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Abstract. In the present paper, we establish Ulam-Hyres and Ulam-Hyers-Rassias stabilities
for nonlinear impulsive integro-differential equations with non-local condition in Banach

space. The generalization of Grownwall type inequality is used to obtain our results.

1. INTRODUCTION

A question raised by Ulam [20] in 1940, is answered by Hyers [7] in case
of Banach space. Furthermore, Rassias [19] generalised the concept of Ulam-
Hyers stability in 1978. Rassias introduced new function variables. Therefore
the new concept of stability named with Ulam-Hyers-Rassias stability. The
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Ulam type stability problems attracted many researchers ( [12,14,15,18-23]).
Kucche and Shikare [12] studied Ulam type stabilities of the following problem:

' (t)=Azx(t)+ f (¢, x4, fg g1(t, s, zs)ds, f(f g2(t,s,x5)ds), t € (0,b],0 < b < o0,
xz(t)=¢(t),t € [-r,0].

In [18], Parthasarathy studied the Ulam problem for impulsive differential
equation of the type:

{x’(t) = f(t,x(t), teJ =J{tnta . tm}t, J=[0,T],
a(tf) = a(ty) + I(z(ty)), k=1,2,....,m.

As per best of our knowledge, Ulam type stabilities for impulsive integro-
differential equation with nonlocal condition is not investigated yet. In the
present paper we consider impulsive integro-differential equation of first order
of the type:

u'(t) = Au(t) + f(t, ut, fg k(t, s)h(s, us)ds),
te(0,T], t#m, k=1,2,..,m,

u(t) + (g(ut,, - ug,))(t) = ¢(t), —r <t <0,

Au(ty) = Iryu(rg), k=1,2,...,m,

(1.1)

where 0 < t1 < tp < ... <t, <T, p € N, Ais the infinitesimal generator
of strongly continuous semigroup of bounded linear operators {7'(¢) };>0 and
Iy (k =1,2,...,m) are the linear operators acting in a Banach space X.

Let k£ : [0,7] x [0,T] — R be a continuous function and the functions
f,h, ¢ and g are given functions satisfying some assumptions. The impulsive
moments 7 are such that 0 <79 <1 <2 < ... < Ty < Tip1 < T, m € N,
Au(t,) = u(t +0) — u(m,, — 0), where u(7, + 0) and u(7, — 0) are the right
and the left limits of uw at 7, respectively.

Many authors studied existence, uniqueness and other qualitative properties
of equations (1.1) and their special forms, see ( [1,3,6,8-11]) and the references
therein. For more details on impulsive differential equations, see ( [3,13,16]).
The aim of the present paper is to investigate Ulam-Hyres and Ulam-Hyers-
Rassias stabilities of mild solution of the problem (1.1). We use generalization
of Grownwall type inequality to derive the result.

The paper is organized as follows: In Section 2, we present the preliminaries,
hypotheses. In Section 3, we give proof of Ulam-Hyers stability results and
Section 4, contains Ulam-Hyers-Rassias stability results.



Ulam stabilities stabilities for impulsive integro-differential equations 199

2. PRELIMINARIES AND HYPOTHESES

Let X be a Banach space with the norm ||-||. Let C =C([-r,0],X),0 <7 <
oo be the Banach space of all continuous functions ¢ : [—r,0] — X endowed
with supremum norm ||¢||c = sup{||v(¢)|| : —r < t < 0}. PC([-r,T],X) =
{w:[-r,T] — Xlu(t) is piecewise continuous at t # 7, left continuous at t =
Tk, and the right limit u(7,+0) exists for k = 1,2, ..., m}. Then PC([—r,T], X)
is a Banach space with the supremum norm

|ullpc = sup{||u(t)| : t € [=r,T]\ {71, 72, -.s T } }

For any uw € PC([-r,T],X) and t € [0,T]\ {71, 72, ..., Tm }, we denote u; the
element of C given by u:(0) = u(t +6) for 6 € [—r,0] and ¢ is a given element
of C.

Definition 2.1. A function u € PC([—r,T], X) satisfied the equations:
u(t) =T ()¢(0) = T(t)(g(us, - ut,))(0)
t s
4 / T(t — ) f(s, us, / k(s, 7)h(r, us)dr)ds
0 0

+ Y T(t—7)Iu(r), € (0,T],

O<T<t
u(t) + (g(ugy, ..o ug,)) () = @(t), —r <t <0

is said to be the mild solution of the initial value problem (1.1).

Theorem 2.2. ([17]) Let {T'(t)}+>0 be a Cy semigroup. Then there exist
constants w > 0 and M > 1 such that | T(t)]| < Me*t, 0 < t < cc.

