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Abstract. In this paper, a new seven-parameter Mittag-Leffler function of a single com-

plex variable is proposed as a generalization of the standard Mittag-Leffler function, certain

generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeo-

metric function. Certain essential analytic properties are mainly discussed, such as radius

of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler

transform in the complex plane. Its relation to Fox-Wright function and H-function is also

developed.

1. Introduction

The higher transcendental function, Mittag-Leffler function, was introduced
in 1903 by the Swedish mathematician Gosta Mittag-Leffler for one complex
variable concurring one parameter as, [15]:

Eτ (z) =
∞∑
k=0

zk

Γ(τk + 1)
, (1.1)
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where z ∈ C and Re(τ) > 0. It is define an entire function of an order ρ = 1
Re(τ)

and type σ = 1 and considered as a slight generalization of the exponential
function, preserving certain properties of it. Eminently, this function has at-
tracted the numerous attention of researchers due to its role in solving common
problems in analytic function theory, treating problems with fractional order
integral and differential equations, and motivating the description of numerous
problems involving the problems of computer science, food science, physics,
and engineering; see [2, 5, 9, 11, 14]. Decades ago until the present, many
generalizations and extensions of Mittag-Leffler function have been studied;
among the considerable generalizations, we mention those are crucial in our
work.

In 1905, Wiman presented the first generalization of Mittag-Leffler function,
known as Wiman’s function or two-parameter Mittag-Leffler function defined
as [23]:

Eτ,λ(z) =

∞∑
k=0

zk

Γ(τk + λ)
, (1.2)

where z ∈ C, Re(τ) > 0 and Re(λ) > 0.

In 1960, Dzherbashian submitted a four-parameter Mittag-Leffler function
as follows [4]:

Eτ1,λ1,τ2,λ2(z) =

∞∑
k=0

zk

Γ(τ1k + λ1) Γ(τ2k + λ2)
, (1.3)

where z, λ1, λ2 ∈ C and τ1, τ2 are positive real numbers.

In 1971, Prabhakar gave an innovative generalization of Mittag-Leffler func-
tion as a function of three parameters using the Pochhammer symbol, defined
as [18]:

Eγτ,λ(z) =
∞∑
k=0

(γ)k zk

Γ(τk + λ) k!
, (1.4)

where z ∈ C, Re(τ) > 0, Re(λ) > 0 and Re(γ) > 0.

In 1994, Luchko and Yakubovich generalized Mittag-Leffler function to
multi-index (2m-parameter) function defined as [13]:

E((τ, λ)m; z) =
∞∑
k=0

zk∏m
i=1 Γ(τik + λi)

, (1.5)

where z, λi ∈ C (i = 1, ...,m), τi ∈ R and (τ2
1 + ...+ τ2

n) 6= 0.

In 2007, Shukla and Prajapati defined a different generalization of the
Mittag-Leffler function by using the generalized Pochhammer symbol, defined
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as [21]:

Eγ,qτ,λ(z) =
∞∑
k=0

(γ)qk zk

Γ(τk + λ) k!
, (1.6)

where z, τ, λ, γ ∈ C, Re(τ) > 0, Re(λ) > 0, Re(γ) > 0 and q ∈ (0, 1).

In 2009, Salim presented another four-parameter Mittag-Leffler function
that is not a special case of multi index (2m-parameter) function (1.5), defined
as [20]:

Eγ,δτ,λ(z) =

∞∑
k=0

(γ)k zk

Γ(τk + λ) (δ)k k!
, (1.7)

where z ∈ C, Re(τ) > 0, Re(λ) > 0, Re(γ) > 0 and Re(δ) > 0.

In 2011, Paneva-Konovska proposed a further multi-index generalization of
Mittag-Leffler function known as multi index (3m-parameter) Mittag-Leffler
function defined as [17]:

E
(γi),m
(τi),(λi)

(z) =
∞∑
k=0

(γ1)k ... (γm)k
Γ(τ1k + λ1) ... Γ(τmk + λm)

zk

(k!)m
, (1.8)

where z, τi, λi, γi ∈ C (i = 1, ...,m) and Re(τi) > 0.

