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Abstract. In this paper, we investigate the existence and uniqueness of solutions to a
new class of integro-differential equation boundary value problems (BVPs) with T-Hilfer
operator. Our problem is converted into an equivalent fixed-point problem by introducing
an operator whose fixed points coincide with the solutions to the given problem. Using
Banach’s and Schauder’s fixed point techniques, the uniqueness and existence result for the
given problem are demonstrated. The stability results for solutions of the given problem are

also discussed. In the end. One example is provided to demonstrate the obtained results

1. INTRODUCTION

Because of their numerous applications in mathematics, biology, physics,
finance, engineering, dynamical systems and control theory, fractional differ-
ential equations (FDEs) are of great interest, see [2, 9, 11, 13, 15, 22] and the
references therein. However, because of the complexities of their initial values,
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several physical interpretations of FDEs are still unknown, so the theory of
FDEs is still in its infancy. Nonetheless, because of their numerous practi-
cal applications and theoretical significance, these equations have become the
most popular topic of discussion among a number of examiners. There has
also been shown a significant interest in the study of FDEs by many authors,
for instance [5, 6, 12, 16, 18, 20].

Sousa and Oliveira [25] recently proposed a new type of fractional differ-
ential (FD) operator called a w-Hilfer fractional operator, which generalises
the Hilfer fractional operator [9, 10]. It is important to note that the -Hilfer
fractional derivative is defined with respect to another function, and it unifies
the various fractional derivative definitions found in the literature.

Thabet et al. [24] investigated various criteria for the existence of solu-
tions for the following boundary value problem of Hilfer fractional integro-
differential equations with boundary conditions using the measure of noncom-
pactness technique and Ménch fixed point theorems (FPTs):

(1.1)
where Dfi’l is the Hilfer FD of order J; and type Js.

Significant attention was paid to the topic of fractional boundary value
problems with a variety of boundary conditions. Many researchers, in par-
ticular, have established the theoretical aspects of such problems using the
tools of fixed point theory. We refer the reader to the works for more infor-
mation and examples [1, 17, 19]. Also, the authors in [4, 14] investigate some
nonlocal fractional BVP problems with T-Hilfer FDs, for exrea studies about
Multipoint BVP (see [3]).

In this manuscript, we apply FPTs to examine the existence of solutions for
a generalized Hilfer-type integro-differential equation with positive constant
coeflicient listed below:
HpI2T5(0) = AZ(0) + R(0,E(v), R(E) (v)), v € B=[a, b],
0<di<1, 0<2p<1,
ME(@T) +N2E(b7)=N;3, M;eR, (i=1,2,3),
A <=1 +D(1-T), X>0,

(1.2)

where HDBJ}JQ;T is the T-Hilfer FD of order J; and type J;. N:8x x R? =
R is a continuous function, and R is a linear integral operator defined by
R(E)(v) = [ K(v,7)2(r)dr with § = max{ [’ K(v,7)dr) : (v,7) €BxB},
K e C(BxB,R ).
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The goal of this study is to further develop the area of fractional boundary
value problems by considering integro-differential equations with generalized
fractional derivative operators. In general, our new results remain valid for
different values of the function T and cover a wide range of corresponding
problems, for example. Letting T(v) = logv, T(v) = v%, 8 > 0, T(v) = v,
and Jo = 1, T(v) = v, and Jy = 0, the T-Hilfer FD reduces to the Hilfer-
Hadamard, Hilfer-Katugampola, Caputo-type, Riemann—Liouville (RL)-type,
respectively.

The remainder of the article is structured as follows. Section 2: contains
some preliminary results. Section 3 and 4: demonstrate the main results.

Section 5: provides an example of how the theoretical results can be applied
in practice. Section 6: concludes with a summary of our findings.

2. PRELIMINARY NOTIONS

In this portion, we introduce some notations and definitions of fractional
calculus. Let L(8,R) and C(8,R) are Lebesgue integrable functions and Ba-
nach space from  — R with the norms

b
= / IZ(v)] dv
a

and
1Ell e = sup{|Z] : v € B},
respectively.

