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Abstract. In this paper, we investigate the suitable conditions for the existence results

for a class of =-Hilfer fractional nonlinear Fredholm-Volterra models with new conditions.

The findings are based on Banach contraction principle and Schauder’s fixed point theorem.

Also, the generalized Hyers-Ulam stability and generalized Hyers-Ulam-Rassias stability for

solutions of the given problem are provided.

1. Introduction

Science and progress have advanced significantly in recent decades thanks
to the fractional calculus theory, which comprises fractional equations. This
is mostly because it has produced adequate models, especially for real-world
issues. Furthermore, generalized differential equations are thought to include
fractional differential equations (FDEs) [1, 6, 8, 14, 16, 17, 18, 20].

The integro-differential equation (IDE) is an operator that contains both
integer-order derivatives and integer-order integrals as special cases, which is
the reason why in the present, fractional calculus gains enormous popular-
ity and many applications arise from the term in the field of mathematical
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physics where The integrals are essentially power law and have a convolution
or logarithm type single kernels [3, 4, 5, 7, 8, 13, 23, 24].

The initial-boundary value difficulties posed by nonlinear parabolic differ-
ential and IDEs may be used to mimic many real phenomena; for examples,
see [8, 15, 16, 17, 25, 26, 27, 28]. As a result, the Caputo fractional operator’s
application and generalization in IDEs are justified.

Through the use of Caputo, Hilfer operators and their generalization, sev-
eral scholars have recently examined the stability, uniqueness, and existence
of various boundary value problems (BVPs). Non-instantaneous impulsive
BVPs and the =-Caputo (or, more precisely, =-Liouville-Caputo) fractional
derivative were explored by Asawasamrit et al. in [2]. The =-Hilfer fractional
derivative including boundary conditions was explored by Ivaz et al. in [12].

The fractional Hilfer derivative under nonlocal boundary constraints was
studied by Nuchpong et al. [19]{

HDp,qX(φ) = Ξ
(
φ,X(φ), IδX(φ)

)
, φ ∈ [α1, α2] ,

X (α1) = 0, ∇+
∫ α2

α1
X(l)dl =

∑%−2
k=1 ςkX (ϑk) ,

where they have used the the Iδ-R-L and HDp,q-Hilfer fractional derivative,
and Ξ is continuous function.

In [22], Salim et al. investigated the BVP for the implicit fractional-order
generalised fractional impulses Hilfer-type of the following form:

(
℘Dp,q

τ+
X
)

(φ) = Ξ (φ,X(φ), (℘Dp,qX) (φ)) , φ ∈ φc,
X(φ) = Bc(φ,X(φ)), φ ∈ (φc, rc] , c = 1, · · · , %,
ϕ1

(
℘I1−ε

α+
1

)
(α1) + ϕ2

(
℘I1−ε

τ+

)
(α2) = ϕ3,

where ℘I1−ε
α+
1

and ℘Dp,q
τ+

are the fractional generalized Hilfer-type integral and

derivative and the function Ξ is continuous.

As started by Sousa et al. in [25], we examine the existence, and stability of
fractional IDEs using the =-Hilfer fractional derivative in this work. A remark
on the transformation may be found in [25]. Multiple fractional derivatives
are combined into the fractional =-Hilfer derivative.{

D℘,β;=
α+ ξ(υ) = $ (υ, ξ(υ), Gξ(υ),Kξ(υ)) , υ ∈ J := (α, χ],

I1−γ;=α+ ξ(α) = ξα, γ = ℘+ β − ℘β,
(1.1)

where I1−γ;=α+ is =-fractional integral andD℘,β;=
α+ is fractional =-Hilfer derivative

of order ℘ and type β, where $ : J×R3 → R, g, k : ∆×R→ R are continuous,
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with ∆ = {(υ, σ) : α ≤ σ ≤ υ ≤ χ}, and

Gξ(υ) =

∫ υ

α
g(υ, σ, ξ(σ))dσ, Kξ(υ) =

∫ χ

α
k(υ, σ, ξ(σ))dσ.

2. An auxiliary result

We review several definitions and outcomes from fractional calculus in this
section. The observations that follow are drawn from [8, 11, 12, 16, 20]. Let
ξ : J −→ R in ζ[α, χ] with

‖ξ‖ = sup{|ξ(υ)| : υ ∈ J}.

