mxn−1 −Mxn, xn − x∗〉
≥ φ(x∗, xn) + γλn−1‖xn − xn−1‖2 − 2γλn−1‖xn−1 − xn‖‖xn − x∗‖
≥ φ(x∗, xn) + γλn−1‖xn − xn−1‖2

− γλn−1‖xn−1 − xn‖2 − γλn−1‖xn − x∗‖2

≥
(1

κ
− γλn−1

)
‖xn − x∗‖2. (3.9)

Let θ ∈ (0, 1κ) be fixed. Since λn → 0 as n→∞,

lim
n→∞

(1

κ
− γλn−1 −

λn
2µ
− γλn

)
=

1

κ
> θ.

Thus, there exists n0 ≥ 1 such that(1

κ
− γλn−1 −

λn
2µ
− γλn

)
≥ θ, ∀n ≥ n0.

In addition,
1

κ
− γλn−1 ≥ θ, ∀n ≥ n0.

Thus, {Θn} is nonnegative. Hence,

2λnη‖xn+1 − x∗‖2 + θ‖xn+1 − xn‖2 ≤ Θn −Θn+1, ∀ n ≥ n0.

Thus, the sequence {Θn} is non-increasing. Consequently, the limit of {Θn}
exists. Thus, from (3.9), we can conclude that {xn} is bounded.

Next, we show that {xn} converges strongly to a solution of problem (1.1).
From (3.8), taking the finite sum of both sides, we have

N∑
k=n0

(
2λkγ‖xk+1 − x∗‖2 + ε‖xk+1 − xk‖2

)
≤ Θn0 −Θk+1 ≤ Θn0 .

Thus,

∞∑
k=n0

(
2λkγ‖xk+1 − x∗‖2 + ε‖xk+1 − xk‖2

)
≤ Θn0 − lim

k→∞
Θk+1 ≤ Θn0 .
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This implies that

lim
n→∞

‖xn − xn+1‖2 = 0 and
∞∑

n=n0

λn‖xn+1 − x∗‖2 <∞. (3.10)

It follows from inequality (3.10) and the fact that
∑∞

n=n0
λn =∞ that

lim inf
n→∞

‖xn+1 − x∗‖2 = 0

and thus

lim inf
n→∞

φ(x∗, xn+1) = 0.

We recall that

Θn+1 = φ(x∗, xn+1)+λnγ‖xn+1 − xn‖2

+ 2λn〈Mxn −Mxn+1 − xn+1 − x∗〉.

Using equation (3.10), the boundedness of {xn}, the Lipschitz continuity of
M and the fact that λn → 0, we have

lim
n→∞

(
λnγ‖xn+1 − xn‖2 + 2λn〈Mxn −Mxn+1 − xn+1 − x∗〉

)
= 0.

This implies that

lim
n→∞

Θn+1 = lim
n→∞

φ(x∗, xn+1).

Therefore,

lim
n→∞

‖xn+1 − x∗‖ = 0.

This completes the proof. �

Remark 3.3. Theorem 3.2 extends and generalizes many established results
in a Banach space that are 2-uniformly convex and uniformly smooth in the
literature. It extends:

(1) Theorem 3.1 of Bello et al. [10]. In the sense that their weak con-
vergence result can be modified to obtain strong convergence by just
setting N ≡ 0 in Algorithm 3.1. Furthermore, the dependency of their
step-size on the Lipschitz constant of one of the operators can be dis-
pensed with by using the non-summable and diminishing step size we
used in Algorithm 3.1 and using our method of proof in Theorem 3.2.

(2) Algorithm 3.3 of Shehu [35], Algorithm 1 of Cholamjiak et al. [19],
Algorithm 3.12 of Adamu et al. [6] and other Tseng-type algorithms
in the literature. In the sense that the number of function evaluation
in the algorithm can be reduced and by just setting N ≡ 0 in our
proposed Algorithm 3.1 and using our idea of proof the dependency of
the step-size on the Lipschitz constant can be dispensed with.
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4. Numerical illustrations and applications

In this section, we will give two numerical examples to compare the per-
formance of our proposed algorithm and that of Davis and Yin [21], Malistky
and Tam [29] in solving problem (1.1).

