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1. INTRODUCTION

Let H be a real Hilbert space with the inner product (-,-) and induced
norm | - |, C be a nonempty, closed and convex subset of H. The notion
of split feasibility problem (SFP) was introduced and studied by Censor and
Elfving [7] in the framework of finite dimensional Hilbert spaces. The SFP has
found applications in many real-life problems such as image recovery, signal
processing, control theory, data compression, computer tomography and so on
(see [7, 8] and the references therein). The SFP is to find

x* € C such that Tz" € Q, (1.1)

where C and () are nonempty, closed and convex subsets of real Hilbert spaces
H; and Hs, respectively and T is a bounded linear operator from H; onto Ho.

Censor and Elfving [7] proposed an iterative method of the form of a si-
multaneous multi-projections for approximating the solution of SFP (1.1) in
a finite dimensional Euclidean space R"™. The classical variational inequality
problem (VIP), formulated as: Find x € C such that

(Az,y —z) >0, VyeC, (1.2)

where A is a nonlinear operator. The solution set of the VIP (1.2) is de-
noted by VI(C, A). For the purpose of modeling mechanics-related problems
and solving Signorini problems, Stampacchia and Fichera [14, 15, 35] inde-
pendently introduced and studied the concept of VIP. Numerous issues in
economics, the mathematical sciences, and mathematical physics can be ex-
pressed as VIP (1.2) formulations. Due to its fruitful applications to real life
problems, many authors have studied and generalized the notion of VIP (1.2)
(see [17, 25, 27, 31, 32] and the references therein).

Censor et al. in [10] extended the concept of VIP (1.2) to the following split
variational inequality problem (SVIP): Find
z* € C that solves (Az™,x —2*) >0, Yoz el (1.3)

such that y* = Tz* € @Q solves

(By*,y—y*) >0, YyeQ, (1.4)

where C and @ are nonempty, closed and convex subsets of real Hilbert spaces
H, and Hs, respectively, A : Hy — Hy, B : Ho — Hs are two operators and
T : Hy — Hy is a bounded linear operator. It is easy to see that SVIP (1.3)-
(1.4) is a generalization of the SFP (1.1). Letting A = B = 0, then the SVIP
(1.3)-(1.4) reduces to the SFP (1.1).
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Another interesting optimization problem is the monotone inclusion prob-
lem (MIP). This problem is defined as:

Find z € H such that 0 € (A+ A;)(z), (1.5)

where A : H — H and A; : H — 2" are monotone operators. It is well
known that if A7 = N¢ is the normal cone of some nonempty, closed, and
convex subset C' of H, then problem (1.5) becomes the classical VIP (1.2).
The problem (1.5) can be used to describe a variety of real-world problems. It
is crucial in a variety of mathematical optimization problems, such as varia-
tional inequalities problems, minimization problems, linear inverse problems,
saddle point problems, fixed point problems, split feasibility problems, Nash
equilibrium problems in non-cooperative games, and many other problems (see
[4, 7, 8,12, 13, 28] and the references therein). Numerous authors have intro-
duced and researched various iterative techniques to solve problem (1.5) as a
result of its successful applications. The well-known forward-backward split-
ting technique is one of the simplest iterative techniques for solving problem
(1.5). The iterative method is defined as follows:

{‘”0 €4, (1.6)

Tptl = J)‘f‘l (xn, — NAxy,),

where A > 0 and J)‘fh := (I + MA)~1. In the iterative technique (1.6), the
individual steps within each iteration involve forward evaluations in which the
value of the single-valued operator is computed and the backward evaluations
in which the set-valued operator is computed rather than their sum directly.
The iterative method converges weakly to a solution of problem (1.5) provided
that A is a-inverse strongly monotone. The method may fail to converge if
A is monotone and Lipschits continuous. To overcome this setback, Tseng in
[34], introduced and studied a modified forward-backward splitting technique.
The method is defined as follows:

xg € H,

Tn+1 = Yn — )\n(Ayn - A.Tn),
where {A\,} C [a,b] C (0,7). It is well known that (1.7) converges weakly
when A is monotone and Lipschitz.

Moudafi [22] presented and explored an intriguing generalization of the MIP
in [22], namely, the split monotone inclusion problem (SMIP). The problem is
defined as follows:

Find x € H; such that 0 € (A+ A;)(x), (1.8)
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such that
y =Tz € Hy such that 0 € (B + By)(y), (1.9)

where A : Hi — Hy,B : Hy — Hy are single valued operators, Ay : H] —
2M1 By : Hy — 2H2 are multivalued operators and T : H; — Hs is a bounded
linear operator. It is well known that if A1 = N¢ and By = Ng, in problem
(1.8)-(1.9), where N¢ and Ng are the normal cones associated with C' and
@, respectively, then the SMIP becomes the SVIP (1.3)-(1.4) (see [9, 10]). In
addition, we get the split common null point problem (see [6]) as a special case
in problem (1.8)-(1.9) if we put A = 0 = B. It follows that problem (1.8)-
(1.9) is highly generic in nature and naturally comprise a variety of significant
optimization problems, such as split saddle point problems, split equilibrium
problems, split minimization problems, and split common fixed point prob-
lems.

Moudafi [22], gave the following iterative method:

H
o< 17A H «( 7By (TH H (1.10)
Tny1 = (I = pA)(zn + AT (I (172 = pB) — 172)Tay),

where v € (0, ﬁ), I TH2 are the identity operators on H; and Ha, respec-

tively, and Jfl and Jfl are the resolvents of Ay and Bj, respectively. He
established that the iterative sequence {x,} generated by Algorithm (1.10)
converges weakly to a solution of (1.8)-(1.9) provided the solution set of prob-
lem (1.8)-(1.9) is nonempty, A, B; are maximal monotone, and A and B are
inverse-strongly monotone. Since the introduction of the SMIP, many authors
have proposed and studied different iterative techniques to solve the SMIP
(see [16, 20, 27, 36] and the references therein). However, all of these authors
use the assumption that the operators A and B are inverse-strongly monotone,
which may rule out some of the potential applications of these techniques.

To avoid such disadvantage, Izuchukwu et al. [19], proposed the following
iterative method:

Algorithm 1.1. Initialization Step: Choose zg,x1 € H, given the iterates
Tn—1 and x, for all n € N.
Step 1: Compute

Wp = Ty + Hn(wn - xn—l)y
Un = S (Twy — A ATw,),
zn = Tw, — (pdn,
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where d;, ;= Twp—yn—An (AT W —Ayn), n = %%’d" if d,, # 0, otherwise,

1y = 0 and
[ Twn—ynl ;
min { ﬁﬁTwl: AZ,?IJnH A } if ATw, # Ayn,
Ani1 = (1.11)
An, otherwise.

Step 2: Compute
Up = Wy, + YT (2, — Twy,), (1.12)

| Twn— ZnH2

where 7, is chosen such that for small enough € > 0, ,, € & T Twn—z)|E

€

if Twy, # zn, otherwise v, = 7.

Step 3: Compute
Uy, = Jff (vn, — vpBuy),
tp = vp — ¢wnbn7

<'Un—un,bn>

where b, = v, — up — vy (Bv, — Buy,), w, = e if b, # 0, otherwise,
wyp, = 0 and

min { H’gﬂn" qu;”” , Vn} it Bv,, # Buy,
Upntl = (1.13)
Vn, oOtherwise.
Step 4: Compute
Tnt1 = (1 — ap)wy + apty, (1.14)

where J fnl and JBP1 are the resolvents of A; and By, respectively.

