Nonlinear Functional Analysis and Applications

Vol. 28, No. 4 (2023), pp. 1087-1095

ISSN: 1229-1595(print), 2466-0973(online) “
cHF A

https://doi.org/10.22771 /nfaa.2023.28.04.15
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright © 2023 Kyungnam University Press

KUPress

THE REICH TYPE CONTRACTION IN A WEIGHTED
b,(a)-METRIC SPACE

Pravin Singh!, Shivani Singh? and Virath Singh?

!University of KwaZulu-Natal, Private Bag X54001,
Durban, South Africa, 4001
e-mail: singhp@ukzn.ac.za

2University of South Africa, Department of Decision Sciences,
PO Box 392, Pretoria, 0003
e-mail: singhs2@unisa.ac.za

3University of KwaZulu-Natal, Private Bag X54001,
Durban, South Africa, 4001
e-mail: singhv@ukzn.ac.za

Abstract. In this paper, the concept of a weighted b, («)-metric space is introduced as
a generalization of the b, (s)-metric space and v-metric space. We prove some fixed point
results of the Reich-type contraction in the weighted b, («)-metric space. Furthermore, we

generalize Reich’s theorem by extending the result to a weighted b, («)-metric space.

1. INTRODUCTION

In 1968, Kannan studied the following fixed point theorem, which is a gen-
eralization of Banach contraction principle and the mapping satisfying the
contractive condition is known as Kannan-type contraction, which is interest-
ing since the contraction mapping does not need to be continuous [3].

Definition 1.1. Let (X, d) be a metric space, z9 € X and T': X — X be a
given mapping. The sequence {z,},y with
Tp =TTn_1=T"xg
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is the Picard iterative sequence, for n € N.

Theorem 1.2. ([3]) Let (X,d) be a complete metric space and let T : X — X
be a mapping such that there exists k < % satisfying

d(Tz,Ty) < k (d(z,Tz) + d(y, Ty)) (1.1)

for all x,y € X. Then T has a unique fized point z € X and for each x € X
the iterated sequence {T"x} converges to z.

In 1971, Reich extended the Banach and Kannan fixed point theorems as
follows [15].

Theorem 1.3. ([15]) Let (X, d) be a complete metric space and let T : X — X
be a mapping such that there exists a,b,c >0, a + b+ ¢ < 1 satisfying

d(Tz,Ty) < ad(z,y) + bd(z, Tz) + cd(y, Ty) (1.2)

forall z,y € X. Then T has a unique fived point z € X and for each v € X
the iterated sequence {T"x} converges to z.

Some authors explored the above line of thought by generalizing the type of
contraction mappings while other authors explored the idea of generalizing the
underlying space (see [11]). In 2000, Branciari in [1], introduced the following
concept.

Definition 1.4. ([1]) Let X be a set and d : X x X — [0,00) be a function
that satisfies the following;:
(i) d(z,y) =0 if and only if z =y,
(ii) d(x,y) = d(y,x) for all z,y € X,
(iii) d(z,y) < d(x,ur)+d(ur, uz)+- - -+d(uy,,y) for all z,us, ug, ..., up, y € X
such that =, u1,uo, ..., u,,y are all different.

Then (X, d) is called a v-generalized metric.

Suzuki et al. [17], provided a proof of the following fixed point theorem
which is a generalization of the Banach contraction principle in v-generalized
metric space. Recent articles on fixed points results on contraction and Suzuki
type mappings can be found in [4, 5, 6, 7, 8, 13].

Theorem 1.5. ([17]) Let (X, d) be a complete v-generalized metric space and
let T be a contraction on X, that is, there exists A € [0,1) such that

d(Tz, Ty) < Ad(z,y) (1.3)
forx,y € X. Then T has a unique fixed point in X.
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2. PRELIMINARIES
In [9], the authors introduced the concept of a b, (s)-metric space as follows:
Definition 2.1. ([9]) Let X be a set and d : X x X — [0,00) be a function
that satisfies the following;:

(i) d(z,y) =0 if and only if x = v,
(i) d(z,y) = d(y,z) for all z,y € X,
(iii) there exists a real number s > 1 such that

d(z,y) < sld(z,u1) + d(u1,u2) + - + d(uy, y)]

for all x,uy, us, ..., Uy, y € X such that z, uy, us, ..., u,, y are all different
and v € N.