Lemma 2.3. ([2]) Let for t > ty, the following inequality hold:

u(t) < alt) + / ds+// (t,s,Tyu(r)dr)ds + Y Be(t)ulty),

to to to to<tp <t

where, u,a € PC([tg,o0),Ry), a is nondecreasing, b(t,s) and k(t,s,T) are
continuous and non-negative functions for t,s, ™ > tg and are nondecreasing
with respect to t, Br(t)(k € N) are nondecreasing for t > tyg. Then for t > t
the following inequality hold :

to<Te<t

u(t) <a(t) ] (14 Be(t) exp/tbt s)ds) + //k:(t,s,T)dT)ds.
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Definition 2.4. We say that equation (1.1) has the Ulam-Hyers stability, if
there exists a non-negative constant c; such that for each ¢ > 0 and u in
PC([—r,T], X) satisfies:
[ (£) — Au(t) — f (£, ug [ok(t, s)h(s, us)ds)|| < e,
le (OaT]a t 7& T, k=1,2,..,m,
l[u(t) + (g(utys -y ug,))(E) — G(F)] <€, —r <t <0,
[Au(my) — Ixu(tk), || <€, k=1,2,...,m,

(2.1)

then there exists a solution v of the equation (1.1) with

|lu —v||pc < cre.

Definition 2.5. We say that equation (1.1) has the generalized Ulam-Hyers
stability, if there exists a piecewise continuous function £(depend upon f) with
€(0) = 0 such that for each solution v in PC([—r,T], X) of the equation (1.1)
with

lu—vllpc < &(e).

Definition 2.6. We say that equation (1.1) has the Ulam-Hyers-Rassias sta-
bility, if there exists a positive piecewise continuous function ¢ (t) : [-r,7] — R
such that for each € > 0 and w in PC([~r, T}, X), there exists ca > 0 (depend-
ing upon f and (t)) such that for every ¢ > 0, ¢» > 0, if u € PC([-r,T], X)
satisfies:

[ (t) — Au(t) — f(t, up, [y k(t, $)h(s,us)ds)|| < ed(t),

te(0,T), t£m, k=12 ..,m,

[u(t) + (g(utys o ug,)) () = ()| < €p,  —r <t <0,

|Au(rg) — Igu(y), || < e, k=1,2,...,m,
then there exists a solution v : [—r,T] — X of the equation (1.1) with

lu = vllpc < eca((t) + P(k + 1))

(2.2)

Definition 2.7. We say that equation (1.1) has the generalized Ulam-Hyers-
Rassias stability, if there exists a positive piecewise continuous function 1 (t) :
[—7r,T] — R such that for each € > 0 and u in PC([—r,T], X), there exists
c2 > 0 (depending upon f and %(t)) such that for every e > 0, ¢ > 0 if
u € PC(]—r,T], X) satisfies :

[/ (£) — Au(t) — f(t,ug, o B(t $)h(s,us)ds)|| < (t),
te (0, 7], t#m, k=1,2,..,m,

lu(®) + (9(ueys o ue,)) (1) = $@)| <0, —r <0,
||Au(7-k) - Ik’LL(Tk), ” < ¢7 k= L,2,...,m,

(2.3)
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then there exists a solution v : [—r,T] — X of the equation (1.1) with

lu —vllpe < ca(¥(t) +p(k + 1))

Remark 2.8. A function v € PC([—r,T],X) is solution of the inequality
(2.1). If there exists b, € PC([-r,T],X) and a sequence b, k = 1,2,....m
(which depend on u) such that

(1) [|bu(®)]] <€, € [—r,T) and ||bgp(m)|| <€, k=1,2,....m
(2) u'(t) = Au(t) + f(t,ue, [ k(t, 5)h(s,us)ds) + bu(t),t € (0,T], t # 7,
(3) u(®) + (g(uty, - ug,)) () +bu(t) = ¢(t), —r <t <0,

(4) Au(rg) = Lu(m) + b(11), k=1,2,...,m.

Proposition 2.9. Ifu € PC([-r,T],X) satisfies the set of inequalities (2.1),
then u is the solution of following integro-differential equations:

[u(t) = T(t)p(0) + T(t)(g(ut,, -, ug,))(0)
— /0 Tt —s)f(s, us,/o k(s,T)h(T,u;)dr)ds — Z T(t — 1) Iu(Ty)||

O<m <t

/||Tt—s||ds+|T W+ X e —ml).

O<T <t

Proof. With Remark 2.8, we have

W'(t) = Au(t) + f(t, ug, [y k(t, $)h(s, us)ds) + by(t),
€ (0, 7], t# g,

u(t) + (g(uty, o u, ) (E) + bu(t) = 6(2)

Au(rg) = Igu(ty) + (1), k=1,2,

 _r<t<o (2.4)
ey T
Clearly, the solution of system of equations (2.4) is given by
u(t) =T(t)$(0) — T(t)(g(uty, ., ur,))(0) = T(t)bu(t)
4 /t T(t — ) f(s, us, /O k(s, 7)h(r, up)dr)ds + /OtT(t — $)bu(t)ds

s,T)h
+ > Tt —7)Iwulm) + Y Tt —7)bi(u(ri).