They established that the iterative sequence {z,} generated by Algorithm
1.1 converges weakly to a solution of (1.8)-(1.9) in as much the solution set
of problem (1.8)-(1.9) is nonempty, A; and B are maximal monotone, A and
B are monotone and Lipschitz continuous with Lipschitz constant L; and Lo,
respectively. Izuchukwu et al., [19], offered a positive response to the point
in Remark 1 above by outlining the subsequent iterative method for resolving
the problem (1.8)-(1.9). However, we also observed that

Remark 1.2. The authors could only establish weak convergence. It is well
known that strong convergence is more desirable in this area of research. Thus,
we are back to the point of asking, if an iterative algorithm can be developed
to generate a strong convergence. In addition, can we further generalize the
problem (1.8)-(1.9)7
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The concept of inertial extrapolation was first suggested in 1964 by Polyak
in [24] as a technique for accelerating the process of solving the smooth con-
vex minimization problem. Since then, researchers have used this method to
enhance their iterative processes. The first two starting terms of the iterative
technique must be used for the inertial technique, and the prior two iterates
must be used to determine the subsequent iterate. Numerous authors have
improved, expanded, and generalized the inertial extrapolation method since
its beginnings, see [1, 2, 3, 27, 37] and the references therein. Among many
others, the relaxing technique has proven to increase the rate of convergence
of iterative processes.

Motivated by the works of Moudafi [22], Izuchukwu et al. [19], Tseng [34]
and the recent interest in this direction of research, our purpose in this study is
to introduce and study a generalization of problem (1.8)-(1.9) in the framework
of real Hilbert spaces. The problem is defined as follows:

Find x € H, such that = € (A+ A;)"10) N, F(S;)
and y = Tz € Hy that solves 0 € (B + By) " (y), (1.15)

where A, A1, B, By are as defined above and S is a nonlinear operation and
F(S) is the set of fixed point of S. It is easy to see that if S = I (identity
mapping), the problem (1.15) becomes (1.8)-(1.9).

In addition, we propose a new relaxed inertial extrapolation viscosity Tseng
method with self-adaptive step size for solving (1.15) when the underlying
operators B and A are monotone and Lipschitz continuous with Lipschitz
constant, which is a weaker assumption when compared to the cost operators
that are inverse strongly monotone used in [16, 18, 20, 22] and the references
therein.

Furthermore, we prove that the proposed method converges strongly to the
solution of (1.15) in real Hilbert spaces. Finally, we present some examples and
numerical experiments to show the efficiency and applicability of our method
in comparison with some existing ones in the literature in the framework of
infinite dimensional Hilbert spaces.

The rest of this paper is organized as follows: In Section 2, we recall some
useful definitions and results that are relevant to our study. In Section 3, we
present our proposed method and highlight some of its useful features. In
Section 4, we establish strong convergence of our method and in Section 5, we
gave some special cases of our proposed iterative algorithms. In Section 6, we
present some numerical experiments to show the efficiency and applicability of
our method in the framework of infinite dimensional Hilbert spaces. Finally,
in Section 7, we gave the conclusion of the paper.
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2. PRELIMINARIES

In this section, we begin by recalling some known and useful results which
are needed in the sequel. Let H be a real Hilbert space. The set of fixed
points of a nonlinear mapping 7' : H — H will be denoted by F(T'), that is
F(T)={z € H:Tx = x}. We denotes strong and weak convergence by ”—"
and ”—7 respectively. For any =,y € H and « € [0, 1], it is well known that

2(z,y) = l|lzlI” + Iyl = llz = ylI* = llz +yI* = 2] ~ llylI*, (2.1)
le £+ yl* < [ll* +2(y, 2 £ y), (2.2)
laz + (1 = a)yl* = allzl* + (1 = a)ylI* — a(l = a) |z — y||*. (2.3)

Definition 2.1. Let T': H — H be an operator. Then the operator T is
called

(a) L-Lipschitz continuous if there exists L > 0 such that
[Tz —Ty|l < Lilz -yl

for all z,y € H. If L =1, then T is called nonexpansive;
(b) monotone if

(Te —Ty,z —y) >0, Yo,y € H;
(c) inversely strongly monotone if there exists o > 0 such that
(Tw =Ty, —y) > aflz —y|* VayeH,
(d) p-demimetric, where p € (—o0, 1) if F(T) # () such that
(o —y, (T = T)z) > (1~ p)lla — Sa?
for all x € H and y € F(T). Equivalently,
ISz —ylI* < llz = ylI* + pllz — Sz]*.

If B is a multivalued operator, that is B : H — 2, then B is said to be
monotone, if

(x —y,u—wv) >0, Ve,y € H, we B(x), ve B(y)
and B is maximal monotone, if the graph G(B) of B defined by
G(B) :={(x,y) € Hx H :y € B(x)}

is not properly contained in the graph of any other monotone operator. It
is generally known that B is maximal monotone if and only if for (z,u) €
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H x H, (x—y,u—wv) >0 for all (y,v) € G(B) implies that u € B(z). Then
the resolvent operator J /{9 : H — H associated with B is defined by

JP(x):= (I +AB)"Yx), Vx € H,
where A > 0 and [ is the identity operator on H.

Lemma 2.2. ([29, 30]) Let C be a nonempty, closed and convex subset of
a Hilbert space H and let T : C — H be a p-demimetric operator with p €
(—00,1) and F(T) # 0. Let ¢ be a real number with 0 < ¢» < 1 — p and let
K =(1—-Y)I+4YT. Then K is a quasinonexpansive operator.

Lemma 2.3. ([5]) Let C' be a nonempty bounded closed convex subset of
a uniformly convexr Banach space X and F : C — C be a nonexpansive
mapping. For each x € C and the Cesaro mean Th,x = %Zﬁgl Tix, then
limsup,,_, [|The — F(Tyz)|| = 0.

Lemma 2.4. ([26]) Let {a,} be a sequence of positive real numbers, {ay,} be
a sequence of real numbers in (0,1) such that > 77 | o, = 00 and {d,} be a
sequence of real numbers. Suppose that

Ap+1 < (1 - @n)an +andn, n2>1.
If limsupy,_, o dn,, < 0 for all subsequences {an, } of {an} satisfying the condi-
tion
liminf (ap,+1 — an,) > 0,
k—o0

then lim a, = 0.
k—o0

Lemma 2.5. ([21]) Let H be a real Hilbert space, A: H — H be a monotone
and Lipschitz continuous operator and Ay : H — 28 be mazimal monotone
operator, then (A4 Ay) : H — 2 is a mazximal operator.

3. PROPOSED ALGORITHM

In this section, we present our proposed method for solving a problem (1.15)
and highlight some of its important features.

Assumption 3.1. Suppose that
Condition A.

(1) Hy and Hj are two real Hilbert spaces.

(2) By : H — 21 and A; : Hy — 2H2 are maximal monotone map-
pings and T : H; — Hs is a bounded linear operator with the adjoint
operator 1.
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(3) B: Hy — Hj and A : Hy — Hjy are monotone and Lipschitz continuous
with Lipschitz constant Li and Lo, respectively.

(4) For all + € {1,2,--- ,N}, S; : Hi — Hj be a finite family of p-
demimetric operators with p € (—o0,1) and such that I —.S; is demi-
closed at zero.

(5) {S»} is a sequence of nonexpansive mapping.

(6) f: Hy — H; is a contraction mapping with &k € [0, 1).

(7) The solution set of problem (1.15), denoted by I" # () is nonempty.

Condition B. Suppose that {a,} is a real sequence such that

(1) {Bn}, {¢}, {nm} and {¥,,} are all real sequences in (0,1) such that
M € (o, 1 — o) for some a > 0.