Then (X, d) is called a b, (s)-metric space.

In this paper, we introduce the concept of a weighted b, (a)-metric space.

Definition 2.2. Let X be a set and d : X x X — [0,00) be a function that
satisfies the following:

(i) d(z,y) =0 if and only if x = v,
(ii) d(z,y) = d(y,x) for all z,y € X,
(iii) there exists constants o; > 1 for all i = 1,2, -+ , v such that

d(z,y) < ard(z,ur) + asd(ur, u2) + - - - + apd(uy, y)

for all z, uy, u, ..., uy,y € X such that x, ui, us, ..., u,, y are all different

and v € N.
Then (X, d) is called a weighted b, («)-metric space, where o = (aq, g, -+ , ).
If ; = 1 for all ¢ = 1,---,v, then the weighted b,(a)-metric is a v-
generalized metric. If o; = s for all @ = 1,--- v, then the weighted b, («)-

metric is a b, (s)-generalized metric. If v = 1, then b;(«a), o = (a1, 2) is a
generalized b-metric space introduced in [16].

Example 2.3. Let X = (1,3). If we define

|lz—yl i
doy = {0 2y )

then, the properties (i) and (ii) of Definition 2.2 can be easily verified. It
remains to show property (iii) holds: Let x,u;,y € X fori=1,2,--- ,v. Then
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by Jensen’s inequality [2],
d(z,y) = =
< elr—w |+ ur—ug|++lu,—y|

— e Pl r e g ey

B Ty (e L

2 2v
<pv=2)_ 2  lw-wl| . =Y luw—yl
=€ {V(V—i—l)e + +V(V+1)e

= aqd(z,ur) + aad(ur, ug) + - - + apd(uy, y),

where a; = ‘22(:;212; >1foralli=1,2,---,vand v > 1. Tt follows that (X, d)
is a weighted b, («)-metric space.
In Example 2.3, if we take s = max;—12... » {%} for v > 1, then d is a

b, (s)-metric.
Definition 2.4. Let {z,},cy be a sequence in a weighted b, (a)-metric space.
(a) The sequence {x,},y is convergent to x € X if
lim d(z,,z) = 0.

n—oo

(b) The sequence {x,}, is a Cauchy sequence in X if for m € N,

nh_}rglo d(zp, Tpim) = 0.

3. MAIN RESULT

The following theorem is the analogue of the Reich contraction principle
found in [14], in a weighted b, («)-metric space, where a = (a1, a9, ,@,).

Theorem 3.1. Let (X,d) be a complete b,(«) metric space and T : X — X
be a mapping satisfying:

d(Tz,Ty) < ad(x,y) + bd(z, Tx) + cd(y, Ty) (3.1)

for all x,y € X, where a,b,c are nonnegative constants with a +b+ ¢ < 1.
Then T has a unique fized point.

Proof. Let xg € X be arbitrary and define a sequence {z,}, .y with 2 = 2,1,
Y = Tnp, We get

d(xp, pi1) = d(Txp—1,Txy)
ad(zp—1,Tn) + bd(xn—1,Trn—1) + cd(zy, Txy)
ad(Tp—1,Tn) + bd(xp—1,2n) + cd(Tpn, Tni1).

