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Abstract. In this work, we investigate the generalized Hyers-Ulam stability of quadratic

functional inequality in modular spaces satisfying ∆2-conditions and Fatou property, and in

β-homogeneous Banach spaces.

1. Introduction

The issue of stability for a general functional equation was first raised in
1940 by Ulam [11]. Ulam asked the following question regarding a group
homomorphism: ”How likely to an automorphism should a function behave in
order to ensure the existence of an automorphism near such functions?” The
following year, Hyers [3] was the first to respond positively to Ulam’s query in
the context of Banach spaces. By Aoki [1] and Rassias [8], the latter of whom
has had a significant impact on numerous advancements in the stability theory,
it was expanded to the situations of additive mappings and linear mappings.

A functional equation is typically algebraic in character, while the stabil-
ity is more metrical. Therefore, working in a normed linear space is a good
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option. However, various discoveries in the literature have shown that there
exist many linear topological spaces, particularly for function spaces, whose
proper topologies fail to be normable. Successfully examining the possibility
of substituting a norm with a so-called modular system. A modular produces
fewer propieties than a norm does, yet it is more appropriate in many unique
circumstances. The assumption of some extra characteristics, such as some
relaxed continuities or some ∆2-related conditions on a modular, is still rea-
sonable.

Therefore, it makes sense to expand the framework for determining the
stability of functional equations into a broader context of modular spaces, as
Sadeghi [9] did in the case of Cauchy and Jensen functional equations.

Definition 1.1. ([6]) Let Y be an arbitrary vector space. A functional ρ :
Y → [0,∞) is called a modular if for arbitrary x, y ∈ Y ;

(1) ρ(x) = 0 if and only if x = 0.
(2) ρ(αx) = ρ(x) for every scalar α with |α| = 1.
(3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0.

If (1) is replaced by:
(4) ρ(αx + βy) ≤ αρ(x) + βρ(y) if and only if α + β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, that is, the vector space
Yρ given by:

Yρ = {x ∈ Y : ρ(λx)→ 0 as λ→ 0}.

Definition 1.2. ([4]) Let {xn} and x be in Yρ. Then:

(1) The sequence {xn} with xn ∈ Yρ is ρ-convergent to x and write: xn →
x if ρ (xn − x)→ 0 as n→∞.

(2) The sequence {xn} with xn ∈ Yρ is called ρ-Cauchy if ρ (xn − xm)→ 0
as n,m→∞.

(3) Yρ is called ρ-complete if every ρ-Cauchy sequence in Yρ is ρ-convergent.
(4) It is said that the modular ρ has the Fatou property if and only if

ρ(x) ≤ lim infn→∞ ρ(xn), whenever x = ρ− limn→∞ xn.
(5) A function modular is said to satisfy the ∆2-condition if there exist

τ > 0 such that ρ(2x) ≤ τρ(x) for all x ∈ Yρ.

Proposition 1.3. ([6]) In modular space,

(1) If xn
ρ→ x and a is a constant vector, then xn + a

ρ→ x+ a.

(2) If xn
ρ→ x and yn

ρ→ y, then αxn + βyn
ρ→ αx + βy, where α + β ≤ 1

and α, β ≥ 0.
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Remark 1.4. Note that ρ(x) is an increasing function, for all x ∈ X. Suppose
0 < a < b, then property (3) of Definition 1.1 with y = 0 shows that ρ(ax) =

ρ
(a
b
bx
)
≤ ρ(bx) for all x ∈ Y . Moreover, if ρ is a convex modular on X and

|α| ≤ 1, then ρ(αx) ≤ αρ(x).
In general, if λi ≥ 0, i = 1, . . . , n and λ1, λ2, . . . , λn ≤ 1 then ρ(λ1x1 +

λ2x2 + · · ·+ λnxn) ≤ λ1ρ(x1) + λ2ρ(x2) + · · ·+ λnρ(xn).