Definition 2.1. ([13]) Let J; > 0 and = € L'(8,R). The left sided T—RL
fractional integral of order Jy defined by

T2y :71 b (4 v) — T 12 de
PEw) = g [ IO - TOP =0

Definition 2.2. ([25]) Let n — 1 < 3; < n, 0 <3y < 1. The T—Hilfer FD of

order J; and type s is given by
1 d
Hpn31,39; T 73 (n—:ll);‘l' n (1—:12)(71—31);T':
D=2 = =712 —— )" 7 =
) (7 ac) )

)

where v > a.

Lemma 2.3. ([13, 25]) Let 31,7, and o > 0. Then
(1) 2T TE(v) = T2+ TE(v).

(2) T2 (T(v) = T(2)* ! = iy (T(v) = T(a)Ftet,

We also note that HD:ll’:‘?;T(T(v) — T(a))C—l =0.
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Lemma 2.4. ([25]) Let ZE € L(a,b), 3y € (n—1,n| (n € N), Jo € [0,1]. Then

n—1 _
_Z (T) = T(@)* ™ cnb 7022020 T

I:ll;THrD:ll,:lg;T'—) — =
( ( k+1) ~T

[I]

=1

n—k n—kl—
where = [ I = (T,lv)%)[ K= (v).

Lemma 2.5. Let ¢ = 31 + Jo(1 — 3y), where 0 < J; < 1,0 < 3y < 1,
and 2 € C(8,R). Then, the solution of the following T — Hilfer type of BVP

HD2122T2(0) = AZ(v) + M(v), v e f, 2.1)
ME(@T) + NZE(b67)=N;3, M;eR, (i=1,2,3) '
s given by
oy N (T)=T (@) N (T(0)=T(a) " 57 25T A (0
() = N O N, AT I3 M(b)+I70 M(v),
(2.2)
where
- L _ ¢—-1
h= (1+ NT (0 (T(b) — T(a)) > £ 0. (2.3)

Proof. Let ZE be a solution of the first equation of (2.1). Applying Ifj;T on
the first equation (2.1) with Lemma 2.4, and setting Zl STE(a) = Eg, we
obtain

=(a™)

Z(v) = 0 (T(v) = T(@)t + AT TE(w) + T2 T M(v). (2.4)
Now, taking the limit v — b~ in (2.4), we get
E(b7) = Er((ag)) (T(6) = T(@)S + AT TE(0 ) + T2 TM(b7).  (2.5)
By use the boundary value condition N1Z(at) + N2=(b7) = N3, we have
E(at) = ﬁ/,/’j - ﬁffiE(b_), where N # 0. (2.6)

Submitting (2.5) into (2.6), we obtain

= _ Nz Ny E(af) _
=) = 3 R (T - T

xf NZETE(0) + 225 T M(b)|
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N

E(a) (1 + e (T(B) — T ()¢
(a™)(1+ NlF(C)( (b) = T(a))>"")
Nz Moot o
=W [Azﬁ =(b) + I M(b)} ,
which gives
1 (Ns MNor 37 25T
=(qt) = = (222 _ %2 151 = 1;
=)= (3 - 3 PETE0+ B Me)). e
where £ is defined in (2.3). Submitting (2.7) into (2.4), we obtain (2.2). The
proof is completed. O

We are ready to present our main findings. Our theorems are concerned
with the uniqueness and existence solutions of problem (1.2) and relies on
Banach’s FPT [8] and Schauder’s FPT [26].

Now, according to Lemma 2.5, we define the operator p : C(8,R) — C(8,R)
by
(02)(v) = N3 (T(v) = T(@)™ Mo (T(v) = T(a)"
- M hL(C) M AL (C)

x [Azj‘ﬂa(b) +I2TR(b, E(6), R(E) (D))

AT TE () + I2E TR (0, E(0), R(E) (v)). (2.8)

It should be noted that the integro-differential type problem (1.2) has a solu-
tion if and only if p has a fixed point. For the sake of consistency, we have set
the constants:

NG (T(B) = T(@) . (T(6) = T(@)™ [, . Ny (T(b) = T(a)S!
R R T G R Vs N (”NI IRG (22)
and

(T = T(@) [ Ny (T(b) = T(a)S
2= +6) o <1+N1 HTE ) (2.10)

3. INTEGRO-DIFFERENTIAL TYPE PROBLEM (1.2)

We introduce the hypotheses required in the sequel before proceeding with
the main results.