In 2021, Özeslan and Fernandez considered, in their study, a five-parameter
Mittag-Leffler function as a special case of the multi index Mittag-Leffler func-
tion (1.8), [16]:

Eγτ1,λ1,τ2,λ2(z) =

∞∑
k=0

(γ)k
Γ(τ1k + λ1) Γ(τ2k + λ2)

zk

k!
, (1.9)

where z, τ1, τ2, λ1, λ2, γ ∈ C and Re(τ1 + τ2) > 0.

Since then, Mittag-Leffler functions acquired wide attention for studying
different many properties because of their relation to the fractional calculus
and its application in varied sciences; see [3, 7, 12].

This paper devoted to propose a new function with seven complex parame-
ters and single complex variable generalizes the standard Mittag-Leffler func-
tion, several generalizations of Mittag-Leffler function, hypergeometric func-
tion, and Confluent hypergeometric function, then review its special cases.
Additionally, we elaborate on certain beneficial analytic properties such as ra-
dius of convergence, order, type, differentiation, Mellin-Barnes integral repre-
sentation, and a recurrence relation, further seek its connection to Fox-Wright
function and H-function.
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2. Preliminaries

Throughout our work, we need the following well-known formulas, functions,
and facts:

(1) Stirling’s formulas for gamma function [1]:

Γ(z) =
√

2π(z)z−
1
2 e−z

[
1 + O

(
1

z

)]
, z →∞, | arg (z) |< π, (2.1a)

Γ(z) ∼
√

2π (z)z−
1
2 e−z, | arg (z) |< π, (2.1b)

Γ(az + b) ∼
√

2π (az)az+b−
1
2 e−az, a > 0, | arg (z) |< π. (2.1c)

(2) Asymptotic formulas [1, 6]:

Γ(z + a)

Γ(z + b)
= za−b

[
1+

(a− b)(a− b− 1)

2z
+O

(
1

z2

)]
, z →∞, |arg (z) |< π,

(2.2a)

Γ(z + a)

Γ(z + b)
∼ za−b , z →∞, | arg (z) |< π. (2.2b)

(3) Beta function is defined for Re(z) > 0 and Re(w) > 0 as [19]:

β(z, w) =

∫ 1

0
tz−1(1− t)w−1dt (2.3a)

or in terms of gamma function for z, w ∈ C\Z−0 as:

β(z, w) =
Γ(z)Γ(w)

Γ(z + w)
. (2.3b)

(4) Hypergeometric function is defined for z,a,b ∈ C and c ∈ C\Z−0 as [19]:

2F1(a, b; c; z) =
∞∑
k=0

(a)k (b)k
(c)k

zk

k!
, (2.4)

where | z |< 1, and the notation (.)k is the Pochhammer symbol which
is defined for z ∈ C as:

(z)k =
Γ(z + k)

Γ(k)
=

{
z(z + 1)...(z + k − 1), k ∈ N,
(z)0 = 1.

(2.5a)

Notice that,
(z)m+n = (z)m(z +m)n. (2.5b)

(5) Confluent hypergeometric function is defined for z,a ∈ C and b ∈ C\Z−0
as [19]:

1F1(a; b; z) =

∞∑
k=0

(a)k
(b)k

zk

k!
. (2.6)
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(6) Mellin-Barnes integral is an integral that generally has the form [12]:

1

2πi

∫
C
φ(s)zsds, (2.7)

where z ∈ C; C is a contour in the complex plane initiate at p − i∞
and terminate at p+ i∞ with Re(s) = p, and the integral kernel φ(s)
assumed to has the form:

φ(s) =
g1(s) g2(s)

g3(s) g4(s)
, (2.8)

where g1(s), g2(s), g3(s) and g4(s) are product of gamma function.

(7) H-function is defined via Mellin-Barnes integral as [10]:

Hm,n
p,q (z) ≡ Hm,n

p,q

[
z
∣∣∣ (a1, τ1), ..., (ap, τp)

(b1, λ1), ..., (bq, λq)

]
=

1

2πi

∫
C
Hm,np,q (s) z−sds (2.9)

with

Hm,np,q (s) =

∏m
j=1Γ(bj + λjs)

∏n
i=1 Γ(1− ai − τis)∏p

i=n+1 Γ(ai + τis)
∏q
j=m+1 Γ(1− bj − λjs)

, (2.10)

where m,n, p, q are integers such that 0 ≤ m ≤ q and 0 ≤ n ≤ p, for
ai, bj ∈ C and τi, λj ∈ R+ (i = 1, ..., p; j = 1, ..., q).