If {xn} is ρ-convergent to x, then {cxn} is ρ-convergent to cx, where |c| ≤ 1.
But the ρ-convergent of a sequence {xn} to x does not imply that {αxn} is
ρ-convergent to αxn for scalars α with |α| > 1.

If ρ is a convex modular satisfying ∆2-condition with 0 < τ < 2, then

ρ(x) ≤ τρ(
1

2
x) ≤ τ

2
ρ(x) for all x.

Hence ρ = 0. Consequently, we must have τ ≥ 2 if ρ is convex modular.

Skof [10] has demonstrated that quadratic mappings are generalized Ulam-
Hyers-Rassias stable under the condition thatX and Y are respectively normed
and Banach spaces. Later, it was discovered [2] that the same pattern holds
true even when X is an Abelian group.

In the present paper consisting of 3 sections, we consider the case where V
is a linear space and Xρ is a ρ-complete modular space, with arbitrary scalar
fields. In section 2, we show the stability of the following inequality in modular
space satisfying ∆2-condition with τ = 2:

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≤ ρ
(
f

(
x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
(y)

)
. (1.1)

In section 3, we obtains a like result in homogeneous Banach space of the
following inequality, using the Gavruta control

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥f (x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
f(y)

∥∥∥∥ . (1.2)

2. Quadratic functional inequalities in modular space
without ∆2-condition

Throughout this section, assume that ρ is a convex modular satisfying ∆2-
condition with τ = 2 and Xρ is a ρ-complete modular space.
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Lemma 2.1. Let f be a mapping f : V → Xρ satisfies:

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≤ ρ
(
f

(
x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
(y)

)
(2.1)

for all x, y ∈ V . Then f is quadratic.

Proof. Letting x = y = 0 in (2.1), we get

ρ(2f(0)) ≤ ρ(f(0)).

Hence

ρ(f(0)) ≤ 1

2
ρ(f(0)).

So f(0) = 0. Letting y = x in (2.1), we get:

ρ(f(2x)− 4f(x)) ≤ 0.

And so f(2x) = 4f(x) for all x ∈ X. Thus f
(
x
2

)
=

1

4
f(x) for all x ∈ X. It

follows from (2.1) that:

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≤ ρ
(

1

4
f(x+ y) +

1

4
f(x− y)− 1

2
f(x)− 1

2
f(y)

)
≤ 1

4
ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)).

And so, f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ V . Then f is
quadratic. �

Theorem 2.2. Let ϕ : V 2 → [0,∞) be a function with ϕ(0, 0) = 0 and let
f : V → Xρ be a mapping such that:

ψ(x, y) =
∞∑
j=1

1

4j
ϕ
(
2j−1x, 2j−1y

)
<∞ (2.2)

and

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≤ ρ
(
f

(
x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
f(y)

)
+ ϕ(x, y) (2.3)

for all x, y ∈ V . Then there exists a unique quadratic mapping h : V → Xρ

such that:
ρ(f(x)− h(x)) ≤ ψ(x, x) (2.4)

for all x ∈ V .
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Proof. Letting x = y = 0 in (2.3), we get ρ(2f(0)) ≤ ρ(f(0)). So f(0) = 0.
Letting y = x in (2.2), we get ρ(f(2x)− 4f(x)) ≤ ϕ(x, x) for all x ∈ V . So

ρ

(
1

4
f(2x)− f(x)

)
≤ 1

4
ϕ(x, x). (2.5)

Then by induction, we write

ρ

(
f(2kx)

4k
− f(x)

)
≤

k∑
j=1

1

4j
ϕ
(
2j−1x, 2j−1x

)
(2.6)

for all x ∈ V and all positive integer k. Indeed, the case k = 1 follows
from (2.5). Assume that (2.6) holds for k ∈ N. Then we have the following
inequality:

ρ

(
f
(
2k+1x

)
4k+1

− f(x)

)
= ρ

(
1

4

f
(
2k · 2x

)
4k

− f(2x) +
1

4
f(2x)− f(x)

)

= ρ

(
1

4

(
f
(
2k · 2x

)
4k

−f(2x)

)
+

1

4
(f(2x)−4f(x))

)

≤ 1

4
ρ

(
f
(
2k · 2x

)
4k

− f(2x)

)
+

1

4
ρ(f(2x)− 4f(x))

≤ 1

4

k∑
j=1

1

4j
ϕ
(
2jx, 2jx

)
+

1

4
ϕ(x, x)

=

k+1∑
j=1

1

4j
ϕ
(
2j−1x, 2j−1x

)
.