O<T <t O<tE<t
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It follows that,
[u(t) = T()$(0) + T () (g(usy , ---, ur,,))(0)

—/OtT(t—s)f(s,us,/Osk(s,r)h(T,uT)dT)ds— S Tt — 7o) Tu(my)|

O<tE<t
< / 17t = )lbu(®)llds + ITO N0+ S 1T = 7)o (u(re) |
O<TE<t
<o / 17— s)lds + [TO1+ 3 1T = m)l).

0<T <t
O
Let us introduce the following hypotheses which are assumed thereafter for
our convenience.

(Hy) Let f:[0,7] x C x X — X and h : [0,T] x C — X be continuous
functions such that there exists a continuous nondecreasing function
p:[0,T] = Ry =[0,00) and ¢ : [0,7] — R4 such that

1f(E, 0, u) = f(t, ¢, 0) < p() (1 = Sl + [lu—l),
1A (t, ) = h(t, D)l < q(D)][¢ = dllc

for every t € [0,T], ¢ € C and u,v € X.
(H2) Let g : CP — C such that there exists a constant G > 0 such that

Hg(utl,th, '“7Utp) - g<ut17vt27 "'7Utp)H < GHU - UH

(H3) Let I, : X — X are functions such that there exists constants Ly
satisfying

[k (u) = ()| < Lillu = v, u,v € X,k =1,2,...,m.
3. ULAM-HYRES STABILITY

Theorem 3.1. Suppose that the hypotheses (Hy)-(Hs) hold. Then the im-

pulsive initial-value problem (1.1) is Ulam-Hyres stable on [—r,T|, whenever
1 — MGe*T > 0.

Proof. Let u € PC(|—r,T], X) satisfies inequalities (2.2), v € PC([-r,T], X)
be the mild solution of equations (1.1).

v(t) = T(t)(0) = T(t)(g(vty, -, v1,)) (0)
—I—/O T(t—s)f(s,vs,/o k(s,T)h(T,v;)dT)ds + Z T(t—7k) Ikv(TE).

O<T<t
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Using Proposition 2.9 and Theorem 2.2, we obtain,

[ut) = T()p(0) + T () (g(ut, , ..., ur,))(0)
_/0 T(t— s)f(s,us,/o k(s,7)h(T,u;)dr)ds — Z T(t — 1) Iu(Ty)||

O<TE<t
<o [1re-olis+Irwi+ 3 e -mi)
O<TE <t

t
<o [ Metas s dret s Y aret)

0 0<7 <t
€<M wt— 1+Mewt+kMe w(t— Tk)>

w
6( T 1+M€wT+kMewT)

IN

M

e(—e”Tfl + Me“T (k + 1))
w

Now, we have

[u(t) —v(@)] = [[u(t) = T(t)¢(0) + T'()(g(vey , -, v1,))(0)
_/0 T(t—s)f(s,m;,/O k(s,T)h(T,v;)dT)ds
— > Tt —m)v(w)l|
0< <t
< Jlu(t) = T(¢)p(0) + T'(¢)(g(uy, - us,))(0)
—/0 T(t—s)f(s,us,/0 k(s,T)h(T,u;)dT)ds
— D T(t—m) u(m)|
O<TE<t

+ HT(t)”H(g(vtlv "'7vtp))(0) - (g(utN 7utp))(0)H

+AHﬂF@MﬂwwAk@ﬂMmmm)
—f(s,fus,/o k(s, 7)h(r, v )dr)|ds

+ > AT = )| Tew(i) — Teo(me)|
O<T <t
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M wT 1 wT wt
< ( ds + Me“" (k+ 1)) + MGe* ||lv — |

/ M)l = vllo+ [ La(r)lur = vrllc)arlds

+ > Me?U Lyflu(ry) — o(m)-

0<m <t

Let R(t) = sup{p(t), Lq(t)} and R* = sup{R(¢) : t € [-r,T]}. Define the
function z : [—r,T] — R by z(t) = sup{|lu(s) —v(s)| : =r < s < t},t € [0,T].
Let t* € [—r,t] be such that z(t) = ||u(t*) — v(t*)|. If t* € [0,¢], then

M
2(t) < e(—e“T s + Me“T(k + 1)) + Me“'Gz(t)
w
tx

+ [ M p(s)[z(s) + /0 ) Lq(7)(2(7)dr]ds

0

+ > MU Lpz(ny),

0< <t

(1 — MGe*")z(t) < e(M =14 Me“T(k + 1)) / Me“Tp(s)z(s)ds

/Me“’T/ Lq(7)(2(7)drds + Z Me“T Lyz(m,)