Example 4.1. Let A be an n × n symmetric and positive definite matrix
(spdm). Let L : Rn → Rn be defined by Lx := Ax. Then L is maximal
monotone. Let M : Rn → Rn be defined by Mx := Ax+ b, b ∈ Rn. Then, M
is γ-strongly monotone. Let N : Rn → Rn be defined by Nx = Ax. Then N
is µ-cocoercive. To implement Algorithms (1.3), (1.4) and (3.1), we will use a
particular spdm to define L,M and N on R3. In algorithms (1.3), (1.4) and
(3.1), set

Lx =

 3 −2 0
−1 4 −2
0 −1 2

x1x2
x3

 ,

Mx =

 3 −2 0
−1 4 −2
0 −1 2

x1x2
x3

+

 1
−1
2

 ,

Nx =

 2 −1 0
−1 2 −1
0 −1 2

x1x2
x3

 .

It is not difficult to verify that the coefficient matrices are symmetric and pos-
itive definite. Furthermore, it is easy to verify that L is maximal monotone,
M is 1-strongly monotone and 5-Lipschitz continuous (where 5 is an estimated
value of the Lipschitz constant) and thus, M is maximal monotone. In addi-
tion, N is 2-cocoercive and therefore, it is 1

2 -Lipschitz continuous. Moreover,

the solution is x∗ = (−0.14,−0.05,−0.35)T .
In Algorithm (1.3), we set λ ∈ (0, 4) to be the sequence λn = 1

n+1 , because
we observe using this choice the algorithm gives a better approximation and
{αn} ⊂

(
0, 8−λ4

)
to be 2n

n+1 . In Algorithm (1.4), we set λ ∈ (0, 0.17); to be

λ = 0.01 finally, in our proposed algorithm, we choose λn = 1
n+1 . Clearly,

these parameters satisfy the hypothesis of Algorithms (1.3), (1.4) and (3.1),
respectively. To test the robustness of the algorithms, we vary the starting
points as follows:

Test 1: x0 = (1, 1, 0)T and x1 = (−2, 0.5, 1)T ;

Test 2: x0 = (0, 0, 0)T and x1 = (0.5, 0.6,−0.7)T ;
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Test 3: x0 = (−1, 3,−5)T and x1 = (0,−2, 4)T ;

Test 4: x0 = (23 ,
3
5 ,

5
7)T and x1 = (1, 2, 3)T .

Setting maximum number of iterations n = 300, the results obtained from
the simulations are reported in Table 1 and Figures 1 and 2.

Table 1. Numerical results with different starting points for
Example 4.1

Numerical Results of ‖xn − x∗‖ for Example 4.1
Algorithm (1.3) Algorithm (1.4) Algorithm (3.1)

n Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4
1 2.36 0.97 4.77 4.09 2.36 0.97 4.77 4.09 2.36 0.97 4.77 4.09
2 0.95 0.57 2.05 1.81 2.34 0.96 4.73 4.07 5.01 1.79 1.61 2.86
3 0.51 0.51 0.67 0.74 2.31 0.95 4.66 4.01 6.97 2.79 2.62 3.26
4 0.41 0.41 0.41 0.45 2.27 0.94 4.58 4.04 8.25 3.61 4.03 1.91
5 0.32 0.32 0.32 0.33 2.24 0.93 4.51 3.98 8.81 4.28 5.22 1.56
10 0.16 0.16 0.16 0.16 2.10 0.87 4.17 3.84 4.08 2.19 2.87 0.51
30 0.057 0.057 0.057 0.057 1.61 0.69 3.13 3.31 3.9E-4 1.4E-4 8.7E-5 6.2E-4
50 0.034 0.034 0.034 0.034 1.23 0.54 2.41 2.85 1.1E-5 7.7E-5 7.3E-5 1.3E-4
100 0.017 0.017 0.017 0.017 0.63 0.32 1.37 1.94 7.2E-5 7.1E-5 7.1E-5 7.3E-5
150 0.011 0.011 0.011 0.011 0.31 0.23 0.82 1.31 7.1E-5 7.1E-5 7.1E-5 7.2E-5
200 8.7E-3 8.7E-3 8.7E-3 8.7E-3 0.17 0.21 0.48 0.86 7.1E-5 7.1E-5 7.1E-5 7.1E-5
300 5.8E-3 5.8E-3 5.8E-3 5.8E-3 0.18 0.24 0.14 0.32 7.1E-5 7.1E-5 7.1E-5 7.1E-5

Figure 1. Graphical Simulations of Tests 1 and 2 for Algo-
rithms (1.3), (1.4) and (3.1)
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Figure 2. Graphical Simulations of Tests 3 and 4 for Algo-
rithms (1.3), (1.4) and (3.1)

In the next example we are going to implement Algorithm 3.1 in the set-
ting of a classical Banach space. Since the theorems of Davis and Yin [21],
Malistky and Tam [29] we established in Hilbert spaces, we will not compare
the performance of our algorithm with their algorithm in this example.