The ζγ,=[α, χ] is weighted space, let $ on (α, χ] is given by

ζγ,=[α, χ] = {$ : (α, χ]→ R : (=(υ)−=(α))γ$(υ) ∈ ζ[α, χ]} , 0 ≤ γ < 1,

and the norm

‖$‖ζγ,= = ‖(=(υ)−=(α))γ$(υ)‖ζ[α,χ] = max
υ∈J
|(=(υ)−=(α))γ$(υ)| .

The weighted space ζnγ,=[α, χ] of $ on (α, χ] is given by

ζnγ,=[α, χ] =
{
$ : J → R : $(υ) ∈ ζn−1[α, χ];$(υ) ∈ ζγ,=[α, χ]

}
, 0 ≤ γ < 1,

and the norm

‖$‖ζnγ,=[α,χ] =

n−1∑
k=0

∥∥∥$k
∥∥∥
ζ[α,χ]

+ ‖$n‖ζγ,=[α,χ] .

For n = 0, we get ζ0γ [α, χ] = ζγ [α, χ].

Definition 2.1. ([21]) The fractional integral left-sided of $ in relation to =
on [α, χ] is given by(

I℘;=
α+

)
$(υ) =

1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ)dσ, υ > α. (2.1)

Definition 2.2. ([21]) Let =′(ξ) 6= 0(−∞ < υ < χ < ∞). The fractional
Liouville-Riemann derivative of $ in relation to = of order ℘ > 0 correspon-
dent to the Liouville-Riemann, is given by(
D℘;=
α+ $

)
(υ)=

1

Γ(n−℘)

(
1

=′(υ)

d

dυ

)n∫ υ

α
=′(σ)(=(υ)−=(σ))n−℘−1$(σ)dσ, (2.2)

where n = [℘] + 1, n ∈ N.
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Definition 2.3. ([21]) Let ℘ > 0, I = [α, χ], (−∞ < υ < χ < ∞), $,= ∈
ζn([α, χ], R) be two functions, = be increasing and =′(ξ) 6= 0 for all ξ ∈ I.
The left =-Caputo derivative of $ of order ℘ as(

D℘;=
α+ $

)
(υ) = In−℘;=

α+

(
1

=′(υ)

d

dυ

)n
$(υ), (2.3)

where n = [℘] + 1, for ℘ /∈ N and ℘ = n for ℘ ∈ N .

Definition 2.4. ([21]) According to function $ of order ℘ has the following
fractional =-Hilfer derivative:

D℘,β;=
α+ $(υ) = I

β(1−℘);=
α+

(
1

=′(υ)

d

dt

)
I
(1−β)(1−℘);=
α+ $(υ). (2.4)

As previously stated, the =-Hilfer fractional derivative may be expressed as
follows:

D℘,β;=
α+ $(υ) = Iγ−℘;=

α+ Dγ;=
α+ $(υ).

Lemma 2.5. ([8]) Assume ℘, β > 0. Then we get(
I℘;=
α+ Iβ;=

α+ $
)

(υ) =
(
I℘+β;=
α+

)
(υ)

and (
D℘;=
α+ I

℘;=
α+ $

)
(υ) = $(υ).

Lemma 2.6. ([8]) Let ℘, β > 0.

(1) If $(ξ) = (=(υ)=(α))β−1, then

I℘;=
α+ (=(υ)−=(α))β−1(υ) =

Γ(β)

(℘+ β)
(=(υ)−=(α))℘+β−1.

(2) If g(ξ) = (=(υ)=(α))℘−1, then

D℘;=
α+ (=(υ)−=(α))℘−1(υ) = 0.

Lemma 2.7. ([22]) For 0 < ℘ < 1, if $ ∈ ζn[α, χ], then

(
I℘;=
α+ D℘;=

α+

)
(υ) = $(υ)−

(
I1−℘;=α+ $

)
(α)

Γ(℘)
(=(υ)−=(α))℘−1

for all ξ ∈ (α, χ].
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Lemma 2.8. ([11]) Assume n− 1 ≤ γ < n and $ ∈ ζγ [α, χ]. Then(
I℘;=
α+ $

)
(α) = lim

υ→a+

(
I℘;=
α+

)
$(υ) = 0.

The weighted space is shown below as follows.

