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Abstract. In this work, we explore the existence and uniqueness results for a class of bound-
ary value issues for implicit Volterra-Fredholm nonlinear integro-differential equations (IDEs)
with Atangana-Baleanu-Riemann fractional (ABR-fractional) that have non-instantaneous
multi-point fractional boundary conditions. The findings are supported by Krasnoselskii’s
fixed point theorem, Gronwall-Bellman inequality, and the Banach contraction principle.
Finally, a demonstrative example is provided to support our key findings.

1. INTRODUCTION

In recent years, research and development have made significant strides
thanks to the fractional calculus (FC) theory, which deals with differential
equations of fractional order. This is mostly due to the FC theory’s ability to
provide models with adequate solutions, particularly for real-world problems.
Additionally, generalized differential equations are considered to be fractional
differential equations. The IDE is an operator that contains both integer-
order integrals and integer-order derivatives as special cases, which is why
FC is becoming more popular and many applications arise from the term in
the present. This field of mathematical physics deals with IDEs in which the
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integrals are of the convolution form and also have predominantly power law
or logarithm type single kernels [1, 3, 5, 8, 12, 13, 14, 18, 20].

By employing the Mittag-Leffler function as its kernel, the nonsingular
Riemann-Liouville and Caputo form of the fractional operator is presented
by Baleanu and Baleanu in [6]. The AB-fractional derivative was used by
Bonyah et al. [7] to create a mathematical model for the illnesses of cancer
and hepatitis coinfection. Ahmad et al. [2] offered the AB-fractional deriva-
tive of the fractional-order vitamin-immune-tumor model and highlighted the
model’s existence, uniqueness, and Hyres-Ulam stability findings. Researchers
employing the dynamical fractional immune-tumor model with AB-fractional
derivative created a chaotic and comparative study of tumour and effector
cells [25]. In [10], the fractional AB-derivative was used to investigate the
numerical solution of the fractional immunogenetic tumour model. Several
applications were cited in reference [4, 28] in a similar manner.

The AB-fractional derivative was used by Logeswari et al. [26] to study
the mathematical model for the global spread of the COVID-19 virus. In
order to predict the impact of the disease spreading throughout India, they
also devised a framework for producing numerical results. A few additional
significant papers that attempted to address the issue of different illnesses
modeled as FDEs employing AB-fractional derivative are [21]. Tidke presented
the following equation in [29]:

T = M(v)y(v) + S(v,y(v)), v € [0,d],
y(O) = Yo,

where 0 < r < 1, the unknown y(.) takes values in the Banach space X;S €
C(J x X, X), and M (v) is a linear bounded operator on X and yp € X.

The authors of [24] worked with the following fractional implicit nonlinear
equations and looked at the uniqueness, existence, and qualities of continuous
dependence as well as the interval of existence and existence of solution

cAOéy(v) =M (U, y(v)c’ Aa(v)) ’
y(0) = yo € R,v € [0,b],

where “A%(a € (0,1)) denotes the Caputo fractional derivative and M €
[0,0] x R x R is a given continuous function.

Guo et al. [11] examined the boundary value issues for impulsive fractional
differential equations with the following:

CA%y(v) = M(v,y(v)), v € J'\J:v1,v2,...,0m, J=1[0,9],
Ay (vg) :y(v,jfvlz) =1 (v,:), k=0,1,2,...,m,
e1y(0) + e2y(Q2) = es,
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where CA%, 0 < a < 1 denotes the fractional Caputo derivative, M : J xR —
R is continuous and v satisfy 0 = vg < v1 < ... < Uy < U1 = Q, ¥ (v:) =
lim. o+ y (vk + €) and y (vj, ) = lim_,o- y (vg + €) represent the right and left
limit of y(v) at v = vg. Iy € C(R,R) and ey, e9,e3 are real constants with
e1 + es # 0.