(#1) There exists (1,02 € (0,1) such that
R0, Z1,55) — R(o, 50, 55)] < 01 [E1 — Sl + 0 [} — =

for any =, =27, 292,25 € R and 04,02 €8.
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(Hz2) Let X € C(8xRR? R) be a function such that X(.,Z(.), R(E)(.)) € C(BxR?)
for any = € C(8,R") and there exists a constant ¢,3 > 0 such that

IN(v, 2, R(E))| < (1 +|2]), Y(v,E,RE)) € B xR

(H3) Let X € C(8xR? R) be a function such that R(., Z(.), RE(.)) € C(BxR?)
and ® € C(8,R™) such that

N(v, Z,RE)| < ®(v), V(v,E,RE) € B x R2.

Theorem 3.1. Assume that (Hi) — (Hz) hold. If

_ o) (1) = T(@)PY (| Ao (T(b) ~ (@)
Ql—()\+(2)1+@2\f)< T+ 1) )(H/\f? A T(C) ><1’

then the integro-differential type problem (1.2) has a unique solution on f.

Proof. We convert (1.2) into a fixed point problem, that is, Z = = such that
©:C(B,R) — C(B,R) defined by (2.8).

Note that the fixed points of g are solutions of (1.2). we will prove that
has a unique fixed point by applying Banach theorem [8]. Indeed, we choose

>
’7—1_97

where A and 2 are define in (2.9) and (2.10), respectively.
First, we show that p3., C 3,, where

3y ={E€CBR):[E] <~} (3.2)
For any = € 3, we get

{/\/'3 (T(v) — T(a))¢ (/\/2 (T(v) — T(a))<—1>

= -

[(pE)(v)] < sup N, |7 T(C)

BISH
x (Asz E(0)] + 25T R, E(0), RE) ()] (b))
T W)+ T NG EW, RE) ) (0)]

N (T(v) = T(a)0 N (T(v) = T(a)
M IR T(C) M R T(C)

()]

5T = 1T =
AL E()| + 2 A1+ SE])(v)

IN

[1]

13T 1= 13T
X[Aza+1 E(0)| + 7201 + 3|
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N (T() = T@) (felr - T<a>><—1>
N A T(C) M 7| T(¢

RGO <)>> 21+ T

<

( )

)
) — T(a)
(G +1)
(b (

I3
AU z =]

RN INROERIG )
) FE+ D)
LTO_TO2 o (MO T2

) a)

T E T STTTa D
a
)

N (T(b) = T(a)™" Mo (T(b) — T(a)H=!
A TRTOrE )

IN

/71 AT
(T(6) — T(a)+31 _
HTOrE + 1) =

(
(T() T(a)> o (T(6) — T(@)> _

A+ 1S)

+4

1
N3 (T(b) — T(a))S"
N 1A T(¢

1)
)

(T(6) = T(@)™ [, Ao (T() = T(@)!

e (o )
b

'3 +1 Ny 1A T(C)

L (T(6) = T(@)™ , (T() — T(@)¢!
B A s N (“M AIT(Q) )m

A+ Qy
7.

[VANVAN

This means that p3, € 3,. that is, p3, C 3,.
Next, for each Z,E* € C(8,R) and v €8, we have

(62)(0) - (=)o) < 2 O
+Z25T [R(L, E(1), R(E)
+ AT 2@ - B )]
+ T (N B, REW)] = R EX (), REFW)]) ()
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No (T(0) = T(@) 1 miT o T e o
< NoRTe PRI ST 0+ 0,9) 2 - =
AL -2 + 22T (00 +0:9) |2 - |
< M TR T, (T0) - T(@)*
= M G, (3 +1)
o (TO) = T(@)?7 .
HO 4 0,9) g 15 - =)
(T(0) - T@1 _ . oy (TO) = T(@)H
oy (T00) = T (Mo (T(®) = T(@)\ .,
< ) (g ) (1 S e =

< H‘E - E’*H )
which implies that
|92 — pE | < |2 —E*|.