ζ℘,β1−γ;=[α, χ] =
{
$ ∈ ζ1−γ;=[α, χ], D℘,β;=

α+ $ ∈ ζγ;=[α, χ]
}

and

ζγ1−γ;=[α, χ] =
{
$ ∈ ζ1−γ;=[α, χ], Dγ;=

α+ $ ∈ ζ1−γ;=[α, χ]
}
.

There is no denying

ζγ1−γ;=[α, χ] ⊂ ζ℘,β1−γ;=[α, χ].

Lemma 2.9. ([11]) Let 0 ≤ β ≤ 1, 0 < ℘ < 1 and γ = ℘ + β − ℘β. If
ζγ1−γ,=[α, χ], then

Iγ;=
α+ D

γ;=
α+ $ = I℘;=

α+ D℘,β;=
α+ $ (2.5)

and

Dγ;=
α+ I

℘;=
α+ $ = D

β(1−℘);=
α+ $. (2.6)

Lemma 2.10. ([28]) Let $ ∈ L1(α, χ). If D
β(1−℘);=
α+ $ exists on L1(α, χ).

Then

D℘,β;=
α+ I℘;=

α+ $ = I
β(1−℘);=
α+ D

β(1−℘);=
α+ $.

Lemma 2.11. ([28]) Suppose $ ∈ ζ1[α, χ], ℘ > 0 and 0 ≤ β ≤ 1. Then we
get

D℘,β;=
α+ I℘;=

α+ $ = $.

Lemma 2.12. Let ℘ > 0, a(υ) be an integrable on a ≤ υ < χ (some χ ≤ ∞),
and let g(υ) be nondecreasing, continuous and nonnegative on α ≤ υ < χ such
that g(υ) ≤ Ω∗ for some Ω. Let ξ(υ) be locally integrable on α ≤ υ < χ with

|ξ(υ)| ≤ a(υ) + g(υ)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1ξ(σ)dσ, υ ∈ J

with some ℘ > 0. Then

|ξ(υ)|≤a(υ)+

∫ υ

α

[ ∞∑
n=1

(g(υ)Γ(℘))n

Γ(n℘)
=′(σ)(=(υ)−=(σ))n℘−1

]
ξ(σ)dσ, α ≤ υ < χ.

Proof. Theorem 1 in [28] is identical to the proof in this case. �
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Lemma 2.13. ([28]) Assume that γ = ℘ + β − ℘β, where 0 ≤ β ≤ 1 and
0 < ℘ < 1. If $ : J×R3 → R and $(·, ξ(·)) ∈ ζ1−γ [α, χ] for all ξ ∈ ζ1−γ [α, χ].
A function ξ ∈ ζγ1−γ [α, χ] is a solution of (1.1) if and only if ξ satisfies

ξ(υ) =
ξα

Γ(γ)
(=(υ)−=(α))γ−1

+
1

Γ(℘)

∫ υ

α
(=(υ)−=(σ))℘−1$(σ, ξ(σ), Gξ(σ),Kξ(σ))dσ. (2.7)

3. Existence results

To back up our primary findings, we propose the following hypothesis.

(H1) Assume that $ : J ×R→ R is a function and $(·, ξ(·)) ∈ ζ1−γ,=[J,R]
for any ξ ∈ ζ1−γ [J,R] for all ξ, y ∈ R and there exist L > 0 with

|$(υ, ξ)−$(υ, y)| ≤ L|ξ − y|.

(H2) Assume that g, k : ∆×R→ R are continuous and there exist G∗,K∗ >
0, and ∫ υ

α
|g(υ, σ, ξ)− g(υ, σ, y)|ds ≤ G∗|ξ − y|

and ∫ χ

α
|k(υ, σ, ξ)− k(υ, σ, y)|ds ≤ K∗|ξ − y|.

(H3) Assume that $ : J ×R→ R is a function and there exists M,N with

|$(υ, ξ)| ≤M |ξ|+N, ∀υ ∈ J, ξ ∈ R.

Theorem 3.1. Assume that both (H1) and (H2) are met. Then, there is at
least one solution to the Eq. (1.1).