In [30], Yukunthorn et al. investigated the issues of boundary value for the
fractional Hadamard impulsive equations:

CAglliy(v) = M(’U,y(U)), (S Jk C ['Uo,Q] , U= Vg,
Ay (vg) =i (y(vk)), k=1,2,...,m,
e1y (vo) + e2y(Q2) = Zz@o YiJoiy (vig1),

where ©ADF is the Hadamard fractional derivative of order p;, € (0,1] on in-
tervals Ji = (vg,vg41],k = 1,2,...,m with Jy = [vg,v1],0 < v1 < vy <
vg < L < U < ool < Uy < Uyl = ) which are the impulse points,
J = [x0,9Q],M : J x R — R is a continuous and ¢, € C(R,R), J& ¢; >

0,7 = 1,2,...,m is the fractional Hadamard integral. The jump conditions

are defined by
Dy (o) =y (v) =y (vi),
where y(v;) =lim,_,g+y(vk+€),k=1,2,3,....m

We explore AB-fractional derivatives of the following form in multi-derivative
nonlinear impulsive FDEs, which are inspired by the aforementioned works:

sD2(Z) = S(E,A(E), YA(E), TA(R)), Ee€

AXE) = (xz) tflk’ yr € R, (1.1)
A0) = Jy" 5y ¥(o. Alo)do,

where J = [0,9Q], 2 > 0,0 < a <1, *Dg is the ABR-fractional differential
operator and & € C’(J xR} — R), ¥ € C'(J xR — ]R) are nonlinear

functions, and WA(Z fo (Z,s,A(s))ds, TA(E fo (Z,5,A(s))ds and
k,h.Ax[O,Q] —>RA {(E,8):0<s<E §Q}

=50 <E <E<...<En=1AMzz, =A(E)-A(E) and
A () =limy_o+ A(Eg + h) and A (Z;) = limy,_,o- A (Eg + h) indicate the
boundaries of the right and left hands of Z(¢) at = = Z.

2. PRELIMINARIES

Now, a few fractional calculus notations, definitions, and known outcomes
are recalled [6, 15, 16, 17, 19, 22, 23, 27|.
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Definition 2.1. ([22]) For p € [1,00) and A form an open subset of R, then
the Sobolev space YP(A) can be defined as follows:

TP(A) = {s € L(A) : DPS € L2(A) for all |8] < A} .
Definition 2.2. ([6]) We assume A € Y1(0,1). Next, the left AB fractional

derivative in Riemann-Liouville viewpoint of A of order 0 < a@ < 1 (ABR
derivative) characterized by

B(a) d (& -
Dg = — Eo | ——(E—0)*) Ao)do,
= e fy B (o) M
where B(«) > 0 is a normalization function satisfying B(0) = B(1) = 1 and
E is one parameter Mittag-Leffler function.

Definition 2.3. ([6]) Let A € T1(0,1). Then, in Caputo meaning, the left
AB-fractional derivative of = of order 0 < ¥ < 1 characterized by

DY = (ffﬂg) /Ot Ey <(1__1919) (2 — a)ﬂ> AN (o)do.

Definition 2.4. ([23]) A Mittag-Leffler generalized function [y]y a(J) for the
complex ¥, A with Re(?) > 0 can be defined as follows:

E] A (6) = i _w _*
%A £ T(0k + A) k!
where v is the Pochhammer symbol given by
w=1 =9~r+1...(y+k—-1)), keN.

We note that

Eja(z) =Ega(2), Eyi(z) =Eg(2).
Lemma 2.5. ([6]) Suppose L{S(Z);p} = F(p). Then
DY{S(2);p} = BW)/1 - 9p"F(p)/p” +9/1 - .

k+1

Lemma 2.6. ([23]) L {tW*A*lng)A (:l:atﬁ) ;p} = Eklp?—2/ (1919 :l:a) and

E®t = d* /dtkt.

Definition 2.7. ([23]) Let p, u, A,y € C(Re(p),Re(u) > 0), b > a. On a class

L(a,b), the fractional integral operator E; pAsat 18 defined by

t
(B prar®) 2= /a (E-0)'E},[AE - 0)] ¢(0)do, E € [a,b].
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Lemma 2.8. ([27]) Let p,u, A,y € C(Re(p),Re(u) > 0), b > a. Then the

operator EZ,;L,A;M— is bounded on Cla,b] such that
| (B} nar) )] < Qg
where
o0 e k
_ Re(u) |(V)kl [A(b — a)fel)]
Q= (b- a3 il
— [T (pk + )l [(Re(p)k + p(p))] k!