(2) {an} C (0,1), limy o0 vy, =0 and >,° ; @y = 00.

(3) {en} is a positive integer such that o(«a,,) = €, means that

€n

lim — =0.
n—00 (U,

We present the following iterative algorithm.

Algorithm 3.2. Initialization Step: Given Ai,v1 > 0,4,0 € (0,1) and
0 €10,1),0 <8, <0,. Choose xy, z1 € Hy, given the iterates x,_1 and x,, for
alln € N.

min {e,m} if l'n;él'n_17

|
3
I

(3.1)
0, otherwise.
Step 1: Compute
wp, = (1 — ap)zn + (1 — @y)0n(Spzn — Spxn—1),
n = S (Tw, — My ATwy),
2 = (1= Bp)Twy + Bpyn + BrAn(ATwyn — Ayn),
where
min {)\n, ”5%1:” Az;;'ll}} if ATw, # Ayn,
Ant1 = (3.2)
An, otherwise.
Step 2: Compute
U = Wy, + YT (20, — Twy), (3.3)

HTwn_ZnH2

T (Twn—zn)2 €

where 7, is chosen such that for small enough € > 0, 7, € |€

if Tw, # zn, otherwise =, = 7.
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Step 3: Compute
Uy = Jlil (vn, — vpBuy),
ty = (1 - Cn)vn + Cnun + CnVn(BUn - Bun)y

where

6||vn—tn|

min {I/n, TBons BunH}} if Bu,, # Buy,
Un+1 = (34)

Vn, otherwise.
Step 4: Compute
Tnt1 = anf(xn) + (1 — ap — gp)zn + 0 Dntn, (3.5)
where T, = & SV M (1 — ¢n) ] +9nSs).

Remark 3.3. (1) If {8,} = {¢,} = 1, we obtain a viscosity Tseng iterative
method for solving (1.15).

(2) We note that T;, = Zi]\;l((l — Yp)I + ¢y,S;) is quasi-nonexpansive
mapping. To see this, let p € I' and using Lemma 3.9, we get

N-1

1
[Tn = pll = ll5 D_ (1= ¥a)] +¥nSi)a — p
=0
1 N-1
<% Z 1 = ¥a)] + gnSi)z =
=0
1 N-1
<% llz—pl
=0
= [lz —pll. (3.6)

Thus, T,, is quasi-nonexpansive.

(3) The choice of the step size {v,} in Algorithm 3.2 do not require the
prior knowledge of the operator norm ||7']|. In addition, the step size is well
defined. To see this, let p € T', then 0 € (A; + A)T'p and since y,, = J)\ (Twy, —

A ATwy,), we obtain

Ayn + — (Twn M ATwy, — yp) € (A1 + A)yn. (3.7)

An

Using Lemma 2.5, we have (y,, — T'p, Ay, + ﬁ(Twn — MATw, —yy)) > 0, we
thus get
<yn - pr Twn —Yn — )\n(ATwn - Ayn)> 2 07
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which is equivalent to
2(yn — Tp, Twy, — Yn) — 2Mn(yn — Tp, ATw,, — Ayp) >0
Now, observe that
2{yn — Tp, Twy — yn) = |Twn — Tp||*  |lyn — Tp|?
— 1 Tws, = yal*. (3.8)
Consequently, we have
lyn = Tpl|? < | Twn = Tpl* = | Twn — yal®
— 22X\ {yn — Tp, ATw,, — Ayp,). (3.9)
It also follows that
120 — Tp||?
= (1 = B)Twn + Buyn + BnAn(ATwy — Ayn) — Tp|?
= [(1 = B2)(Twn = Tp) + B (yn — Tp) + Bn(ATw, — Ayy)||?
= (1= Bo)?||Twn — Tp|* + Billyn — Tl* + BaAL | ATw, — Ayy)|?
+ 28n(1 = Bn)(Twn — Tp,yn — Tp)
+ 2080 (1 = Bp)(Twy — Tp, ATwy, — Ayy)
+ 20 B2 (Y, — Tp, ATwy, — Ayy,)
= (1= 822 Twy, — Tpl|* + B2 llyn — To||* + BINAIIATw,, — Ayy)|1?
+ Bu(1 = B)lITwn = Tp|* + llyn — Tpl* = | Twn — yal?]
+ 20801 = Bn)(Twy — Tp, ATwy, — Ayy)
+ 2082 (y,, — Tp, ATw,, — Ay,,)
= (1= Bu)|Twn = Tl|* + Bullyn — Tpl* + BaAL | ATw,, — Ayy)|?
— Bn(1 = Bn)l|Twn — yn||2 + 2280 (1 = Bn) (Twy, — Tp, ATwy, — Ayn)
+ 2282 (y,, — Tp, ATw,, — Ay,,)
< (1= Bu)ITwn = Tp|* + Bull| Twn — Tp|l* = | Tws — yal®
= 2X\{yn — T'p, ATw,, — Ayp)]
— Bn(1 _5n)||Twn_yn”2 2)‘2||ATwn_AynH2
+ 2\, 8, (1 = B) (Twy, — Tp, ATw,, — Ayy)
+ 2)\nﬁ,21<yn — Tp, ATw,, — Ay,)
= ||[Twn — Tp”2 — Bn(2 = Bn)||[ Twn — Z/nH2 + 5721)‘ |ATwy, — Ayn||2
+ 20,8, (1 = Bn) (AT wy, — Ayn, Twy, — yp)
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= | Twy, — Tp|* = Ba(2 = Bu) | Twn — yall* + B MQ n | Twn = ynll®
An+1

A
+ 20 (1= B) = T = gl

< | Twn — Tp|? = Ba(2 = B) [ Twn — yull® + Batg™ ||Twn ynll?

2
An+1

A
+ (L= Bu) { = T = g

2

(A
= | Twn=Tp|* =B | 2= Br—1* z —2(1—Bn) }\Twn—ynu? (3.10)
n+1 n+1

Since limy, 00 Ay = limy, 00 Apt1, and say lim, o 3, = B € (0,1) we have

2
B 2 B i3 — 21— )| = pl2 = 8- - 21~ B)u] > 0.
n+1 n+1
Thus, we get
l2n = TpII* < | Twn — Tp?, (3.11)
which implies
lzn = Tpl| < [|Twn — Tpl. (3.12)

Using the Cauchy-Schwarz inequality and (3.11), we obtain
[T (Twn = zn)||lwn — pll = (T (Twn — zn), wn — p)
= (Twy, — zp, Tw,, — Tp)

1
= SllTwn — 2| + | Twn = Tpl|* = |20 — Tpl’]

1
> §HTU)n - Zn”2- (313)

Since z, # Twy, we have |[T'w, — z,|| > 0, thus, we obtain that ||7*(Tw, —
zn)||[Jwn, — p|| > 0. Hence, we have

1T (Twn — zn)|| # 0
and so 7, is well defined.

(4) The proposed algorithm can be viewed as a modified relaxed inertial
Tseng method with self-adaptive step size that is generated at each iteration
by some simple computations. Thus, the implementation and applicability of
our method do not depend on the Lipschitz constant of the cost operator. This
iterative technique uses both inertial and relaxation techniques, the scheme is
constructed from an explicit discretization of a dynamical system in time.
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4. CONVERGENCE ANALYSIS

In section, we establish strong convergence of our method.

Lemma 4.1. Let {x,} be a sequence generated by Algorithm 3.2, under As-
sumption 3.1. Then we obtain that {xy} is bounded.