O0<T<t

€ (Me‘“T 1
(1 — MGe~T)

t MewT
+/o aTaewT)p(SMs)ds

t MLewT s
+/0 (1 — MGe~T) /0 q(7)(2(1)drds

L MevT
+ D A aigeTy (™) (3.1)
0<7‘k<t

+ M (k + 1))

If t* € [-r,0], then

2(t) < [1(g(vers o 01,))(0) = (g(uty s ooy g, )) (O] 4 (160 () — bu (D)
< G|lu— vl + 2e. (3.2)
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In the view of inequality (3.1) and (3.2), the inequality (3.1) holds good for
t € [-r,T]. Now applying impulsive Lemma 2.3 to (3.1), we get

€ M wT 1 wT Lk;MeUJT
< —+ R
Z(t)—(1—MGewT)( +MeT(k+1)) ] (1+(1—MGeWT))
O<T<t
MeT M Le®T
X exp{ = MGeWT ds+/ (1= MGeoT) —————R(s)R(7)dr]ds}

Mw w
<m(—e T=1 4 Me T(k+1))

LkMeWT MeT
<1l a —GeTy) P T T aGeT)

T
RT(1+ LR+ 3)}.

O<TE<t
Therefore, ||u(t) — v(t)||pc < €c1, where ¢ is depend upon f only.

€

M T—1 T

—  _(—e” MeT(k+1

“a= (1—MGewT)( ¢ M (k1))
Ly Me*T MeT T
*T(1+ LR« —
<1l @ (1= mgen) MG agary BT+ LEx5)}
O<tE<t
for 1 — MGe*T > 0. O

Corollary 3.2. Assume that the hypotheses (Hi)-(Hs) hold. Then the impul-
sive initial-value problem (1.1) is generalized Ulam-Hyres stable on [—r,T)| for
1 — MGe*T > 0.

Proof. Define,

€6) < gy (g e s+ MeT (k4 1)
LkMe“’T MeT T
S . _R*T(1+LRx=).
. 0<H<t T 8GN T argeony B T+ LR 5)}
Tk

Then &(e) is piecewise continuous and £(0) = 0. Therefore,

[u(t) —v(@)]po < &(€).

4. ULAM-HYRES-RASSIAS STABILITY

Theorem 4.1. Assume that the hypotheses (Hi)-(Hs3) hold. Consider v :
[—r,T] — Ry is positive nondecreasing continuous function and there exists
A > 0 such that
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t
/ B(s)ds < AB(H), t e [-rT].
0
Then the impulsive initial-value problem (1.1) is Ulam-Hyers-Rassias stable
with respect to (t), ¥ provided that 1 — MGe“T > 0.

Proof. Let ue PC([—r,T], X) satisfies the inequalities (2.3), ve€ PC([—r
be the mild solution of equations (1.1).

v(t) =T (t)p(0) = T(t)(g(vey s .-, vt,)) (0)
+/0 T(t—s)f(s,vs,/o k(s, T)h(r,v)dr)ds + Y T(t — ) Ixv(my).

0< <t

T, X)

Using inequalities (2.3) and Theorem 2.2, we obtain,

[u(t) = T(t)¢(0) +T'(t)(g(usy, -, ur, ) (0)
t S
—/0 T(t—s)f(s,us,/o k(s,7)h(T,u;)dT)ds
— > Tt — ) ()|

0< <t

< ([ Ime=slas+rol+ 3 jre-ml)

o< <t

/Me (t= Se¢( Yds 4+ Me*te) + Z Me? =Tk 61/})

O0<TE<t

< ep(t)MeT + MevTep + Z MewTezp)
0<TE <t
< eMe“T(\p(t) + ok +1)).

Proceeding in same way as in Theorem 3.1 we obtain,
€ - - L Me<T
) < ————(MY(2 k+1 1+ —
“0) < (im0 + 1) T 0+ )

MesT M Lev™
X exp{/ T YTer wT ds+/ / (1= MGeT) ——————R(s)R(7)dr]ds}

(Mp(t) + 9 (k + 1

LpyMe*T MewT T
R'T(1+ LR %~
< ]l @ (1= mGer)) Pl g T ppgeory BT+ LEx )}

O<TE<t
lu(t) —v(®)llpc < €M) (t) + 9 (k +1))ea,

< T wGET
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where, ¢y is depend upon f and ¥(t) and

1 LiMe“T
27T 1 - MGeT) 0<H<t(1 Tz MGeWT))
Tk

MewT

. T

for 1 — MGe*T > 0. 0

Corollary 4.2. Assume that the hypotheses (H1)-(Hs) hold. Then the impul-
sive initial-value problem (1.1) is generalized Ulam-Hyres-Rassias stable with

respect to P(t), 1 on [—r,T] for 1 — MGe*T > 0.
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