Lemma 2.9. ([23]) Let p, u, A,y € C(Re(p), Re(u) > 0). Then the EZ%A;(H

is invertible operator in L(a,b) and for all & € L(a,b), is an inversion to the
left

-1
g S == AV =y x) = =
([Ep%A;LH] \s) == (DaJr Ep7M7A;a+\s) 2, a<Z<b,

where v € C, (Re(v) > 0) and ng__” denotes the RL-fractional operator of
order p+v with a.

Lemma 2.10. ([27]) Let n,u,A,v € C(Re(n), Re(u) > 0). Assume [ (w —
o) R 4 [2(w — o) (0)do = S(w), ¢ < w < d, is solvable in L(c,d). Then

6(F) = (D" Bulnes8) B e<E<d,

n,

where v € C, (Re(v) > 0) and DY is the fractional Riemann-Liouville oper-
ator of order u 4+ v with a, which is a unique solution.

Lemma 2.11. ([1]) (Krasnoselskii’s Theorem) Suppose A is a Banach space.
Suppose S is a bounded closed convex subset of A, and Suppose Fi,Fy are
operators of S — A, when F1A+ Fov € S for all A,v € S. If F is contraction
and Fy is completely continuous, then

FIN+ Fhoo=A

has a solution on S.

Lemma 2.12. ([23]) (Gronwall-Bellman inequality) Suppose y and S are non-
negative and continuous functions defined on J = [0,9] and ¢ > 0. Then

MQSc+/'mwM@ﬂw,zeJ
0
implies that

y(E) < c exp </0: %(a)d(a)) , el
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Lemma 2.13. The function A € C(J) is a solution of the given system, for
any function h € C(J),

0DEA(E) = h(E), E€J,
2.1
{ AED =AGD) +ve weR 2
with condition of the form
B Q (Q _ U)afl
A(0) = /0 (e Mo (2.2)

if and only if A is a solution of equation

o)~ 1
Jot =00, A(0))do

+g =B (22 (2 - o) Alo)do
—1—f0 o)do, for Z€10,%),

o) 1
n+ Jy %ﬂ(mA(o))da
1 52 B (5 (5~ 0)7) M(o)do
+ Jy h(o)do, for Z € (1,5,

yl+y2+fQ L U) “9(0, A(0))do
—I—fo o)do, for =€ (E9,E3),

cx 1

D1 Yt fo F(a) o, A(o))do
12 f Eo (%52~ 0)*) M(0)do

L —|—f0 o)do, for Z € (E,,9Q].

Proof. Let A satisfies (2.1) and (2.2). If = € [0, Z;], then

SD2A(E) = h(3),

and



Qualitative analysis of ABR~fractional Volterra-Fredholm system 119

Q s a—1
A(Z) :/0 (@ F(a)) o, A(o))do

* fiao)z /OEI Ea ((1__aa) (E- 0)“) N (o)do + /0: h(o)do.

If = € (21, E2), then we have

0D2A(E) = h(3), 03
A(E) =AEL) +um mER, '
and so
S Q — 0 a—1
M@ =AED) - [ hordo+ [ ELI vt Ao
* f}fai ; Eq ( __aa E- 0)“) N (0)do + /0_ h(o)do

Q - a—1
=A(E)) +uy - /0 h(o)do —i—/o (@ F(a)) Yo, A(o))do

LBl =y ( 2 _(E=- a>a> N'(o)do + /0 " h(a)io

1—a s, (1—a)
= TR o))
_yl+ 0 F(Oé) (U’ (O-)) g

Bla) [ 2 _(2-0)*) N(o)do : o)do
[ (== ) Moo + [ hto)d

AE)=A(E]) - /0:2 h(o)do +/0 ;(a) o, A(o))do
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Q a—
=y1+y2+/0 Mﬁ(o,/\(a))da

. Bla) /_ . <(_a) - U)a> N(o)do + /0 h(o)do.

l—a o

Assume the case E € (E,,,]. Then

m Q g
AE) = z;y+/0 (Qr(a))ﬁ(a,/\(a))da

+f£ao)é /Q Ea <(1__aa) (= - 0)a> N(o)do + /OE h(o)do.