Proof. Let p € I'. By using the definition of w, in Algorithm 3.2, we obtain
|wn = pll = |1 = an)zn + (1 — an)On(Snan — Spzn-1) — pl|

= (1 = an)(@n —p) + (1 — an)bn(Sn@n — SpTn—1) — anp||
< (1 —=an)llzn = pll + (1 = an)0nl|Snzn — Sprn-1ll + anllp|l

On
< (1= @l = ol + (1= ) 2 = ]+ ol 0

Using (5.15), we have 272”33” — xp-1|| £ &= — 0. Hence, we have

. On
iy (1= 0) 2o, = anea |+ 91| = I,

n—o0 n

hence, there exists M > 0 such that
0
(1= an)—llzn = a1l + [lp] < M.

Qo

Thus, (4.1) becomes
o = pll < (1= @)l — pll + M
< [|n — pll + an M. (4.2)
Furthermore, using Algorithm 3.2 and the step size, we have
lon = plI* = llwn + 1T (20 — Twn) — pl|?
= [lwn = pI* + 917" (20 — Twn) | + 29 (wn = p, T* (20 = Twn))
= llwn = pI* + 927" (20 = Tw)|* + 29 {Twn — Tp, 2 — Trwn)
= [lwn = pI* + 927" (20 = Tw)|? + vl zn — Tpl|?
~ Yl Twn = Tp||* = Yullzn — Twn||?
< Nhwn = plI* + 32 1T (20 = Twn) I? + vyl Twn — Tpl|?
~ Yl Twn = Tp||* = Ynll2n — Twnl|?
< Nhwn = pl* + 32 1T (2 = Twa) P =y (n + T (20 — Trwn) |1
= [lwn = pI* = yuel| T (20 — Trwn)|”
< [lwn = plf?, (4.3)
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which implies that
an - PH < Hwn - p” (44)
Using a similar technique as above, we obtain

tn = pII* < flon —p]”

2 ovp,

—Gu 2= Go = P = 2(1 = Bu) = | o — ua?
Iz Unit1
< llon —plI%, (4.5)
which implies that
ltn = pll < llon —p- (4.6)
Finally, it is easy to see that
[Zn41 — pll = llanf(zn) + (1 — an — M) 20 + mn Tty — pl|
< anl|f(zn) = fFP)I| + anllf(p) — Pl
+ (1 = an = m)||zn — pll + 70| Tots — Dl
< anklzn — pll + anl f(p) — 2l
+ (1 = an = m)llzn = pll + 2alltn —
< (I —an(l=Fk) —nn)llzn — pll
+ ol f(p) = pll + mmllon — pll
< (I —an(l=Fk) —mn)llzn — pll
+ ol f(p) = pll + mnl[wn — pl|
< (I —an(l=Fk) —nn)llzn — pll
+ o f(p) = pll + nnllen — pll + anM
= (1 — an(1—k)|zn — pll + an(l — k) [Hf(P) -l + M}
(1-k)
pl| + M
< maX{Hxn -l I/ 2 ]!) } (4.7)
It follows by induction that
o =l < e { o — pl, 112 =PLEAL (15)
Hence, {z,} is bounded. O

Theorem 4.2. Let {x,} be the sequence generated by Algorithm 3.2. Then
under the Assumption 3.1, {x,} converges strongly to p € T', where p = Pr o

f(p)
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Proof. Let p € I', and Algorithm 3.2, we get
[|wn — p||2 =[[(1 = an)(zn —p) + (1 — an)On(Snn — SnTpn—1) — aan2
<1 —an)(zn —p) + (1 — an)On(Spzn — Snacn—l)H2
— 20 (p, wn — p)
=(1- Oén)2”$n _pH2 + (1= an)QeiHSnxn - Sn:’«"n—lH2
+ 20, (1 — an)||zn — pl|||Snzn — Snrn_1]
= 2an[(p, wn — Tnt1) + (P, Tnt1 — D)
< (1= an)?zn = pl* + (1 = an)bp 20 — 201 ]?
+ 2971(1 - an)Hxn - pHHxn - xn—l”
= 2an[(p, wn — Tnt1) + (P, Tnt1 — D)
< (1~ an)?|lzn — plI?
+ (1= an)bpllzn — zp-1|[Bnllzn — zn-1ll + 2/|zn — pll]
+ 2an|pllllwn — nsall + 200(p, p — Tnt1)
< lzn _pH2 + Onllzn — 2p-1|N + 200 (p, p — Tns1)
+ 2an[|p[| |zn41 — wal, (4.9)
where N := sup,,en{0n|lzn — zn-1l], 2|20 — p| }-
Furthermore, we have
[Znt1 — p||2 = llanf(zn) + (1 — an — mn)Tn + nnTitn _pH2
= [lan(f(zn) — f(p)) + (1 = ) (1 = np) 20 + N Tntn — p)
— an(@n — (1 = np)xn + mnTntn)) — an(p — f(p))H2
< (1 = an)[(1 = 1) @0 + 00Tt — pl + an(f(zn) = £()II?
= 2an(zn — (1 = np)zn + mTatn) +p — f(P), Tnt1 — )
< (1= an)l[(1 = m)xn + M Tntyn — pH2 + ankl||zy, _pH2
=200 (@p — (1 = mn)zn + 0 Titn) +p — f(P); Tnt1 — p)
= (1= a)[(1 — )|z _pH2 + || Tt _pH2
= (L = 1) (| Tty — anz] + ankl|zy, — p”2
— 20 (zn — (1 = m)xn + mnTntn) +p — f(P), Tnt1 — p)
< (1= a)[(X =m0z _pH2 + 1| Tntn _pH2
— (L = 1) || Tty — f’fn||2] + ankl|lzn, — p”2
= 2ap(xp — (1 = mn)zn + mnTotn) +p — f(P); Tnt1 — p)
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< (1 =an)[(X —n)lzn _pH2 + [t _pH2 — (L = 1) || Tty — anZ]

+ ankl||z, — p||2 =20 (@ — (1 = mn)zn + mTitn) +p — f(P)s Tnt1 — p)
< (1= an)[(X —m)lzn _pH2 + n[vn — p||2 — (1 = mn) || Totn — $n’|2]

+ ankl||z, — pHQ =20 (@ — (1 = mn)zn + mnTitn) +p — f(P)s Tnt1 — p)
< (1= an)[(X = ma)llzn = Pl + nallwn = pl* = 20 (L = 00) | Tntn — wnll]

+ ankl|z, — p”2 =200 (@ — (1 = mn)zn + mnTitn) +p — f(P)s Tnt1 — p)
< (1_an(1_k))H$n_pH2 + Onllzn — Tp 1| N + 200 (1 — an)an(p, p — Tpy1)

+ 20n[pll|zn41 — wnll = (1 = an)mn (1 — m)l| Ttn — 2n|

+ 2an(@n — (1 = m)2n + mpTntn), Tni1 — p) + 200 (f (p) — P, Tni1 — p)
= (1—an(1=k))l|lzn—pl? + Onllzn — 201N + 200 (1 — an)an(p,p — zp41)

+ 2an[pll|zn41 — wnll = (1 = an)nn (1 — m) | Tntn — n|

+ 2an||zn — (1 = mn)zn + npTota)|[|[2n1 — pll + 200.(f (P) — P, Zpt1 — )
< (1_O‘N(1_k))|’$n_pH2 + Onllen — Tp-1|N + 20, (1 — an)an(p,p — Tnt1)

+ 20n[|p[l|zn41 — wnll + 20nmn |20 — Totalll|2n1 — p|

+ 2an(f(p) = P, Tn+1 — P)

O
— (L= an(1=k)zn = plI? + (1 — k) [l — 21 [N

om(1— k)
W(P,P — Tnt1) + (12k)||p|] |Zna1 — wnl|]

20y, 2
PN n - Tntn n - 7 N - Mrydn -
= (1= an(1 = K)|lzn — pl* + an(l — k)T, (4.10)
where,
0, 20 (1 — o)

U, =—— n— Tn-1||N T

2yl |+ 20, — Tt ||

(1 — k) Pl Tn+1 — Wn (1 _ k) Tn nln|[||Tn+l1 — P
2
+ W(f(p) — Dy Tng1 — D).