Then, based on the conditions (3.1), we can conclude that p is a contraction
operator. Thus, according to Banach’s FPT, has a unique fixed point. As a
result, problem (1.2) has a single solution on 8. This completes the proof. [

The following result provides existence criteria for problem solutions (1.2),
and its proof is based on Schauder’s fixed point technique [26].
Theorem 3.2. Assume that the assumption (Hi), (H2) and (Hs3) hold. If

(T(b) = T(a)™ [, L N2 (T(b) - T(a)!
(31 +1) M R T(C)

then, the problem (1.2) has at least one solution in the space C(f5,RT).

Oy = <1, (3.3)

Proof. Consider the ball
3p ={E €CB,R) - |[E]| < p},
where p > 0 with

oL [AB(T(b) = T(a)
P=1200 [N [RIT(O)

+ QZ ||(I)H )

where ||®|| = sup,cg |®(v)|. We build the operators g1, p2 on 3, where 3, by

(1E)(v) = T2 N, 2(0), RE) )] (v),
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and
o)) = f OO a3 i)
N (T(v) = T(a))!
N IRIT()
< AT E(0) + T T IR E), RE)W)] (6).
For any E, Z* € 3, we have

[(P12) (V) + (92E7) (v)]

{Ns( (v) = T(a)"
M 7| T(C)

=&

(T(v) - T(a))g‘l)
Al T(¢
X </\I:1T 25(0)] + Z25T IR(1, 27 (1), RE") ()|

< sup
vel

+

(1)
+ AT )] + T NG E(), RE) W) (v) ]

o N3 (T(6) = T(w)*!
M |AIT(C)

(T(b) — T ()

No (T(b) = T(a))S "1, (T(b) s
N AT - o3 1 1) IE+ I3 1 1) 1]
(T(6) = T(a)? |, (T(6) = T(a)?
# MDA oy (OO
Ns (T(b) = T(a))~t  (T(b) — T(a)? Nz( (b) = T(a) ™" =
SN AT - T+ 1) 1+ Ny AT Ji=

(T(6) = T(@)? [ Ay (T(b) — T(@)<~!
TR D {+N§ AT h“
| [mem—T@%*
~1-X% |M |n| T(C)
<p.

/\

+ﬂﬁ@@

This proves that 1= + @2Z* € 3,,.

Now, we have to show g1 is continuous, due to R(Z)(-) =: X(-,Z(-), R(E)(+)) €
C(-,R% R). Also, g1 is uniformly bounded on 3, because we have from (Hs)
that

_ ')
) < HHZ T o).
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In addition, we prove the compactness of p; as follows. Let vi,v2 € 8 such
that v1 < ve. Then

912(v2) =1 =(vs)]

1 Vi , - ~ _
gw/u () [(T(Uz)—T(L))j L (T(w)=T@))? 1]\%(4;(@@
L“Z,L ) — TN IR (Dde
T Ey /v T()(T () = T()™ 7 RE)| ()d
1] ) 1 1
< Fmy 1) 20T~ T +[(T () = T(@)P = (T(0) = T(@)™

The last inequality with v,—v; — 0 gives
|p1E2(v,)—p1E(vy)| = 0, for all |v,—v,| =0, E€ 3.

Then, g is relatively compact on 3,. An application of the Arzel-Ascoli theo-
rem, g1 is compact on 3, . Hence, all the assumptions of Krasnoselskii’s fixed
point theorem are satisfied. So, we infer that (1.2) has at least one solution
on 3. This completes the proof. O

4. U-H AND G-U-H STABILITY ANALYSIS

In this part, we discuss the U-H and G-U-H stability of the problem (1.2).
The following observations are taken from [7, 21].