Proof. Incorporate the map N : ζ1−γ,=[α, χ] → ζ1−γ,=[α, χ]. The operator-
form representation of the Eq. (2.7)

ξ(υ) = Nξ(υ),

where

(Λξ)(υ) =
ξα

Γ(γ)
(=(υ)−=(α))γ−1 (3.1)

+
1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(s, ξ(σ), Gξ(σ),Kξ(σ))dσ.

Consider the ball
{r = {ξ ∈ ζ1−γ,=[α, χ] : ‖ξ‖ ≤ r} .
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The operator Λ is obviously well defined. It is obvious that the problem’s
solutions are the fixed points of the operator Λ. Then, for all ξ ∈ ζ1−γ,=[α, χ]
and υ ∈ J we get,∣∣(Λξ)(υ)(=(υ)−=(α))1−γ

∣∣
=
∣∣∣ ξα
Γ(γ)

+
1

Γ(℘)
(=(υ)−=(α))1−γ

×
∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, ξ(σ), Gξ(σ),Kξ(σ))dσ

∣∣∣
≤ ξα

Γ(γ)
+

1

Γ(℘)
(=(υ)−=(α))1−γ

×
∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1|$(σ, ξ(σ))|dσ

≤ ξα
Γ(γ)

+
1

Γ(℘)
(=(υ)−=(α))1−γ

×
∫ υ

α
=′(σ)(=(υ)−=(α))℘−1(M |ξ(σ)|+ Λ)dσ

≤ ξα
Γ(γ)

+
M

Γ(℘)
(=(υ)−=(α))1−γ(=(υ)−=(α))℘+γ−1B(γ, ℘)‖ξ‖ζ1−γ,=

+
Λ

Γ(℘+ 1)
(=(υ)−=(α))1−γ(=(υ)−=(α))℘

≤ ξα
Γ(γ)

+
1

Γ(℘)
(=(χ)−=(α))℘B(γ, ℘)‖ξ‖ζ1−γ,=

+
Λ

Γ(℘+ 1)
(=(χ)−=(α))℘+1−γ .

This demonstrates how the {r =
{
ξ ∈ ζ1−γ,=[α, χ] : ‖ξ‖ζ1−γ,= ≤ r

}
is trans-

formed by Λ into itself. The proof is broken down into different steps:

Step 1: Λ is continuous.
Let ξn and ξn → ξ in ζ1−γ,=[α, χ]. Then for all υ ∈ J ,∣∣∣ ((Λξn) (υ)− (Λξ)(υ)) (=(υ)−=(α))1−γ

∣∣∣
≤
∣∣∣(=(υ)−=(α))1−γ

Γ(℘)

×
∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$ (σ, ξn(σ), Gξn(σ),Kξn(σ)) dσ

− (=(υ)−=(α))

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, ξ(σ), Gξ(σ),Kξ(σ))dσ

∣∣∣
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≤(=(υ)−=(α))1−γ

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1

×
∣∣∣$ (σ, ξn(σ), Gξn(σ),Kξn(σ))−$(σ, ξ(σ), Gξ(σ),Kξ(σ))

∣∣∣dσ
≤(=(υ)−=(α))1−γ

Γ(℘)
(=(υ)−=(α))℘+γ−1B(γ, ℘)

×
∥∥∥$ (·, ξn(·), Gξn(·), Hξn(·))−$(·, ξ(·), Gξ(·),Kξ(·))

∥∥∥
ζ1−γ,=

which implies

‖Λξn − Λξ‖ζ1−γ,= ≤ B(γ, ℘)
(=(χ)−=(α))℘

Γ(℘)

×
∥∥∥$ (·, ξn(·), Gξn(·),Kξn(·))−$(·, ξ(·), Gξ(·),Kξ(·))

∥∥∥
ζ1−γ,=

.

This means that Λ is continuous.

Step 2: Λ
(
{r
)

is uniformly bounded.

It is obvious that Λ
(
{r
)
⊂ {r is bounded

Step 3: Λ
(
{r
)

is relatively compact.

It makes sense when Λ
(
{r
)
⊂ {r that Λ

(
{r
)

is uniformly bounded, and to
demonstrate that Λ is an equicontinuous operator. Assume that υ1, υ2 ∈ J,
υ1 < υ2, {r is bounded in ζ1−γ,ρ[α, χ]. Then,

|((Λξ) (υ1)− (Λξ) (υ2))|

≤ ξα
Γ(γ)

∣∣∣(= (υ1)−=(α))γ−1 − (= (υ2)−=(α))γ−1
∣∣∣

+
B(γ, ℘)

Γ(℘)

(
(= (υ1)−=(α))℘+γ−1−(= (υ2)−=(α))℘+γ−1

)
‖$‖ζ1−γ,= .