According to Lemma 2.4, to conclude our proof, it is sufficient to establish
that

limsup ¥, <0
k—o0
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for every subsequence {||x,, — p||} of {||z, — pl||} satisfying the condition:

tin inf {11 = pll = n, — pll} = 0. (411)

From (4.10), we obtain

241 =Pl < (1= an(l = k))llzn = pl1> + bnll2n — 2pa ||V
=20 (1 — an)an (D, p — Tpt1)
+ 200 |[pll[Zn+1 — wall = (1 = an)nn(1 = np) | Tntn — 20|
+ 20 (xn — (1 = nn)xn + muTotn), Tnt1 — )
+ 200 (f(P) — P, Tny1 — p)

< |l@n — pH2 + Onllwn — 21| N = 205 (1 — an)an (D, p — Tni1)

+ 200 [p[[lzn+1 — wnll = (1 = an)mn (1 = np) | Tntn — zn ||
+ 20 (@ — (1 = nn)xn + M Thotn), Tnt1 — P)

+204n<f(p) — P, Tnt1 _p>7 (412)
which implies that
s (1= i (1= 1) Tt = )
k—o0
< lim sup |:||xnk - pH2 + ankﬂ”xnk - xnrlHN
k—o0 Qny,
- 20énk(1 - ank)nnk <p7p - xnk+1> =+ Qank HpH ||$nk+1 - wnk ||
+ 200, (Tny, — (1 = 0y )Zny + 00y, Tty ), Trg1 — D)
20 1(9) — 1 = ) — s = ]
< —lim inf[||zn, 41 — pl|* = [|2n, —pl*] <O0.
k—o0
Thus, we have
(4.13)

lim || T, tn, — Zn, || = 0.
k—o0
In addition, it is easy to see from (4.10) and (4.3) that

2011 — plI?
<(1- an)[(l — )| Zn _pH2 + N llvn — p||2 = (1 = 1) | Tt — xn‘m

+ ankl|z, — p||2 - 204n<$n — (1 =nmn)zn +0uTutn) +p— f(P), Tng1 — )
< (1= an)[(X = n)llzn — plI* + mallwn — plI* = €| T* (20 — Twn)|?]
+ O‘nkan - pH2 - 204n<1‘n - ((1 - nn)xn + nnTntn) +p— f(p)yxn—f—l _p>
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< (1= an)[(X = ma)llzn = plI? + malllzn — pI* + Onllwn — za—1 [N
=200 {p,p — Tnt1) + 20n[p]| 21 — wall] = 12| T* (20 — Twn)||?)
+ O‘nk’Hl“n_pHQ_QO‘n@n_((1_77n)$n+77nTntn)+p—f(p)’$n+1 —p)

< lzn — p||2 + Onllzn — n1||N = 20000 (1 — an)(p,p — Tnt1)

+ 2am|[pllllzn+1 — wnll — ma(1 — an)f2||T*(zn - Twn)”2
=20 (@p — (1 = mn)zn + mnTitn) +p — f(P); Tnt1 — p), (4.14)
which implies that
lim sup <nn(1 — )€ || T* (2, — Twn)||2>

k—o0

. 0
< lim sup |:||$nk _pH2 + oy, - ”xnk - fnk—1||N
k—o0 ank

- 2ank(1 - ank)nnk <p7p - xnk+1> + 2ank HpH ”wnk‘f'l — Wny, ”
+ 2ank <‘rnk - ((1 - nnk)xnk =+ nnanktnk)’ Lng+1 — p>

T 20, (£(5) = PrEmyst — P} — Tmest —pHZ]

< —liminf[|zn, 41 — Pl = |20, — p||?]
k—o0
<0.

Thus, we obtain

lim ||T* (2, — Twy, )| = 0. (4.15)
k—o0
Using (3.13), we have
[Twny, = 20, || < 20T (20, = Twny) 1wy, = pll, (4.16)

thus, using (4.23), we get
klggo | Twnp, — 2n,|| = 0. (4.17)
Furthermore, observe that
[0t —p?
= llan(f(p) = p) + (1 = an — 1) (@0 — p) + 1a(Tutn — p)|?
= anllf(p) = plI* + (1 = an =) |lzn — P> + 00| Tt — p]1?
— ag || f(@n) — @nll?
— (1 = an = )2 = Tuta|® = antia| f (0) = Tatn?
< anllf(p) = plI* + (1 = an = ma) |2 = Pl + nalltn — pl®
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< anllf(p) = pl” + (1 = an = ma) |z — pII?

i 2 2 VTQL ovp 2
0 | lon = pIIF =G |2 = Gn = 0" —2(1 = B,) [0n — Un |
L Vnt1 Vn+1

< anlf(p) = plI* + (1 = cn = ma) 20 — pI?
2

vy oy,
mme—@P—g—ﬁQ—%uwn Mw—ww]
Vn+1 Vn+1

< anllf(p) = pl* + (1 — an — np)llzn — I + M llzn — P
+ Onllzn — Tp-1||N = 200 (p, p — Tny1) + 20 |pl||Tnt1 — wnH]

+ n

2

v ov,

— MnCn [2_<n_52 Qn _2(1_/3n) . ] HUTL_UnH2
Vot Un+1

< anllf(0) = plI* + 20 — pl* + Oullzn — Taca || N
= 2000 (P, P — Tnt1) + 200 ||pl| | 2011 — wyl|

2
—mg{2—@—62?1—2u—ﬂm ]n%—uw% (4.18)

Vi1 Un41

ovp,

which implies that

. VTQL oy,
lim sup <77nk€nk [2 - an - 52# - 2(1 - /Bnk)ﬁmvnk - unk”2>

k—o0 ni+1 nk+

. 0
< lim sup |:|xnk _p||2+ank =k ||$nk - wnkleN—Qank%k (p,p - $nk+1>
k—o0 Qo

+ 200, [pll |20, 41 = Wl + cn, [ £ () = pI* = €1 — Pllﬂ
< —liminf[||zn, 41 = p[|* = [|#n, —p[*) <0
k—o00

Thus, we have

lim ||vy, — up, || =0. (4.19)
k—o0
Hence

|Znt1 — pl®
< (1= an)[(1 = nn)lln _pH2 + Mnl|vn — p||2 = (1 = m) | Tntn — ]
+ ankl|zy, — p”2 =20 (@ — (1 = mn)zn + mnTitn) +p — f(P)s Tnt1 — p)
< (1= a)[(X =m0z _pH2 + n[vn — pHQ] + ankl|lzn — p”2
=20 (@p — (1 = mn)zn + 0 Titn) +p — f(P); Tnt1 — p)
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< (1= an)[(X —np)llzn — p||2 + 1|l wn —p||2 + 77n'7721||T*(Zn - Twn)||2
+ i llzn — Tp||2 = Yt || Twy — TPHQ] + ankl||z, — p”2
—2ap(zn — (1 = mn)zn + mpTntn) +p — f(P), Tnt1 — p)

< (= an)[(X —n)llzn — p||2 + [l wn _pH2 + 77n’7721||T*(Zn - Twn)||2

)\2
+ fYnnnHT'wn - TpH2 - ﬁn’)/nnnp — Bn — MQ )\gn
n+1
PAn 2 2 2
—2(1 = Bn)y +1]HTwn = ynll” = Wl Twn — Tp|] + ankllzn — pl|
n