Definition 4.1. The problem (1.2) is said to be U-H stable if there exists a
constant Ky > 0 such that for each ¢ > 0 and every solution = € C(8,R) of
the inequalities

HphBTZ () - [AE(U) +R(v, E(v), %é(v))} ( <e, YoueB, (4.1)

there exists a solution = € C(8, R) of the problem (1.2) that satisfies

E(v) — E(U)‘ < Kye. (4.2)

Definition 4.2. The problem (1.2) is said to be G-U-H stable if there exists
U e C([0,00),[0,00)), ¥(0) = 0 such that for each solution = € C(8,R) of the
inequality

TP TEW) - [AE() + R, E0), REW)]| < e, veB  (43)
there exists a solution Z € C(8,R) for the problem (1.2) such that

E(v) ~ E(v)

< V¥(e), vesb.



Generalized Hilfer operator with fractional integral-multipoint systems 93

Remark 4.3. A function Z € C(B, R) satisfies the inequality (4.1) if and only
if there exists a function w € C(8,R) with

(1) Jw(v)| <€ v eB,
(2) for all v €8,

HpA2TE(p) = R(v, E(v), RE()) + |w(v)].

Lemma 4.4. If £ € C(8,R) is a solution to inequality (4.1), then Z is a
solution of the following integral inequality:

S(0) - 2= — )/U TH(T () = TR, Z(0), REW))(1)de
(T(b ) (a))7 Na (T(v) = T(a)*!
S( M@+ 1) )(”M Q) )
where
N (T(0) = T(a)™" N (T(v) = T(a)"
E M Al (€) M AL (C)
[Azf; TE(b) +Z25TN(b, Z(b), &e(é)(b))} +ATETE(v)

Proof. In view of Remark 4.3 and Theorem 3.1, we have

(o) Mo (T0) — T(@) o (T(v) = T()"!
M AL (C) M K (0)

x ATZETE(0) +228T (806, 5(6), R(E) (b)) +w(v) ) | AT E (W)
+I§i%T (N(v, E(U), %(E)(U)) + w(v)) ,
it follows that

[

)
No (T() = (@) a7 -
e T T )] () + T fel0)] )
N (T(v) = T(a)S™t ((T(b) — T(a))™ (T(b) — T(a))™
S/\71 AL () ( [(3;+1) >6+< '3 +1) >€
(T(b) - T(a)™ Ny (T(v) — T(@)S!
S( rGit1) >O+N1 AT () >°

Now we state the following generalization of Gronwall’s lemma.
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Lemma 4.5. ([23]) Let v,R be two integrable functions and z a continuous
function with domain fS. Assume that

(1) v and X are nonnegative,
(2) z is nonnegative and nondecreasing.

if
o) < R@)+2(0) [ TEOTE) = TEPor)dn ve s

then

1)) / -
/a k:31 LT ()(T(0) = T(0)= (e, v e B

Remark 4.6. ([23]) In particular, if X(v) be a nondecreasing function on 8.
Then we have

v(v) < R(v)Ey, [(Z(U)F(Jl)(T(v) ~Tr)H !, ves,

where F4, is the Mittage-Leffler function defined by

En, (x x € B.

F31k+

OMS

Theorem 4.7. Suppose that (Hi), (H2) and condition (3.1) are satisfied.
Under the Lemma 4.4, the following equation

Hp22TE(0) = AZ(0) + R(v, E(v), RE()), v € B (4.4)
1s U-H stable.

Proof. Let Z € C(B,R) be a function satisfies (4.1) and € > 0, let = € C(8,R)
be a unique solution of the following problem

ME(at) = NMiE(a*), NpE(b7) = NoE(b7),
where MV; € R, (i1=1,2,3), 0<3; <1. Then, by Lemma 2.5, we get

:U:“LUIL ) =T () R(w, Z(v), RE(W)) (1)de, v
E(v) Z;+F(31)/GT()(T() T())7 7R, E(v), RE(v))(¢)de, v € B.