(8) Fox-Wright function [12]

pΨq

[
(ai, τi)1,p

(bj , λj)1,q

∣∣∣ z] =
∞∑
k=0

∏p
i=1 Γ(ai + τik)∏q
j=1 Γ(bj + λjk)

zk

k!
, (2.11)

where z, ai, bj ∈ C and τi, λi ∈ R (i = 1, ..., p and j = 1, ..., q).

(9) Radius of convergence for an infinite series of the form
∑∞

k=0 akz
k can

be found by any of the following two formulas [22]

R = lim inf
k→∞

1
k
√
|ak|

, (2.12a)

R = lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣ , (2.12b)

if the limit exist.
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(10) Order and type of an entire function f(z) that represented as infinite
series of the form

∑∞
k=0 akz

k can be found by the following formulas
respectively, [8, 22]

1

ρ
= lim inf

k→∞

log 1
|ak|

k log k
, (2.13)

(σeρ)
1
ρ = lim sup

k→∞

(
k

1
ρ k
√
|ak|
)
. (2.14)

3. Main results

This section, defines a new seven-parameter function considering one com-
plex variable as a generalization of the standard Mittag-leffler function and
some generalized Mittag-Leffler functions. Besides, it generalizes hypergeo-
metric function and confluent hypergeometric function along with all their
special cases.

Let z, τ1, τ2 ∈ C and min{Re(a), Re(b), Re(c), Re(λ1), Re(λ2)} > 0. Then

Ea,b,cτ1,λ1,τ2,λ2
(z) =

∞∑
k=0

(a)k(b)k
(c)k k!

zk

Γ(τ1k + λ1)Γ(τ2k + λ2)
. (3.1)

The following special cases can directly obtained:

(1) E1,b,b
τ1,1,0,1

(z) gives the standard Mittag-Leffler function defined in (1.1).

(2) E1,b,b
τ1,λ1,0,1

(z) gives Wiman’s function defined in (1.2).

(3) E1,b,b
τ1,λ1,τ2,λ2

(z) gives Dzherbashian four-parameter Mittag-Leffler func-

tion defined in (1.3).

(4) Ea,b,bτ1,λ1,0,1
(z) gives the three-parameter Mittag-Leffler function defined

in (1.4).

(5) Ea,1,cτ1,λ1,1,1
(z) gives Salim four-parameter Mittag-Leffler function defined

in (1.7).

(6) Ea,b,bτ1,λ1,τ2,λ2
(z) gives the five-parameter Mittag-Leffler function defined

in (1.9).
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(7) Ea,b,c0,1,0,1(z) gives the hypergeometric function defined in (2.4).

(8) Ea,1,c1,1,0,1(z) gives the confluent hypergeometric function defined in (2.6).

In addition, all the consequence special cases of the above functions. One
may asks about the region of the complex plane in which the function (3.1)
converges? The following theorem determine its radius of convergence there.

Theorem 3.1. (Radius of Convergence) For any z ∈ C, the series (3.1)
converges in the whole complex plane.

Proof. Write the series (3.1) in the form
∞∑
k=0

`kz
k,

where

`k =
(a)k (b)k

(c)k k! Γ(τ1k + λ1) Γ(τ2k + λ2)
.

In order to obtain the radius of convergence of this series; we use formula
(2.12b). Beforehand, we use expression (2.5a) to write the coefficient `k in
terms of gamma function

`k =
Γ(c)Γ(a+ k)Γ(b+ k)

Γ(a)Γ(b)Γ(c+ k)Γ(k + 1)Γ(τ1k + λ1)Γ(τ2k + λ2)
.

Accordingly∣∣∣∣ `k`k+1

∣∣∣∣ =

∣∣∣∣ (c+ k)(k + 1)

(a+ k)(b+ k)

∣∣∣∣ ∣∣∣∣Γ(τ1k + τ1 + λ1)

Γ(τ1k + λ1)

∣∣∣∣ ∣∣∣∣Γ(τ2k + τ2 + λ2)

Γ(τ2k + λ2)

∣∣∣∣ .
Applying formula (2.12b) we have

R = lim
k→∞

(∣∣∣∣ (c+ k)(k + 1)

(a+ k)(b+ k)