_ 206n<xn - ((1 - nn)xn + nnTntn) +p - f(p)axn—l-l - p>
< |lzn _pH2 + Onllvn — Tp-1|N — 20000 (D, p — Tpi1)

* )\2
+ 2O‘an||||xn+l - wn” + €2||T (Zn — Twn)||2 — Bnenn[Q — ﬂn — Iu2>\27”
n+1
UA
~2(1 = ) 2 T — g
n+1
— 20 (xn, — (1 = mp)@n + 0 Tntn) + 0 — f(P)s Tnt1 — p)s (4.20)

which implies that

) A2 UA

lim sup <5nk77nke[2 — By — M2/\2¢ =201 = B )y, S| Twn,, — ynkH2>
ng+1

k—o00 nk—i—l

. 0
< lim sup [Hxnk —plI* + iy =2 Ty — Trg—1[|N — 200, 10, (P P — Tip41)
k—o00 Qi

+ 20, [P %0, 1 — W, || + 1T (20 — Twa)||?)
- 2057% <xnk - ((1 - nnk)xnk + nnanktnk) +p— f(p)axnk-i-l - p>
~ i1 = 9P
< —lim inf[||zn, 11 — pl|* = |2, —pl*] 0.
k—oco
Thus, we obtain

lim ||Twy, — yn, || = 0. (4.21)
k—ro0

In addition, observe that
thk - vnkH - H(l - an)vnk + anunk + anynk(ank - Bunk) - vnkH
S an)HUnk - unkH + anynkHank - Bunk”

0Cn, v,
= Cuallim, — tn |+ S | (422

nk—i-l
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Thus, using (4.19), we have

Tl v, ]| =0, (4.23)
klggo ||an — Yny H < k:lglc}o Hznk — T'wp, H + klggo ||Twnk — Yny, H =0, (4'24)
klggo thk - unk” < k:lglc}o thk - vnkH + klggo ank — Uny | =0. (4.25)

In addition, we have that

Hwnk - xnkH < ankﬂﬂxnk - xnk—lH + ankankH
Qi

0
+ O[?LkaanHxnk - xnk—lH

—0 as k— oo. (4.26)
Also, we have

ank - xnk” < ||wnk - x”k” +’7nk||T*(an - Tw”k)” —0ask— o0,
thk - xnk” < thk - U”k” + ank - xnk” —0ask— oo, (4'27)

Ity — W, || < [tn, — Tny || + [|Tn), — wn, || = 0 as k — oo,
1Y, = ng |l < Ny, — wny | + [[wny, — @0, || = 0 as k — oo,
2ne = Zng || < Ml2ng = Ung | + [|Yny — 2y || = 0 as k — oo.
Using Lemma 2.3, we have
[tn, — Togtng |l < ltng — o |l + lzn, — Togtn, |l = 0 as k— oo,
lim sup|| Ty, tn, — F (T, tn,)| = 0. (4.28)

k—o0

And, we have
[#nt1 = Ty || = llom f(@n,) + (1 =y — )iy + 10y, Ty by, — Ty |
= llow, (f(zny,) = Zny) + Mg (g oy, — 2|
= an, || f(zny) = Zng | + M [ Tg b, — )|
—0 as k— o (4.29)
and
lZne+1 — Wnp || < [|[Tnp+1 — Tnp || + [|Tn), — Wiyl = 0 as n— oo, (4.30)
Now, since {x,,} is bounded, then there exists a subsequence {xnkj} of
{zn, } such that {ZL’nk]} converges weakly to z* € H;. In addition, using (4.27)

and the boundedness of {t,, }, there exists a subsequence {t"kj} of {t,, } such
that {tnkj } converges weakly to 2* € Hy and since T}, is demiclosed with (4.28),
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we have that * € F(T,,) = F(S5;). Let (v,u) € G(A+A;1). Then u—Av € Ajv.
Also it follow from (3.7), %(Twnkj — )‘nkj ATwnkj — ynk]-) € Pynkj. Thus,
ng .

J
using the monotonicity of Ay, we have

1
<U — Ynyyr U — Av — 3 (Twnkj — )‘nkj ATwnkj — ynkj)> > 0. (4.31)
Nk

Using (4.31) and the monotonicity of A, we have

Nk .
k]

<’U - ynk]. ) u> Z <U - ynkj ) AU + (T’U)nkj - ?/nkj) - ATwnkJ >

= <U - ynkj ) Av — Aynkj> + <U - ynkj ) Aynkj - ATwnkj>

1
=+ <U - ynkj ) W(Twnkj - ynkj)>
J

> <v - ynk]- ’ Aynkj - ATwnk]->

1
+ <v ~ Uni, )\—(Twnkj — ynkj)> . (4.32)
Nk,

From (4.26), we can choose a subsequence {wnkj} of {wy, } such that {wnkj}

converges weakly to x*. Also, since T is a bounded linear operator, we have
that {Twy, } converges weakly to T'z*. Using the step size (3.4) and (4.21),
J

we have
"
n; —+1

lim HATwnkj - Aynk]- | < jlggo ||Twnkj ~ Y, | =0. (4.33)

j—o0
Thus, we have that (v — Tx*,u) > 0 as j — oo. Thus, by the maximal
monoticity of A + A;, we have Tx* € (A + A;)~1(0). Also, using similar
approach as above, (4.33) and using (4.19), we have

Jli)nolo ||ankj - Bunkj H =0
and
. B . " B .
tim o~ wnll = lm 7o [T (e, — T )| = 0.

Since {wnkj 1 {Unkj} and {Unkj} converges weakly to z* and lim;_, Hankj -
Bunk]_ | = 0, we have z* € (B + B;)~!(0). Thus, * € I'. Furthermore, since
{mnkj} converges weakly to z*, we obtain

lim sup(f (p) =p, Tn, —p) = lim (f(p) =p, n,, — p) = (f(p)—p, 2" —p). (4.34)

k—o0 Jj—o0
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It follows that

limsup(f(p) = p, 2n, =) = {f(P) = ;2" =p) <0 (4.35)
—00
and we obtain from (4.34) and (4.35)
1ikm sup(f(p) — P Tny+1 — p) < 0. (4.36)
—00

Lastly, we also obtain
||xnk+1 - wnk” < H‘Tnk+l - xnk” + ||xnk - wnk” — 0 as n— oo, (4'37)
In addition, we have

lim sup(p, p — zp, ) = limsup(p,p — xnkj> = (p,p—x"). (4.38)

k—o00 Jj—00

Hence, we have obtain from the above equality that

lim sup(p, p — zp, ) = (p,p — z*) <0, (4.39)
k—o00
which implies that
lim sup(p, p — zp,4+1) < 0. (4.40)
k—o00

Using our assumption and the above inequality, we have that

i 4 2y, (1 — i)
hiisip \Ilnk = m”mnk - fxnkleN + WQ\%}) _ $nk+1>
+ =) 1211 —wn, [+ a5 20, — Tty |1 — Dl
2
<0.
Thus, by Lemma 2.4, we have lim ||z, — p| = 0. [
n—oo

5. SPECIAL CASES OF OUR PROPOSED ALGORITHM

5.1. Split Convex Minimization Problems. The concept of convex min-
imization problem is defined as:

Find # € H such that h(x)+ g(x) = mi%{h(x*) +g(x™)}, (5.1)
T*e
where h : H — R is a convex differentiable function and ¢ : H — R is a

convex lower semicontinuous function. It is well known that the problem (5.1)
is equivalent to the following problem.