Conversely, let A satisfies Eq. (2.3). The equation (2.3) to the system (2.1)

and (2.2) is Eg,u,/\;a+ as given below:

=m

_ O.)oz—l

m Q
A@ =3 u+ [ 0o M)

B(Oé) 1 =
+ 1—a (Ea,l,fa/lfoc;OJrA) (“) +/0 h(J)dJ

g

Theorem 2.14. The function A € C(J) is a solution of ABR-FDEs (1.1),
forany f € C(J x Rx R X R,R) if and only if A is a solution of equation

)a—l

m (o) e
AE) = Z;yi—i— /O (Qrm)é‘(a,A(U))da

+f£02[ /OE Ea ((1__aa) (= - U)a) A(o)do

+/tg<g,A(U),\pA(U),TA(U))da, tel (2.4)
0

Proof. Proof is provided by using Lemma 2.13,
h(E) =S(E,AE),YA(E), TAE)), E€ J.
0

The theorem in following is proven using the characteristics of the fractional

- g
integral operator £/, .., ..
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Theorem 2.15. Let 0 < a < 1. A function F in C(J) according to

(FA)E) = mw(ﬂmﬂﬂwmAya,Aeﬂﬂ,Eel

11—«
Then we have the following statements:

(1) F is a bounded linear operator in C(J);

(2) F is satisfied the Lipschitz condition;

(3) Let S be a bounded subset in C(J). Then F(S) is equicontinuous

(4) The operator FA = S has a unique solution in C(J) for any S € C(J),
and F' s invertible.

Proof. (1) As a result of the integral operator Eolé 1 /1—a0+A is a bounded
and linear in C(J), as a result, the equation

1B 1, —a/1-aprall < QAL E€Q,

where we locate

S (L [~ a/1- a0
0= 2 ks D@k Dl R

_Za/l — ane”

(ak + 2)
=E .
a,2 <1 DY )
Then, we have
B(a)
FA = ‘77 H ;z,l,fa/lfa;OJrAH

1—a
<Q: (HAHVAECU)

Thus, the operator F' is bounded on C(J).

(2) For any A, € C(J). Thus, for any = € J, using the linearity of F' and

the boundedness of the operator Ea L—a/1—a0+1 We discover that we have:

[FAE) - Fo(3)| = |(FA-Fo)()

N 1B£02 ) (Eé’lv_a/l—orOJ,-A — U) (2)
= 1B— « HE‘%L—a/l a0+A O'H
= DBEOzHA—GH. 25)
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This gives

B(a)
11—«

|FA = Fo| < Q22 Ao, A,0eC().

With constant of Lipschitz QB(a)/1 — aEq2(e/1 — a Q% ), the operator F
satisfies the Lipschitz condition.

(3) Let S = {A € C(J) : |A|| £ R} be a bounded closed subset of C(J).
Then, for every A € § and =1,=25 € J with 21 < Z5, we get

’FA (Z1) — Fo (EQ)\

(Eévl»(—a/l—a);OJrA) (E1) - fiao)é (Ei,1,(—a/1_a);o+/\) (Z2) ‘

B(a)
1—

(0}

- f Ea(i’ /0E Ea (u—_aa) (B - a)“) A(o)do

_ /0 E, (1__‘“a) (Z» —a)a> A(a)da‘

+ fﬁao)é :2 Eq <(1—_aa> (Zp — O‘)a> A(O‘)dd‘
o0 o \F = o .
§f£;;‘<1—a> ‘F(ozkl—i—l)/o (B1-0)* ~ (Z2 ~ @) Ao)do

* fiac)yi( (1__aa>k(p(a,j+l) /:2 (25— )" |A(0)do

21
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< My <1 féa)kf(akl—i— %)

« {7 (EQ o El)koHrl + (EQ)ka+1 o (El)ka+1 + (EQ - El)ka+1}

£ > (1 fa) k F(alir g {E @ e

k=0

From above inequality, it follows that, if | 21— Z2 |— 0, then
|FA (El) — Fo (Eg)| — 0.

This establishes the equicontinuity of F'(S) on J.
(4) For any & € C(J), we obtain

-1 -1
<Eé,1,—a/1—a;0+%) (E) = (D(l)iﬂEa,l,—a/l o304+ ) (E)aE € (aab)a (27)
where 5 € C with Re(5) >
-1
(Fﬁl%) (E) = ( a,l,—a/l a0+ > (E)
1-—

-1
1 _ _
- BOé (D +5Ei717_a/1_0ﬁ0+%> (‘:‘)7 = G (a7 b)

> 0. Thus, by definition of F' and (2.7), we get

As a result, the operator F' is shown to be invertible on C(J).
(FA)(E)=3(E), 2€J

has the unique solution

— l—a /1481 —
A(‘:‘) = Ba <D Ea 1,—a/1— —a;0+ ) (“:)? =€ (a b)
This completes the proof. ]

Therefore we have the following theorem from the above results.