Hence (2.6) hlods for every k ∈ N.
Let m and n be nonnegative integers with n > m. By (2.6), we have

ρ

(
f(2nx)

4n
− f (2mx)

4m

)
= ρ

(
1

4m

(
f (2n−m · 2mx)

4n−m

)
− f(2mx)

)
≤ 1

4m

n−m∑
j=1

1

4j
ϕ
(
2j+m−1x, 2j+m−1x

)
=

n∑
k=m+1

1

4k
ϕ
(

2k−1x, 2k−1x
)
. (2.7)
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Then (2.2) and (2.7) yield that
{
f(2nx)

4n

}
is a ρ-Cauchy sequence in Xρ. The

ρ-completeness of Xρ guarantees its ρ-convergence. Hence, there exists a map-

ping: h : V → Xρ defined by: h(x) = ρ− lim f(2nx)
4n , x ∈ V . Moreover

ρ(f(x)− h(x)) ≤ lim inf
n→∞

ρ

(
f(x)− f(2nx)

4n

)
≤

+∞∑
k=1

1

4k
ϕ(2k−1x, 2k−1x)

= ψ(x, x).

Then, we get the estimation (2.4).
Now, we prove that h is quadratic. We note that

ρ

(
1

16
h (x+ y) +

1

16
h (x− y)− 1

8
f(x)− 1

8
f (y)

)
≤ 1

16
ρ

(
h(x+ y)− f (2n(x+ y))

4n

)
+

1

16
ρ

(
h(x− y)− f (2n(x− y))

4n

)
+

1

8
ρ

(
f(x)− f(2nx)

4n

)
+

1

8
ρ

(
f(y)− f (2ny)

4n

)
+

1

16
ρ

(
f (2n(x+ y))

4n
+
f (2n(x− y))

4n
− 2

f(2nx)

4n
− 2

f (2ny)

4n

)
≤ 1

16
ρ

(
h(x+ y)− f (2n(x+ y))

4n

)
+

1

16
ρ

(
h(x− y)− f (2n(x− y))

4n

)
+

1

8
ρ

(
f(x)− f(2nx)

4n

)
+

1

8
ρ

(
f(y)− f (2ny)

4n

)
+

1

4n+2
ρ (f (2n(x+ y)) + f (2n(x− y))− 2f(2nx)− 2f (2ny))

≤ 1

16
ρ

(
h(x+ y)− f (2n(x+ y))

4n

)
+

1

16
ρ

(
h(x− y)− f (2n(x− y))

4n

)
+

1

8
ρ

(
f(x)− f(2nx)

4n

)
+

1

8
ρ

(
f(y)− f (2ny)

4n

)
+

1

4n+2
ρ

(
f

(
2n(x+ y)

2

)
+ f

(
2n(x− y)

2

)
− 1

2
f(2nx)− 1

2
f (2ny)

)
+

1

4n+2
ϕ(2nx, 2ny)
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≤ 1

16
ρ

(
h(x+ y)− f (2n(x+ y))

4n

)
+

1

16
ρ

(
h(x− y)− f (2n(x− y))

4n

)
+

1

8
ρ

(
f(x)− f(2nx)

4n

)
+

1

8
ρ

(
f(y)− f (2ny)

4n

)

+
1

16
ρ

f
(

2n(x+ y)

2

)
4n

−h
(
x+ y

2

)+
1

16
ρ

f
(

2n(x− y)

2

)
4n

−h
(
x− y

2

)
+

1

32
ρ

(
f (2nx)

4n
− h (x)

)
+

1

32
ρ

(
f (2ny)

4n
− h (y)

)
+

1

16
ρ

(
h

(
(x+ y)

2

)
+h

(
x− y

2

)
− 1

2
h(x)− 1

2
h (y)

)
+

1

4n+2
ϕ(2nx, 2ny).