Example 4.2. In this example, we are going to implement Algorithm (3.1)
on the subspace `0p of `p which consist of finitely many nonzero elements. We
recall that

`p =
{
{xn} ⊂ R :

∞∑
i=1

|xi| <∞
}
,

`0p =
{
{xn} ∈ `p : {xn} = {x1, x2, · · · , xk, 0, 0, 0, · · · }

}
.

We also recall that for 1 < p ≤ 2, `p spaces are 2-uniformly convex and
uniformly smooth. Let p = 1.5, k = 4. Consider `o1.5 with dual space `03. Its is
well known that if 1 < p < q < ∞, `p ⊂ `q. Thus, `01.5 ⊂ `03. Following Alber
[8] the duality J1.5 map and its inverse J3 on these subspaces are

J1.5(x) = ‖x‖0.5`1.5y ∈ `
0
3,

y = {|x1|−0.5x1, |x2|−0.5x2, |x3|−0.5x3, |x4|−0.5x4, 0, 0, · · · },
x = {x1, x2, x3, x4, 0, 0, · · · }
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and

J3(x) = ‖x‖−1`3 y ∈ `
0
1.5,

y = {|x1|x1, |x2|x2, |x3|x3, |x4|x4, 0, 0, · · · },
x = {x1, x2, x3, x4, 0, 0, · · · },

where

‖x‖`1.5 =
( 4∑
i=1

|xi|1.5
) 1

1.5

and

‖x‖`3 =
( 4∑
i=1

|xi|3
) 1

3
.

Remark 4.3. Observe that if xi = 0, i ∈ {1, 2, 3, 4}, J1.5 is NOT well-defined.

In MATLAB, we constructed a function that returns 0 when x = {0, 0, · · · }
and it returns 1 when xi = 0 in computing |xi|−0.5. The following is obtained
for testing the function:

J1.5({1, 0, 3,−0.5, 0, 0, · · · }) = {1.8710, 0, 3.2407,−1.3230, 0, 0, · · · }.

This new function we constructed took care of the problem raised in Remark
4.3. Now, we are ready to implement Algorithm (3.1) on `01.5.

In Algorithm (3.1), let L,M,N : `01.5 → `03 be defined by

Lx = 2J1.5(x),

Mx = 2J1.5(x)

and

Nx = {2|x1|, 22|x2|, 23|x3|, 24|x4|, 0, 0, · · · }.

Setting λn = 1
n+1 and maximum number of iterations n = 500. To test the

robustness of the algorithms, we vary the starting points as follows:
Test 1: x0 = {1, 0, 3,−0.5, 0, 0, · · · } and x1 = {2, 3, 0, 1, 0, 0, · · · };
Test 2: x0 = {−0.1,−0.2, 0.3, 0.4, 0, 0, · · · } and x1 = {2, 4, 6, 8, 0, 0, · · · }.
The results of the numerical simulations are presented in Table 2 and Figure

3 below:
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Table 2. Numerical results with different starting points for
Example 4.2

Numerical Results of ‖xn+1 − xn‖`3 for Example 4.2
Test 1 Test 2

n ‖xn+1 − xn‖`3 ‖xn+1 − xn‖`3
1 5.5936 12.8774
2 12.9783 56.0761
50 1.85E-3 2.07E-3
100 2.43E-4 2.73E-4
150 7.32E-5 8.17E-5
200 3.15E-5 3.46E-5
250 1.71E-5 1.79E-5
300 1.09E-5 1.06E-5
350 7.75E-6 7.09E-6
400 5.89E-6 5.09E-6
450 4.72E-6 3.87E-6
500 3.93E-6 3.08E-6

Figure 3. Graphical Simulations of Tests 1 and 2 for Algo-
rithm (1.3)

Conclusion: This paper presents an algorithm with diminishing and non-
summable step-size for approximating zeros of sum of three monotone opera-
tors in the setting of a real Banach space. A nice and interesting feature of
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the proposed algorithm is the fact that the step-size does not depend on the
knowledge of Lipschitz or cocoercive constant of any of the operators involved.
The fact that the approach used in dispensing this dependency does not fol-
low the well-known approaches in the literature made the method of proof of
convergence new, technical and innovative. To the best of our knowledge, this
is the first paper that considered the inclusion problem (1.1) in the setting of
Banach spaces.

Furthermore, numerical illustrations are presented to support the theory
established in the paper. Finally, the proposed method extends and generalizes
several methods established in the literature for approximating zeros of sum
of two monotone operators as seen in Remark 3.3.
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