As υ1 → υ2, The aforementioned inequality’s right side goes to zero. We may
infer that Λ : ζ1−γ,=[α, χ]→ ζ1−γ,=[α, χ] is continuous and totally continuous
as a result of Steps 1 through 3 and the Arzela-Ascoli theorem. �

4. Generalized stability

Let ε > 0 and ϕ : I → R+ be continuous. We consider the following
inequalities:∣∣∣D℘,β;=

α+
η(υ)−$(υ, η(υ), Gη(υ),Kη(υ))

∣∣∣ ≤ ε, υ ∈ J, (4.1)∣∣∣D℘,β;=
α+

η(υ)−$(υ, η(υ), Gη(υ),Kη(υ))
∣∣∣ ≤ εϕ(υ), υ ∈ J, (4.2)∣∣∣D℘,β;=

α+
η(υ)−$(υ, η(υ), Gη(υ),Kη(υ))

∣∣∣ ≤ ϕ(υ), υ ∈ J. (4.3)
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Definition 4.1. ([9]) The problem (1.1) is said to be Hyers-Ulam stable if for
all ε > 0, there exist ζ$ > 0 and for each solution η ∈ ζ1−γ,=[α, χ] of the (4.1)
there exists a solution ξ ∈ ζ1−γ,=[α, χ] of the problem (1.1) such that

|η(υ)− ξ(υ)| ≤ ζ$ε, υ ∈ J.

Definition 4.2. ([10]) The problem (1.1) is said to be generalized Hyers-
Ulam stable if there exists ϕ ∈ ζ1−γ,=[α, χ] with ϕ$(0) = 0 such that for all
η ∈ ζ1−γ,=[α, χ] solution of (4.1) there exists a solution ξ ∈ ζ1−γ,=[α, χ] of
(1.1) with

|η(υ)− ξ(υ)| ≤ ϕ$ε, υ ∈ J.

Definition 4.3. ([10]) The problem (1.1) is said to be Hyers-Ulam-Rassias
stable in relation to ϕ ∈ ζ1−γ,=[α, χ] if there exists a real number ζ$,ϕ > 0 and
for all ε > 0 and η ∈ ζ1−γ,=[α, χ] of the inequality (4.2) there exists a solution
of (1.1), ξ ∈ ζ1−γ,=[α, χ] with

|η(υ)− ξ(υ)| ≤ ζ$,ϕϕ(υ), υ ∈ J.

Definition 4.4. ([9]) The problem (1.1) is said to be generalized Hyers-Ulam-
Rassias stable in relation to ϕ ∈ ζ1−γ,=[α, χ] if there exists ζ$,ϕ > 0 such that
for each solution η ∈ ζ1−γ,=[α, χ] of (4.3) there exists ξ ∈ ζ1−γ,=[α, χ] is a
solution of (1.1) with

|η(υ)− ξ(υ)| ≤ ζ$,ϕϕ(υ), υ ∈ J.

Remark 4.5. Clearly, we have the following implication:

(1) The Hyers-Ulam stability is the generalized Hyers-Ulam stability.
(2) The Hyers-Ulam-Rassias stability is generalized Hyers-Ulam-Rassias

stability.
(3) If the problem (1.1) is generalized Hyers-Ulam-Rassias stable with

ϕ(υ) = 1 then it is Hyers-Ulam stable.

Remark 4.6. Let a function η ∈ ζ1−γ,=[α, χ]. Then η is a solution of the
inequality (4.1),∣∣∣D℘,β;=

α+
η(υ)−$(υ, η(υ), Gη(υ),Kη(υ))

∣∣∣ ≤ ε, υ ∈ J

if and only if there exists g ∈ ζ1−γ,=[α, χ] such that
(i) |g(υ)| ≤ ε, υ ∈ J
(ii) D℘,β;=

α+ η(υ) = $(υ, η(υ), Gη(υ),Kη(υ)) + g(υ), υ ∈ J .
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Remark 4.7. If the inequality (4.1) has a solution of η, then the following
inequality has a solution of η.∣∣∣η(υ)− ηα

Γ(γ)
(=(υ)−=(α))γ−1 − 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1

×($(σ, η(σ), Gη(σ),Kη(υ))dσ
∣∣∣ ≤ ε(=(υ)−=(α))℘

Γ(℘+ 1)
.