Find x € H such that 0 € Vh(z) + dg(x), (5.2)
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where the subdifferential dg is the maximal monotone operator and the gra-
dient operator Vh is L-Lipschitz continuous. Using this concept, we further
extend this to a split convex minimization problem (SCMP), which is defined
as

Find z € Hy such that 0 € Vhi(z) + 9g1(x) (5.3)
such that
Find y =Tz € Hy such that 0 € Vha(y) + 9g2(y). (5.4)

Our proposed iterative Algorithm 3.2, takes the form:
Algorithm 5.1. Initialization Step:  Given A,v; > 0, u,d € (0,1).
Choose g,z € Hi, given the iterates x,_1 and z,, for all n € N.
0, — {min {9, M}, if &y, # xTp_1, (5.5)
0, otherwise.

Step 1: Compute

wp, = (1 —ap)xn + (1 — ap)0p(Spxn — Spn—1),

Un = J3 (Twn — A VhaTwy),

zn = (1 = Bn)Twy, + Buyn + Bnn(VhaTwy, — Vhayy),

where
. MHT'wn*yn“ ]
Mgy = 40 s o, Shyy b i VheTwn # oy, (5.6)
An, otherwise.
Step 2: Compute
U = Wy + YT (2, — Twy), (5.7)

| Twn =2

where 7, is chosen such that for small enough € > 0, v, € |e, T (T e~

€

if Tw, # zn, otherwise =, = 7.
Step 3: Compute

Up = Jffl(vn — vpVhivy),
tn = (1 - Cn)vn + Cnun + CnVn(VhIUn - Vhlun),
where

3 Olvn—un|| 3
min 3 vy, , if Vhiu Vhivn,
Vnt :{ (Vo [9hronohromTy | 1n 7 Vhivn (5.8)

V,, otherwise.
Step 4: Compute
Tnt1 = Oénf(xn) + (1 — Qp — nn)xn + N Ttn, (5'9)
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where T, = + Zij\igl((l — )1 + 9, S;).
Using this fact, 7,, = S (quasinonexpansive mapping) and taking «,, = 0,
the iterative Algorithm 3.2 reduces to

Algorithm 5.2. Initialization Step: Given Aj,v; > 0, u,d € (0,1).
Choose xg,x1 € Hy, given the iterates x,,_1 and x, for all n € N.
g, — Jmindl =l e # 2, (5.10)
0, otherwise.

Step 1: Compute

Wy = Tn + en(xn - xn—l)

Yn = J (Twn — MATw,),

Zn = (1 - /Bn)Twn + /Bnyn + ﬂn)\n(ATwn - Ayn)’

where
: |1 Twn—ynl :
Ny = min {)\n, ”ZT,LL: Ayyn”}} if ATw,, # Ayn, (5.11)
An, otherwise.
Step 2: Compute
U = Wy, + YT (20, — Twy), (5.12)

||Twn_2n||2

where 7y, is chosen such that for small enough € > 0, v, €]¢, T (Twon—2) |

—el,
if Twy, # zn, otherwise v, = 7.
Step 3: Compute
Uy = Jlil (vn, — vpBuy),
tn = (1 — Gu)vp + Cuun + Gun(Buy, — Buy,),
where
|vn —un|| .
o= it SRR g
Step 4: Compute
Tnt1 = (1 —np)xn + 0nStn, (5.14)
where S is a quasinonexpansive mapping.

Algorithm 5.3. Initialization Step:  Given Aj,v; > 0, u,d € (0,1).
Choose g,z € Hi, given the iterates x,_1 and z,, for all n € N.

0, = min {0, m} if @ 7 Tnt, (5.15)
0, otherwise.
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Step 1: Compute
Wy, = Ty, + Op(Ty, — Tp—1),
Yn = J (Twn A ATw,,),
Zn = Yn + A (ATwy, — Ayy),

where
|1 Twn —yn]| :
Ans1 = min {An, i, gy S0 i ATwn 7 Ay, (5.16)
An, otherwise.
Step 2: Compute
Up = Wy, + YT (2, — Twy,), (5.17)

| Twn — ZnHz

where 7, is chosen such that for small enough € > 0, ,, € € T+ (Twn—z)2

€

if Tw,, # zn, otherwise =, = 7.
Step 3: Compute

Uy = J,ﬁl (vp, — v Buy),
tn = Up + vn(Bv, — Buy,),

where

. Sllvn—unl| if B B
Vo1 = it {vn 50,y 1 Buin # Bon, (5.18)
Vp, otherwise.

Step 4: Compute

Tn+1 = (1 - nn)xn + nnStnv (519)

where S is a quasinonexpansive mapping.

6. NUMERICAL EXAMPLES

In this section, we present several numerical examples to illustrate the main
result. We compare our proposed algorithm (Algorithm 3.2) with Algorithm
3.1 in [11], Algorithm 2 in [23] and Algorithm 3.1 in [33].

Example 6.1. Let H; = Hy = [2(R) := {z = (21,290,235, -+ ),2; € R :
Y lzi? < oo} and ||z = (305, ]:cl|2)% for all z € I3(R). Suppose the
operators T;S;; Ay; A; B; By : l2(R) — I2(R) are defined by
A(.fl’,') = (4%1,41'2,4.%‘3,' o 74'%.2'7'”)7
by = (] st so ol el )
3 3 3 3
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It is easy to see that all the conditions in Assumption 3.1 regarding the oper-

ators are satisfied.

Example 6.2. Let H; = Hy = L([0, 1]) be equipped with the inner product

1 1
() = /0 )y (t)dt, Yoy € Lo((0,1]), [z]?= /0 2()|2dt, Y,y € Ly([0, 1)).

Suppose the operators T; S;; A1; A; B; By f : La([0,1]) — L2([0, 1]) are defined

by

Ax(t) = /0 x(s)ds, V x € Ly([0,1]),

e2 -1

Ba(t) = /01 <x(t)—(€2tset+scosx(s)))ds+

A(t) = %max{O,x(t)}, € Lo([0, 1)),
Biz(t) = max{0,z(t)}, = € L2([0,1]),

1
T(z) :/O K(s,Hz(t)dt, ¥ x € Ly([0, 1)),

falt) = [ #as, vz € oo,
Toa(t) = /0 s, v we Lo(l0,1),
Snalt) = /0 s, v a € La(l0,1)).

2tet

eve? —1

, Vo e Ly([0,1]),

Then, it is easy to see that all the conditions in Assumption 3.1 regarding the

operators are satisfied.

Example 6.3. It is crucial in many practical problems to be able to find the
problem’s minimum-norm solution. Such a problem can be formulated as (see,
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[27, Example 3.4]):
Find = € H such that [|z| = min{||z*| : 2" € H}, (6.1)

where H is a real Hilbert space. It is well known that (6.1) can be reformulated
as the following variational inequality problem:

Find =z € H such that (z,z —2%) <0, V2" € H. (6.2)
Suppose that H; = Hy = L([a,b]), C = {z € La([a,b]) : (a,z) = b} and
Q = {z € La([a,b]) : (a,z) > b} for some b € R and a € Ly([a,b]) — {0}. Then
x minimizes || - || + d¢ if and only if 0 € J(]| - || + 0¢)(z) and Tx minimizes
| - Il + 6, where ¢ and 6¢g denotes the indicator functions of C' and Q. Now
suppose that A} = B; = 0 and S; = I, thus problem (1.15) becomes

Find an element x € C such that z = argmin{||z*|| : 2" € C},
and such that Tx € @ solves Tz = argmin{||y| : y € Q}.