∣∣∣∣ ∣∣∣∣Γ(τ1k + τ1 + λ1)

Γ(τ1k + λ1)

∣∣∣∣ ∣∣∣∣Γ(τ2k + τ2 + λ2)

Γ(τ2k + λ2)

∣∣∣∣) .
It is obvious that the value of the first term of above expression equal to 1.
For the other two terms, we use formula (2.2a) to get

Γ(τ1k + τ1 + λ1)

Γ(τ1k + λ1)
= kτ1

[
1 +

τ1(τ1 − 1)

2k
+ O

(
1

k2

)]
, k →∞

and

Γ(τ2k + τ2 + λ2)

Γ(τ2k + λ2)
= kτ2

[
1 +

τ2(τ2 − 1)

2k
+ O

(
1

k2

)]
, k →∞.

We can easily find that the limit as k goes to infinity for the above expressions
gives infinity. That yields R =∞. �
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In the next theorem, we confirm the analyticity of the function (3.1) in the
whole complex plane and estimate its order and type, respectively.

Theorem 3.2. (Order and Type) The function (3.1) is an entire function of

order ρ = 1
Re(τ1+τ2) and type σ =

(
1

ρ|τ1|

)ρRe(τ1)(
1

ρ|τ2|

)ρRe(τ2)
.

Proof. From Theorem 3.1 and according to well-known fact in the complex
analysis, we observe that the series defined in (3.1) is an entire function, thus
we can infer its order by using formula (2.13). Note that

1

|`k|
=

∣∣∣∣Γ(a)Γ(b)Γ(c+ k)Γ(k + 1)Γ(τ1k + λ1)Γ(τ2k + λ2)

Γ(c)Γ(a+ k)Γ(b+ k)

∣∣∣∣ .
Applying Stirling’s formulas given in (2.1b) and (2.1c) on each gamma function
in the above expression, we imply

1

|`k|
∼
∣∣∣∣2πΓ(a)Γ(b)

Γ(c)

∣∣∣∣ |k|c−a−b+1 |τ1k|τ1k+λ1− 1
2 |τ2k|τ2k+λ2− 1

2 e−k(τ1+τ2).

It follows that

log 1
|`k|

k log k
∼

log
∣∣∣2πΓ(a)Γ(b)

Γ(c)

∣∣∣+
(
τ1k + λ1 − 1

2

)
log |τ1|+

(
τ2k + λ2 − 1

2

)
log |τ2|

k log k

+
λ1 + λ2 + c− a− b

k
− (τ1 + τ2)

log k
+ τ1 + τ2.

Consequently, and due to formula (2.13), we get

1

ρ
= lim inf

k→∞

log 1
|`k|

k log k
= Re(τ1 + τ2).

Immediately, we find that the function (3.1) has the order

ρ =
1

Re(τ1 + τ2)
. (3.2)

Respectively, we will estimate the type of the function (3.1), to do this we use
Stirling’s formula (2.1b) and (2.1c) on the coefficient `k, so

|`k|
1
k ∼

∣∣∣∣ Γ(c)

2πΓ(a)Γ(b)

∣∣∣∣ 1k|k|a+b−c−τ1−τ2−λ1−λ2k |τ1|
−τ1−

(
λ1+

1
2

k

)
|τ2|
−τ2−

(
λ2+

1
2

k

)
eτ1+τ2 .

Now apply formula (10) then use the result (3.2), we see that

lim sup
k→∞

(
k

1
ρ |`k|

1
k

)
∼ |τ1|−Re(τ1) |τ2|−Re(τ2) eRe(τ1+τ2).
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Alternatively from formula (2.14), we have

(σeρ)
1
ρ =

(
σe

τ1 + τ2

)Re(τ1+τ2)

.

Equating the above two expressions then simplify the result, we obtain

σRe(τ1+τ2) =

(
τ1 + τ2

|τ1|

)Re(τ1)(τ1 + τ2

|τ2|

)Re(τ2)

.

Therefore, the function (3.1) is of the type

σ =

(
1

ρ|τ1|

)ρRe(τ1)( 1

ρ|τ2|

)ρRe(τ2)

.

�

The following theorem, afford a major differentiation formula involving the
mth derivative of the function (3.1).