Indeed, by Remark 4.6 we have that

D℘,β;=
α+

η(υ) = $(υ, η(υ), Gη(υ),Kη(υ)) + g(υ), υ ∈ J.
Then

η(υ) =
ηα

Γ(γ)
(=(υ)−=(α))γ−1

+
1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1($(σ, η(σ), Gη(σ),Kη(υ))+g(σ))dσ.

From this it follows that∣∣∣η(υ)− ηα
Γ(γ)

(=(υ)−=(α))γ−1

− 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1($(σ, η(σ), Gη(σ),Kη(σ))dσ

∣∣∣
=

∣∣∣∣ 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1g(σ)dσ

∣∣∣∣
≤ 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1|g(σ)|dσ

≤ ε(=(υ)−=(α))℘

Γ(℘+ 1)
.

We make similar observations about inequality (4.2) and inequality (4.3).
The major findings of generalized Hyers-Ulam-Rassias stability are now

presented in this section.
(H4) There are rising functions (λϕ > 0) such that for each υ ∈ J , ϕ ∈

ζ1−γ,ρ[α, χ],

I℘;=α+
ϕ(υ) ≤ λϕϕ(υ).

Theorem 4.8. If the hypotheses (H1) and (H4) are true, then the issue (1.1)
is Hyers-Ulam-Rassias stable in general.

Proof. Assuming that η is the solution to (4.3). Then ξ is the only possible
solution to the
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D
℘,β;=
α+ ξ(υ) = $(υ, ξ(υ), Gη(υ),Kη(υ)), υ ∈ J,

I1−γ;=α+ ξ(α) = I1−γ;=α+ η(α),

when
L(1 +G∗ +K∗)

Γ(℘)
B(γ · ℘)(=(χ)−=(α))℘ < 1.

Then we have

ξ(υ) =
ηα

Γ(℘)
(=(υ)−=(α))γ−1

+
1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, ξ(σ), Gξ(σ),Kξ(σ))dσ.

By differentiating inequality (4.3), we have∣∣∣η(υ)− ηα
Γ(℘)

(=(υ)−=(α))γ−1

− 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, η(σ), Gη(σ),Kη(σ))dσ

∣∣∣
≤ λϕϕ(υ).

Hence it follows

|η(υ)− ξ(υ)|

≤
∣∣∣η(υ)− ηα

Γ(℘)
(=(υ)−=(α))γ−1

− 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, ξ(σ), Gξ(σ),Kξ(σ))dσ

∣∣∣
≤
∣∣∣η(υ)− ηα

Γ(℘)
(=(υ)−=(α))γ−1

− 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, η(σ), Gη(σ),Kη(σ))dσ

∣∣∣
+
∣∣∣ 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, η(σ), Gη(σ),Kη(σ))dσ

− 1

Γ(℘)

∫ υ

α
=′(σ)(=(υ)−=(σ))℘−1$(σ, ξ(σ), Gξ(σ),Kξ(σ))dσ

∣∣∣
≤ λϕϕ(υ) +

L(1 +H)

Γ(℘)

∫ υ

α
(=(υ)−=(σ))℘−1|η(σ)− ξ(σ)|dσ.

According to Lemma 2.5, there exists a constant M∗ > 0 that is not reliant
on λϕϕ(υ) such that

|η(υ)− ξ(υ)| ≤M∗λϕϕ(υ) := ζ$,ϕϕ(υ).
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As a result, the problem (1.1) is Ulam-Hyers-Rassias stable in its generalized
form. �

Remark 4.9. Clearly, we have the followings:

(1) We take into consideration the inequality (4.2) as well as the issue (1.1)
under the premise of Theorem 4.8. The Ulam-Hyers-Rassias stability
of the issue (1.1) may be confirmed by repeating the same procedure.

(2) We take into consideration the inequality (4.1) and the issue (1.1)
under the premise of Theorem 4.8. The same procedure may be used
to confirm that the Ulam-Hyers stability of the issue (1.1) can be
established.
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