{ HpABiT2() = AZ(v) + R(v, E(v), RE(v)) v € B,

On the other hand, V1Z(at) = M1E(a™), No2(b~) = NoE(b™), then Zz =
Zz. Indeed
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v — -1 , -
7= — 7Zz| < xj (T )|ﬁ|FT(8)) [Asz E(b)—E(b)‘
TN, E(6), RE)(B)) — R (b, E(), RE)(0))]
+>\IJ“T =(v) —E(v)]
Na| (T@) = T@)S [ 07 oy 2
<V i [Aza+ =(b) — E(0)

+ (01 +S00) T2 |2(0) — E(b)H +ATT ‘E(v) _5

N | (T(v) = T(a)*
N 7| T(C)

Therefore, Zz = Zz. We have
1

:vzziv/L v) — T()2 R, Z(v), RE(v)) (1) de.
E(v) Z:Jrr(:l)/aT()(T() T()™ " R(v,E(v), RE(v)) (1)d

It follows from Lemma 4.4 that, for any v €8,

1

1 v / - . J1-1
+7E7 L TOT@-Tw)

xR, 5 )ére§< D) = N, <> =(0)()| de
N ()¢
< (M )( i m“ ):
+ (0 +90) / (T @) = T & - =20 e

Using generalized Gronwall inequality (Lemma 4.5), we get

=(v) — E(U)‘

€QE, |(B1 + 302) (T(v) = T(a)™|
€Ky,

IN A

2(0) — = — —— U/L v) = T())IR(v, E(v =(v
E(v) — 2z F(Dl)/aT()(T() T()7 7 R, E(v), RE(v)

95



96 M. N. Alkord, S. L. Shaikh and M. B. Altalla

where
_((T(6) = T(a))™ Na (T(v) = T(a)
o~ (S ) (8 o)
and
K = QBx, [(01 +302) (T(v) - T(@)™ ],
which emplised that the problem (4.4) is U-H stable. O

Corollary 4.8. Under the hypotheses of Theorem 4.7, if there exists ¥ €
C([0,00),[0,00)), ¥(0) = 0, then the problem (1.2) is G-U-H stable.

Proof. In a manner similar to above Theorem 4.7 with selecting V(e) = Kxe
such that U(0) = 0, we obtain

Z(v) — E(v)| < ¥(e), v e B,

then the problem (1.2) is G-U-H stable. O

5. AN EXAMPLE

Example 5.1. Consider the following problem of BVP for a generalized Hilfer-
type integro-differential equation:

Hp2T5(0) = 15(0) + R(v, E(v), R(E)(v)), v € B=[0,1], 0< Iy < 1,
%E(a+)+1—185(b_):%, OZSC::1 +:2(1—:1), 0< < 1,
(5.1)
where N = &, Mo = &, M3 = &, T : 8= R is a given function, and
N € C(BxR? R) is defined by
N, 2(0), RE)(v)) = 50)F + o5
for v € [0,1], 21,5 € RT with 3y = 3, 3y =
the function ® € C([0, 1]). For each E,Z* € R
1
99
By some calculations, we get & = %. Hence, the condition (H;) is satisfied
with 01 = 03 = %. It is easy to verify that ©; = 0.28360 < 1. Since all the
assumptions of Theorem 3.1 are fulfilled, therefore problem (5.1) has a unique
solution.
On the other hand, as shown in Theorem 4.7, for every € > 0, if =€ C(BxR)
is a solution of the inequality

HpA22T5(0) — R(v,E(v), RE(v))| < ¢, v € (0,1),

¢ = % and T = % Clearly,
nd v € [0,1],

R(v,E,R(E)) = R(v, E", RE)| < 55 (IE-E[+[RE) -RE)]) .
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then there exists a unique solution = € C(8xR) of the T-Hilfer problem (5.1)
such that

—_ —_
— —
— —

< KNC,

where

Ky = QFn, [(01 + S02) (T(v) — T(a)):h} =1.6215 > 0.

Hence the problem (5.1) is U-H stable. Moreover, if U(e) = Kye = (1.6215)€
such that ¥U(0) = 0, then the problem (5.1) is G-U-H stable.

6. CONCLUSIONS

We introduced a new boundary value problem in this paper by considering
a nonlinear fractional integro-differential equation with T-Hilfer fractional de-
rivative operator. Our approach to studying the given problem is based on
modern functional analysis tools. We used the FPTs of Schauder and Banach
to prove the existence and uniqueness of solutions to the problem at hand.
Other qualitative analyses of the solution, such as stability results, can be
discussed using the results of these investigations. Finally, we provided some
examples.
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