Theorem 3.3. (mth Derivative) For m ∈ N, the function (3.1) satisfy the
following relation:(

d

dz

)m
Ea,b,cτ1,λ1,τ2,λ2

(z) =
(a)m(b)m

(c)m
Ea+m,b+m,c+m
τ1,τ1m+λ1,τ2,τ2m+λ2

(z). (3.3)

Proof. For the left-hand side, we have(
d

dz

)m
Ea,b,cτ1,λ1,τ2,λ2

(z) =
∞∑
k=0

(a)k (b)k
(c)k k!Γ(τ1k + λ1)Γ(τ2k + λ2)

(
d

dz

)m
zk

=
∞∑
k=0

(a)k (b)k
(c)k Γ(τ1k + λ1)Γ(τ2k + λ2)

zk−m

(k −m)!

=

∞∑
n=0

(a)m+n(b)m+n

(c)m+n n!

zn

Γ(τ1(n+m)+λ1)Γ(τ2(n+m)+λ2)
.

In order to identify the above expression with function (3.1), we use the
Pochhammer property (2.5b), we conclude(

d

dz

)m
Ea,b,cτ1,λ1,τ2,λ2

(z) =

∞∑
n=0

(a)m(a+m)n(b)m(b+m)n
(c)m(c+m)n n!

× zn

Γ(τ1n+ τ1m+ λ1)Γ(τ2n+ τ2m+ λ2)

=
(a)m(b)m

(c)m
Ea+m,b+m,c+m
τ1,τ1m+λ1,τ2,τ2m+λ2

(z).

�
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Many important features reveal from the integral representations of the
Mittag-Leffler function, thus as a main type of this representations, we focus
to obtain the Mellin-Barnes integral representation for the function (3.1) in
the following theorem.

Theorem 3.4. (Mellin-Barnes Integral) For each z ∈ C with | arg(z)| < π,
the function (3.1) has the following Mellin-Barnes integral representation:

Ea,b,cτ1,λ1,τ2,λ2
(z)=

Γ(c)

2πiΓ(a)Γ(b)

∫
C

Γ(s)Γ(a− s)Γ(b− s)
Γ(c−s)Γ(λ1−τ1s)Γ(λ2−τ2s)

(−z)−sds,

(3.4)

where C is the integration contour beginning at λ − i∞ going to λ + i∞ with
0 < λ < min{Re(a), Re(b)} splitting all the poles at s = −k, (k ∈ N0) to the
left and the poles at both s = a+m and s = b+ n, (m,n ∈ N0) to the right.

Proof. To evaluate the integral (3.4) within the complex plane, we close the
contour C such that only the poles at s = −k, (k ∈ N0) contribute. Thus,
consider

Ω =
1

2πi

∫
C

Γ(s)Γ(a− s)Γ(b− s)
Γ(c− s)Γ(λ1 − τ1s)Γ(λ2 − τ2s)

(−z)−sds. (3.5)

From using the residue theorem, we obtain

Ω =

∞∑
k=0

lim
s→−k

[
(s+ k)

Γ(s)Γ(a− s)Γ(b− s)
Γ(c− s)Γ(λ1 − τ1s)Γ(λ2 − τ2s)

(−z)−s
]

=

∞∑
k=0

Γ(a+ k)Γ(b+ k)(−z)k

Γ(c+ k)Γ(λ1 + τ1k)Γ(λ2 + τ2k)
. lim
s→−k

[
Γ(s+ k − 1)

(s+ k − 1) ... s

]

=

∞∑
k=0

Γ(a+ k)Γ(b+ k)(−z)k

Γ(c+ k)Γ(λ1 + τ1k)Γ(λ2 + τ2k)
.
(−1)k

k!
.

By simplifying the above expression and using the Pochhammer definition
(2.5a), we get

Ω =
Γ(a)Γ(b)

Γ(c)
Ea,b,cτ1,λ1,τ2,λ2

(z).

Return with this result to expression (3.5), we find that

1

2πi

∫
C

Γ(s)Γ(a− s)Γ(b− s)
Γ(c−s)Γ(λ1−τ1s)Γ(λ2−τ2s)

(−z)−sds =
Γ(a)Γ(b)

Γ(c)
Ea,b,cτ1,λ1,τ2,λ2

(z),

which immediately gives the intended result. �
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The following theorem discuss the Euler transform for the function (3.1),
which gives a connection between this function and the Fox-wright function.