IN
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It follows that
(1 =co)d(xn, znt1) < (a+b)d(xp—1,2n).
That is,

d(.an, xn—i—l) S Ea + b)

1fc)d(mn_l,:z:n), (3.2)

where p = E‘ffg < 1. Repeated use of inequality (3.2), we get

d(flfn+1,l‘n) < [,Lnd(l‘(),xl) (33)

for n > 1. Since u < 1, we obtain that d(x,4+1,2,) — 0 as n — oo.
Next, we show that {z,}, .y is a Cauchy sequence in X. For m > v € N,
we get

d(xpn, Tpam) < a1d(Tn, Tnt1) + @2d(Tpi1, Tnta)
+ ot a1 d( Tty Tngvt1)
< a1d(xn, Tnt1) + a2d(Tpi1, Tni2)
+ o+ aptr [Bor1d(@nt, Trgv1)
+Bu42d(Tnv+1; Tntvt2) + - FBmd(Tntm—1, Tntm)]
<7 {d(xm Tpy1) + d(Tngt, $n+2) +eee d(xn—i-w Tpyvil)
=+ d(xn—&-V—&-la Tpypt2) +- -+ d(xn—l-m—la wn—&-m)}
<A (L+p4 -+ p™ ) d(2o, 21)

n

S Vlﬂ Nd(LUnyl)a

where v = maxi<i<y4+1,v+1<j<m {®, w410} Since p < 1, it follows that
{Zn},en is a Cauchy sequence in X. Since (X,d) is a complete b, (a)-metric
space, there exists 2’ € X such that d(z,,2') — 0 as n — oo.

Now, we show that 2’ is a fixed point for T. Using inequality (3.1), we get

d(@',Tx') < ard(x’, 2pi1) + aod(Tpi1, Tnio)
+ -+ ad(zpiy, TT)
= aqd(2’, wpi1) + aod(pi1, Tnyo)
+ -+ apd(Trpsy—1,T2")
< od(2, zpi1) + ad(Tpi1, Thio)
4+t ay (ad(z:n+,,,1, ')+ bd(xpiy—1, Tnyy) + cd(a, T:c')) .
Taking the limit as n — oo, we obtain

d(z',Tx') < ed(2', T2"). (3.4)
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Since ¢ < 1, inequality is true, only if d(z/,Tz") = 0, that is, T2’ = 2’. For
uniqueness, let 2" be another fixed point of 7. Then

d(z',2") = d(Ta', Tx")
<ad(z',2") + bd(z', Ta") + cd(2”, Tx")
< ad(z',2"). (3.5)
This is a contradiction, unless d(2/, ") = 0, that is, 2’ = 2. O

We have modified the class of functions introduced by Rakotch [12], in the
following definition.

Definition 3.2. ([10, 12]) Let (X, d) be a weighted b, ()-metric space. De-
fine the family of functions f : [0,00) — (0,1) which satisfies the following
properties

(i) fz,y) = fd(z,y)),

(ii) f is a monotonically non-decreasing continuous function.

Denote this family of altering distance functions by F.

Example 3.3. Define ¢ : [0,00) — (0, 1) by

ea:

et +1°

P(x) =

Then v is a monotonically increasing function: for z < y, the exponential
function is increasing thus, we get that e¥ < e¥. It follows that e® + €Y <

€Y+ et which implies that % < % thus ¢ is an increasing function. For
all z > 0, we have that e® < 1+ ¢® since e® > 0, which implies that —&— < 1,

14e*
thus 0 < ¢(z) < 1. It follows that ¢ € F.

In this section, we generalize the Reich’s theorem found in [15, 18] to a
weighted b, (a)-metric space.

Theorem 3.4. Let (X,d) be a complete weighted b, (c)-metric space. If T :
X — X is a self-mapping and there exists a,b,c € F such that

d(Tz, Ty) < a(z,y)d(z,y) + b(x,y)d(z, Tx) + c(x,y)d(y, Ty) (3.6)

forall z,y € X and a(z,y) +b(x,y) + c(x,y) < 1. Then T has a unique fized
point in X.
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Proof. Let xg € X be arbitrary. Then define a sequence {x,}, o, a8 Tpp1 =
Tz, for n € N. Then, we obtain from (3.6),
d(xp, Tpt1) = d(Txp—1,Txy)
< a(Tp—1,2n)d(Tn—1,Tn) + b(xn_1,2n)d(Tpn—1,TTn_1)
+ c(xp—1, xn)d(zp, Ty)
= a(rp_1,2n)d(Tn-1,Tn)
+ b(xn—1,2n)d(Tn—1,2n) + c(Tn_1, Tpn)d(Tn, Tni1).
It follows that