During the computation, we make use of the following:

e Algorithm 3.2: A1 = 0.5, 11 = 0.6, a0 = 47, G = Bu = 573,
Un2%7u25:05 en=—N_ and § =0.7.

(n+1)?
e CN (Alg. 3.1) in [11]: ~, = QH%,HQ and v, = i (where L is the

Lipschitz constant of B).

e OIM (Alg. 2) in [23] A =05, 11 = 0.6, an = 5, T = 3500
=0=0.5¢, = ™ _H)Q and # = 0.7.
o TJ (Alg. 3.1) in 33]: ap = 7.7 = gy and vy = 577 (where Ly

is the Lipschitz constant of B).
We then use the stopping criterion:

1
TOLy, := 7 ([|#n = JE (@n—vBay) || +||Txn— J3H (Ton—AAT2,)|)?) < e

where ¢ = 107° is the predetermined error. Furthermore, we choose xo and
1 as follows:

For Example 6.1: Case 1: z7 = (1,%,%,---), Ty = (%,%,1—10,---); Case
2: 1'1:(%7%7%3"')71‘0:(L%?%a"'). (
(%a}péa" ) Case 4: o1 = (%7}11%7"')7 To = (17
For Example 6.2 and 6.3: Case 1: zo(t) =5 +
wo(t) = t3+t, 21(t) = t* + 3+ 12+t +1; Case 3:
Case 4: xo(t) = e!, x1(t) =2+t + 1.

All the computations are performed using Matlab 2016 (b) which is running
on a personal computer with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz

and 8.00 Gb-RAM. In Tables 6 and 2, “Iter” and “CPU” mean the CPU time
in seconds and the number of iterations, respectively. Also, in the tables and

r1(t) = 1+ t%; Case 2
cot(t), z1(t) = sin(t);
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figures, CN (Alg. 3.1), OIM (Alg. 2) and TJ (Alg. 3.1) represent Algorithm

3.1 in [11], Algorithm 2 in [23] and Algorithm 3.1 in [33], respectively.

10° 10° 1
‘\ —%— Algorithm 3.2 1 —¥— Algorithm 3.2
\ CN (Alg. 3.1) CN (Alg. 3.1)

T \ OIM (Alg. 2) OIM (Alg. 2)
10t ElLN TJ (Alg. 3.1) TJ(Alg.3.1) | 3
102 L J

§ 10-3 o
10 J
105 o
10®

0 10 20 30 40 50 60 70 80 40 60 80 100

Number of iterations Number of iterations
10°
\ —%— Algorithm 3.2 —¥— Algorithm 3.2
\ o (v ) o (a2
10'1*T T (Alg.gé.n TJ(A\g.gé.l) 3
1072

§ 107
10
105 ]
10® : . . . : 10 . . : .

o 10 20 30 40 50 60 0 20 40 60 80 100

Number of iterations Number of iterations
FiGUurE 1. The behavior of TOL,, for Example 6.1 with ¢ =
10~°: Top Left: Case 1; Top Right: Case 2; Bottom left: Case
3; Bottom Right: Case 4.
Algorithms Case 1 Case 2 Case 3 Case 4
CPU Tter CPU Tter CPU Tter CPU Tter
Algorithm 3.2 0.0600 21 0.0549 15 0.0630 20 0.0684 29
CN (Alg. 3.1) in [11] 2.1208 72 2.1433 81 2.0962 58 2.1699 91
OIM (Alg. 2) in [23] 0.1230 26 0.1224 25 0.1214 26 0.2229 37
TJ (Alg. 3.1) in [33] 1.0127 38 1.0138 33 1.1138 39 1.0138 40

TABLE 1. Example 6.1: Comparison of algorithms with ¢ = 107°
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10° 10t
—%— Algorithm 3.2 —¥— Algorithm 3.2
CN (Alg. 3.1) CN (Alg. 3.1)
OIM (Alg. 2) 100 & OIM (Alg. 2) | 4
10t TJ (Alg. 3.1) \,\ TJ (Alg. 3.1)
.
107 FR E
102 f
102 E
- a3l 6‘
O 10 =
102 E
104
10 E
105 10° E
10 - - - - - 10 - - - - -
20 40 60 80 100 120 0 20 40 60 80 100 120
Number of iterations Number of iterations
10° i i 10t T
—k— Algorithm 3.2 —— Algorithm 3.2
CN (Alg. 3.1) CN (Alg. 3.1)
OIM (Alg. 2) 100 OIM (Alg. 2) | 4
10 TJ (Alg. 3.1) i TJ (Alg. 3.1)
1072
2 5 E
O 10
107
10 ]
10 10
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of iterations Number of iterations
FiGURE 2. The behavior of TOL,, for Example 6.2 with ¢ =
10~°: Top Left: Case 1; Top Right: Case 2; Bottom left: Case
3; Bottom Right: Case 4.
Algorithms Case 1 Case 2 Case 3 Case 4
CPU Tter CPU Tter CPU Tter CPU Tter
Algorithm 3.2 5.7371 11 5.8280 12 5.3589 11 7.7976 12
CN (Alg. 3.1) in [11] 26.5351 101 29.4771 108 26.5171 103 31.1889 105
OIM (Alg. 2) in [23] 10.9454 16 12.1152 16 10.8555 16 12.0558 16
TJ (Alg. 3.1) in [33] 18.0298 66 22.5571 71 17.4289 67 26.6996 68

TABLE 2. Example 6.2: Comparison of algorithms with ¢ = 107°
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10t 10° T
—%— Algorithm 3.2 —¥— Algorithm 3.2
CN (Alg. 3.1) CN (Alg. 3.1)
OIM (Alg. 2) OIM (Alg. 2)
TJ (Alg. 3.1) 10t TJ (Alg. 3.1)
102 F 3
- P 3
= O 10°F 4
104 E
10 F 3
10 - - - - - 10 - - - - -
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of iterations Number of iterations
10° i 10° i i
—— Algorithm 3.2 —%— Algorithm 3.2
CN (Alg. 3.1) CN (Alg. 3.1)
OIM (Alg. 2) OIM (Alg. 2)
TJ (Alg. 3.1) 101 TJ (Alg. 3.1)
1072 3
B 103
O 10 E
104 E
10° E
10 10
0 20 40 60 80 100 0 20 40 60 80 100 120
Number of iterations Number of iterations
FiGUurE 3. The behavior of TOL,, for Example 6.3 with ¢ =
10~°: Top Left: Case 1; Top Right: Case 2; Bottom left: Case
3; Bottom Right: Case 4.
Algorithms Case 1 Case 2 Case 3 Case 4
CPU Tter CPU Tter CPU Tter CPU Tter
Algorithm 3.2 3.1945 13 3.8731 10 3.8571 8 4.1389 10
CN (Alg. 3.1) in [11] 25.8159 109 68.7095 101 60.6853 89 71.7865 101
OIM (Alg. 2) in [23] 10.6016 16 13.1424 15 13.2811 14 14.3358 15
TJ (Alg. 3.1) in [33]  15.6142 72 22.0141 65 18.0408 54 242571 65

TABLE 3. Example 6.3: Comparison of algorithms with ¢ = 107°
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7. CONCLUSION

In this paper we have introduced and studied an iterative algorithm for
finding a common solution to a fixed point problem for a finite family of demi-
metric mappings and a split monotone inclusion problem in the framework of
real Hilbert spaces. We have obtained a strong convergence result without as-
suming that the single valued operators are inversely strongly monotone. We
emphasize that the value of the Lipschitz constant is not required for the itera-
tive technique to be implemented. Furthermore, we present several numerical
experiments to show the efficiency and the applicability of our proposed iter-
ative method.
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