Theorem 2.16. Suppose S € C(JxR, R). Then the system DS = I(E,A(8)),
= € J can be solvable on C(J) and has a solution given by

— l—a/ - =
A(E) = Ba (D +6Eé1_a/1 00+ S )(:), 2eJ,

where B € C with Re(8) > 0 and fOE S(o, A(0))d(0), Z € J.
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3. MAIN RESULTS

Theorem 3.1. Suppose S € C(J x R3 R) and the Lipschitz condition of
v € C(J x R) is satisfied.

(1) [S(E,A, k1, h1) =S (B, v, k2, ha)| <p(E) [|A — v[+[r1—Ko[+[h1 —hal],

AN v, ki, h; € C(J), 1=1,2,

(2) |7~9(EaA) - 19(57’0” < Lﬂ|A - U‘a Ave C(J)?

(3) [HE,AN)| < CylA|+ My, AeC(J),
where p : J — RY with L = sup(Z) and for the real constants Ly, My, Cx >
0. If 0 < L < min{1,1/2Q}, then the system (1.1) has a solution in C(J)
provided

Qe B(a)Eq2(a/1 — o)t
’ 1. 1
(r(a+1)cﬁ+ 1—a < (3:-1)
Proof. Assume that
R QY I'(a+1)Mc + MY+ M (3.2)

T 1-LQ - Q°/T(a+ 1)Co — B(a)Eas(a/l — a)Qot1 /1 — o

where Mg = sup|3(E,0,0,0)| and M* > 0 is a constant such that > ;" |y;| <
M*. Then we have R > 0 from the choice of L and condition (3.1).
Assume that

S={AeC(J):||A]| <R}). (3.3)

Then the existence of S as a closed, convex and bounded subset of A may be
demonstrated. Let F} : S — A and F5 : S — A, both of which are defined by

m Q _O.afl
(F1A) (B) = Zy+ /0 mr(a))ﬁ(a,j\(a))da

+ /: (o, A(0), VA(0), TA(0))do,
0

(BA)(B) = (BLiapi-aosh) (), Z€J. (3.4)

11—«
The operator equivalent (3.4) to the system (1.1) is as follows:
A=FAN+FA AePC(J). (3.5)

The same has been shown using the steps below.

Step 1. F} is contraction.
For every A,v € PC(J) and E € J, we have using the Lipschitz on S,

IS(2,A(Z), TA(0), TA(0)) — (2, v(Z), Bv(Z), To(E))| < p(E)A — v]. (3.6)
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This gives
|F1A — Fro|| < (Ly + LQ) |A —v||, A,ve PC(J). (3.7)

Step 2. Next, we demonstrate that F is a fully continuous variable. Using
the Ascoli-Arzela Theorem and Theorem 2.15, it is simple to show that the
operator Fj is entirely continuous.

Step 3. We have to prove that FiA + Fov € S for any A,v € S.
For any A,v € S, from Theorem 2.15, we have

[(F1A + Fpo) (2)
< [(FA) B)] + [(Fav) (B)]

Q — 0 a—1
/0 8= o A(o))do

= (o)

m
2w
i=1

+ /O: |S(e, A(o), UA(0), TA(0))|do + 1B£02Ea72 [(1 foz) Qa+1} l|lv]]

. (Q — U)a_l *
g/o R0 Ao + M

+ /: |S(e, A(o), TA (o), TA(0))| — 3(0,0,0,0) | do
0

= B(a) o
3 d Ea Qott
+/0 |\s(0,070,0)]0+1_a 2 {(1—04) }R

Qa

< W(C“A”*MCHM**L/O 1S(0, A(0), TA(0), TA(0))|

—i—Mg/Hda—i-B(a)Eag @ Qo+l R

0 11—« ’ (1—@)

< - (CyR+ My)+M*+ LR=

_F(a+1)( R+ My) + M™ +
B(a) o'