Theorem 3.5. (Euler Transform) Let u, v ∈ C and µ > 0, then the function
(3.1) satisfy the following relation:∫ 1

0
zu−1(1− z)v−1Ea,b,cτ1,λ1,τ2,λ2

(xzµ) dz

=
Γ(c)Γ(v)

Γ(a)Γ(b)
3Ψ4

[
(a, 1), (b, 1), (u, µ)

(c, 1), (τ1, λ1), (τ2, λ2), (u+ v, µ)

∣∣∣ x]. (3.6)

Proof. Take the left-hand side of the above expression then by means of the
function (3.1) and the beta function (2.3a), (2.3b) respectively, we have∫ 1

0
zu−1(1− z)v−1Ea,b,cτ1,λ1,τ2,λ2

(xzµ) dz

=

∞∑
k=0

(a)k(b)k
(c)k k!

xk

Γ(τ1k + λ1)Γ(τ2k + λ2)
β(µk + u, v)

=
Γ(c)Γ(v)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)Γ(µk + u)

Γ(c+ k)Γ(τ1k + λ1)Γ(τ2k + λ2)Γ(µk + u+ v)

xk

k!

comparing the above expression with the Fox-Wright function (2.11), we obtain
the desired result. �

As one an important functional relations, the next theorem establish a re-
currence relation for the function (3.1).

Theorem 3.6. (Recurrence Relation)

Ea,b,cτ1,λ1,τ2,λ2
(z) = λ1E

a,b,c
τ1,λ1+1,τ2,λ2

(z) + τ1z
d

dz
Ea,b,cτ1,λ1+1,τ2,λ2

(z). (3.7)

Proof. By virtue of the function (3.1) and easy simplification the right-hand
side becomes as

λ1

∞∑
k=0

(a)k(b)k
(c)k k!

zk

Γ(τ1k+λ1)Γ(τ2k+λ2)
+τ1k

∞∑
k=0

(a)k(b)k
(c)k k!

zk

Γ(τ1k+λ1)Γ(τ2k+λ2)

= (τ1 + λ1k)
∞∑
k=0

(a)k(b)k
(c)k k!

zk

Γ(τ1k + λ1)Γ(τ2k + λ2)
.

By using the recurrence relation of the gamma function, that is,

Γ(z + 1) = zΓ(z),

we acquire the left-hand side of the required relation. �
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4. Explicit formulas

As all the Mittag-Leffler functions, the function (3.1) has a relation with
certain elementary and special functions; some are special cases and others
has connection as functional relations as we mentioned previously in Section
3. This segment, investigates the relation between the function (3.1) and both
the Fox-Wright function and the H-function.

If we use the Pochhammer definition (2.5a) to rewrite the function (3.1)
then compare the resulting formula with the definition of Fox-wright function
(2.11), we find

Ea,b,cτ1,λ1,τ2,λ2
(z) =

Γ(c)

Γ(a)Γ(b)
2Ψ3

[
(a, 1), (b, 1)

(c, 1), (τ1, λ1), (τ2, λ2)

∣∣∣ z]. (4.1)

Moreover, in agreement with expression (3.4) and definitions (2.9), (2.10)
it is not difficult to observe that the function (3.1) appears as a special case
of the H-function,

Ea,b,cτ1,λ1,τ2,λ2
(z)=H1,2

2,4

[
z
∣∣∣ (1− a, 1), (1− b, 1)

(0, 1), (1− c, 1), (1− λ1, τ1), (1− λ2, τ2)

]
. (4.2)

5. Conclusion and discussion

The central idea of this work is to define a new function of one complex
variable and seven complex parameters as an exclusive generalization of the
standard Mittag-Leffler function. It is noteworthy to declare that this func-
tion generalizes some another special functions for instance, hypergeometric
function, confluent hypergeometric function and several generalizations of the
standard Mittag-Leffler function with all their consequence elementary special
cases.

Additionally, a detailed discussion was investigated for many essential prop-
erties, specifically the properties whose assumed as a basic in the theory of
entire functions such as radius of convergence, order and type. Subsequently,
we study further important properties as derivation, Mellin-Barnes integral
representation, Euler transform and recurrence relation.

As another tendency of this work, we managed to establish certain explicit
formulas for our new function in order to describe it in terms of the Fox-wright
function and the H-function that are significant in many areas of application
one can motivate for future work.
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