(1 = c(zp—1,70))d(@n, Tp+1) < (@(Tn-1,2n) + b(Tn-1,2n))

X d(Tp—1,Tn)d(Tn, Tpi1)

(a(xn—ly xn) + b(xn—la $n))
(1 —c(zp-1,2n))

If flxn_1,2,) = (a(xn(_ll_’ia):j)l(znn_ﬁ’x")), then 0 < f(xp—1,2,) < 1. It follows
that

IN

d(xp—1,Tn).

d(SEn, anrl) < f(xnfla $n)d(33nfla -Tn)~ (37)
Repeated use of (3.7), we get

d(fL’n, xn—&—l) S f(xn—ly $n)d(xn—17 xn)

< f@n—1,2n) f(Xn—2,Tn-1) - f(zo, z1)d(x0, 21). (3.8)

Now, if d(zg, xg+1) > €o for some g9 > 0 and k =0,1,2,--- ,n — 1, then by
the monotonicity of f, it follows that f(d(zk,zr+1)) < f(e0). Hence, we get

d(@n, Tny1) < f"(e0)d(z0, 71).

Since 0 < f™(gp) < 1, then it follows that d(zy,zn+1) — 0 as n — oo.
Next, we show that {z,}, .y is a Cauchy sequence in X. For m > v € N,
we get
d(.%'n, xn—l—m) < Oéld(xn; -Tn—l—l) + a2d(xn+17 xn—l—Q)
+ a1 d(Tpgw, Trgwr)
< Oéld(xn; -TnJrl) + agd($n+1, xn+2)
+-tapn [5u+1d(xn+lu Tpqvs1)
+6u+2d(xn+u+1> $n+u+2) + ot /Bmd(xﬂ#mfl» $n+m)]
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< y{d(zn, Tnt1) + d(Tnt1, Tni2)
+ o+ d(@Tngr, Tntv1) + A Tngo1; Tntoi2)
+ o+ d(@ntm—1, Tngm) }

< yf"(e0) (L+ f(e0) + -+ + ™ (e0)) d(zo, 21)

f"(e0) d(z0,21),

< 71*7f(50)
where v = maxi<i<y+1,v4+1<j<m {@, w4165 }. Since 0 < f(gg) < 1, it follows
that {,},cy is a Cauchy sequence in X. Since (X,d) is a complete b, (a)-
metric space, there exists 2’ € X such that d(x,,2’) — 0 as n — oo.
Now, we show that 2’ is a fixed point for 7. Using inequality (3.6), we get
d(z',T2") < ard(2, 2p11) + od(Tps1, Tnao) + -+ + ad(zpyy, T2)
= a1d(2', 2py1) + @od(Tpi1, Tnyo) + - + apd(TTpyy—1, TT)
< ard(2', 1) + aod(Tpi1, Tnio)
+ ity (a(xn+y_1, x')d(wnJrV_l, a:’)
+0(Tnsv—1,2)d(Tniy—1, Tnaw) +c(xn+y,1,x’)d(a:',Tx')) )
Taking the limit as n — oo, we obtain
d(z',Tz") < (2!, 2")d(2', T2). (3.9)
Since ¢ < 1, inequality is true, only if d(z’, Tx’) = 0, that is, T2’ = a’.
For uniqueness, let 2" be another fixed point of T. Then
d(z',2") = d(Ta', Tx")
<a(a',2")d(2', 2")+;b(a', 2" )d(2', T") + c(2’, 2" )d(2", Tx")
<a(z',2")d(2,2"). (3.10)

Inequality (3.10) is a contradiction, unless d(z’,2”) = 0, that is, 2/ = 2”. O
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