MoE E,

LR e

Qa+1:| R

< *
S Tatl) (CyR+ My) + M* + LRQ
B(oz)Ea2 a

l—a 77 [(1-a)

that is, by condition (3.1) with (3.2), we have

+ Mg+

m“] R, (3.8)



126 Shakir M. Atshan and Ahmed A. Hamoud

0 0
— (M, MsQ+M* = 1-LOQ— ———
F(a—l—l)( o)+ M+ R Mot D"
B(a)Eq2(a/1 — a)Qot?
_Ble) (110[ ) . (3.9

From (3.8) and (3.9), we get
|(F1A + Fov) (BE)| < R, Z€J.
This gives
|(F1A + Fyv)|| < R, VA,v € S.
This shows that F{A + Fyv € S for A,v € S. Thus,
A= FiA+ A,

which is the solution of the system (1.1) has a fixed point in S. The evidence
is now complete. O

The following theorem provides two ways to show the uniqueness of solutions
to the system (1.1). Using the Gronwall-Bellman inequality and the character-
istics of the fractional integral operator Eé 1 we first demonstrate

the conclusion.

,—a/l—a;0+>
Theorem 3.2. The system (1.1) has a unique solution in C(J) under the
conditions of Theorem 3.1.

Proof. The equivalent fractional integral equation to the ABR-FDEs (1.1) in
operator equation form is

(Eé"l’*a/l*a;oJrA) (E) = %(E), =eJ,

where

() =2 (/OQ O =) Ao))do — As

+/0~ S(o, Ao), VA(0), TA(U))dG) + Zyi, =Eeld

i=1

Theorem 3.1 states that the operator (1.1) can be solved in C'(J). Applying
Lemma 2.10 yields, the operator (1.1) has a unique solution in C(J), which is
the system (1.1).

Let A and v be two ABR-FDEs solutions that is (1.1). Using the linearity
of the fractional integral operator, we get for every = € J,
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IA(Z) —v(E)]

([ Ao - PO (B, i)
N

0 INE)

~( /OQ m&?flma,m)da - T (Bl aport) )

l—«o

QO{
SW(LMA(U) v(o)|)
2 [ o] -
+/0:pz1< )IA(0) — v(0)|do
Qa
Fa Ty (LelA) — @)

" (o — o(0)|do
< /0 [ —Z >) 1Lﬁ+ H 5. (2 @400 )| lae) — v(o) o

By Lemma 2.12, we have
IA(E) —v(E) <0, E€J
This demonstrates that for any = € J, A(E) v(Z). This proves that the
system (1.1) has a unique solution. O
4. ILLUSTRATIVE EXAMPLE

Example 4.1. Let us consider the following integro-differential system:

(’;Dé/QA(E) T ms();;(t)” + 5 f(f (£ + s?) A(s)ds + 15 fol s2A(s)ds, t € [0,1],

A(1/2
AA( ) = 3+A(1/2 )v
f 30 A(0)do,

where
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I(E,A(E), TA(E), TA(R)) = COS(‘;;“)D - 215/0 (t* + %) A(s)ds
+ R 1 s*A(s)ds,
9o, A(0)) = %JQA((;).

As Q=1,a=1/2,let A,v € PC(J) with integral boundary condition
IS(E,A(E), PA(E), TA(E)) — S(E,v(E), ¥v(8), Tv(E))|

< ‘M + 1/0 (t2 + 52) A(s)ds + L 1 s2A(s)ds

35 25 15 J,
- esoh L Ot (P + 52) o(s)ds + 01 Pu(s)ds|
< |35+ 3+ 35 (A0 - 00,
[9(0, A(0)) ~ (e 0(0)] < | 550°A(0) — 50%0(o)
< S IA0) — o(0),
(0, Ao))| < ‘31002/\(0)
< S IA@)] + 5.

Then, we get L = 0.077,Cy = 1/30, My = 1/30, Mg = 1/35, M* = 1/3, let
k=1,

(B(a)ang(a/l —a)Qott N 0o
1—a T(o+1
QYT (o + 1) My + M2 + M*
1—LQ—Q/T(a+1)Cy — B(a)az2(a/1 — )t /1 —

As a result, the requirement of Theorem 3.1 is met.

)019) =0.73 <1,

R = = 1.92.
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