Letting n→∞, we get

ρ

(
1

16
h ((x+ y)) +

1

16
h ((x− y))− 1

8
h(x)− 1

8
h (y)

)
≤ 1

16
ρ

(
h

(
x+ y

2

)
+ h

(
x− y

2

)
− 1

2
h (x)− 1

2
h (y)

)
and we have

ρ(h(x+ y) + h(x− y)− 2h(x)− 2h(y))

≤ 16ρ

(
1

16
h(x+ y) +

1

16
h(x− y)− 1

8
h(x)− 1

8
h(y)

)
≤ ρ

(
h

(
x+ y

2

)
+ h

(
x− y

2

)
− 1

2
h(x)− 1

2
h(y)

)
.

Then by Lemma 2.1, h is quadratic. Now, we see that

ρ

(
h(2x)− 4h(x)

42

)
= ρ

(
1

42

(
h(2x)−

f
(
2n+1x

)
4n

))
+

1

4

(
f
(
2n+1x

)
4n+1

− h(x)

)

≤ 1

42
ρ

(
h(2x)−

f
(
2n+1x

)
4n

)
+

1

4
ρ

(
f
(
2n+1x

)
4n+1

− h(x)

)
(2.8)

for all x ∈ V . By definition of h, the right hand side of (2.8) tends to 0 as
n→∞. Therefore, it follows that h(2x) = 4h(x).
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Finally, to show the uniqueness of h, assume that h1 and h2 are quadratic
mappings satisfying (2.4). Then, we write:

ρ

(
h1(x)− h2(x)

2

)
= ρ

(
1

2

(
h1
(
2kx
)

4k
−
f
(
2kx
)

4k

)
+

1

2

(
f
(
2kx
)

4k
−
h2
(
2kx
)

4k

))

≤ 1

2
ρ

(
h1
(
2kx
)

4k
− f(2kx)

4k

)
+

1

2
ρ

(
f
(
2xk
)

4k
− h2(2

kx)

4k

)

≤ 1

2

1

4k

{
ρ
(
h1

(
2kx
)
−f

(
2kx
))

+ρ
(
h2

(
2kx
)
−f

(
2kx
))}

≤ 1

4k
ψ
(

2kx, 2kx
)
−→ 0 as k →∞.

This implies that h1 = h2. �

Corollary 2.3. Let V be a normed linear space, ρ be a convex modular and
Xρ be a ρ-complete modular space satisfying ∆2-condition with τ = 2. Let
θ > 0 and 0 < p < 2 real numbers. Assume that f : V → Xρ is a mapping
satisfying

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≤ ρ
(
f

(
x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
f(y)

)
+ θ (‖x‖p + ‖y‖p) (2.9)

for all x, y ∈ V . Then there exists a unique quadratic mapping T : V → Xρ

such that:

ρ(f(x)− T (x)) ≤ 2θ‖x‖p

4− 2p
.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) = θ(‖x‖p+‖y‖p)
for all x, y ∈ V. �

Corollary 2.4. Let V be a linear space, ρ be a convex modular and Xρ be
a ρ-complete modular space. Assume f : V → Xρ is a mapping such that
f(0) = 0 and

ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

≤ ρ
(
f

(
x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
f(y)

)
+ ε

for all x, y ∈ V . Then there exists a unique quadratic mapping T : V → Xρ

such that
ρ(f(x)− T (x)) ≤ ε

3
.

Proof. The proof is a result of Theorem 2.2 by putting ϕ = ε > 0. �
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3. Stability of (2.1) in β-homogeneous spaces.

In 2016, Park [7] proved the generalized Hyer-Ulam-Rassias stability of
additive ρ-functional inequalities in β-homogeneous complex Banach space. In
this section, we prove the generalized Hyers-Ulam stability of (3.2) from linear
space to β-homogeneous Banach complex space, using the Gavruta control.

Theorem 3.1. Let V be a linear space, X be a β-homogenerous complex
Banach space (0 < β ≤ 1) and ϕ : V 2 → [0,∞) be a function with

ψ(x, y) =
1

4β

∞∑
j=1

1

4β(j−1)
ϕ
(
2j−1x, 2j−1y

)
<∞ (3.1)

for all x, y ∈ V . Assume that f : V → X is a mapping satisfying f(0) = 0
and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥f (x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
f(y)

∥∥∥∥+ ϕ(x, y) (3.2)

for all x, y ∈ V . Then there exists a unique additive mapping T : V −→ X
such that

‖f(x)− T (x)‖ ≤ ψ(x, x). (3.3)

Proof. Putting y = x in (3.2), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x)

and so ∥∥∥∥1

4
f(2x)− f(x)

∥∥∥∥ ≤ 1

4β
ϕ(x, x).

By induction on k ∈ N, it is easy to see that

∥∥∥∥∥f
(
2kx
)

4k
− f(x)

∥∥∥∥∥ ≤ 1

4β

k∑
j=1

1

4(j−1)β
ϕ
(
2j−1x, 2j−1x

)
(3.4)
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for all k ∈ N. Let m and n be nonnegative integers with n > m.
Then by (3.4), we have∥∥∥∥f (2nx)

4n
− f (2mx)

4m

∥∥∥∥ =

∥∥∥∥ 1

4m

(
f (2n−m · 2mx)

4n−m
− f (2mx))

)∥∥∥∥
≤ 1

4mβ
1

4β

n−m∑
j=1

1

4(j−1)β
ϕ
(
2j+m−1x, 2j+m−1x

)
=

1

4β

n−m∑
j=1

1

4(j+m−1)β
ϕ
(
2j+m−1x, 2j+m−1x

)
=

1

4β

n∑
k=m+1

1

4(k−1)β
ϕ
(

2k−1x, 2k−1x
)
. (3.5)

Since the last expression of (3.5) goes to 0 by (3.1), it follows that, for every

x ∈ V , the sequence

{
f(2kx)

4k

}
is a Cauchy sequence in X. Since X is complete,

we know that the sequence is convergent. Hence, there exists a mapping
T : V → X defined by

T (x) = lim
n→∞

f(2nx)

4n
, x ∈ V.

Letting m = 0 and passing the limit n → ∞ in (3.5), we obtain the estimate
(3.3).

In order to show that T is quadratique, we write∥∥∥∥f (2n(x+ y))

4n
+
f (2n(x− y))

4n
− 2

f (2nx)

4n
− 2

f (2ny)

4n

∥∥∥∥
=

1

4nβ
‖f (2n(x+ y)) + f (2n(x− y))− 2f (2nx)− 2f (2ny)‖

≤ 1

4nβ

∥∥∥∥f (2n
(
x+ y

2

))
+ f

(
2n
(
x− y

2

))
+

1

2
f (2nx) +

1

2
f (2ny)

∥∥∥∥
+

1

4βn
ϕ (2nx, 2ny)

=

∥∥∥∥∥f
(
2n
(x+y

2

))
4n

+
f
(
2n
(x−y

2

))
4n

− 1

2

f(2nx)

4n
− 1

2

f(2ny)

4n

∥∥∥∥∥+
1

4βn
ϕ (2nx, 2ny) .

Hence

‖T (x+ y) + T (x− y)− 2T (x)− 2T (y)‖

≤
∥∥∥∥T (x+ y

2

)
+ T

(
x− y

2

)
− 1

2
T (x)− 1

2
T (y)

∥∥∥∥
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for all x, y ∈ V . Then by Lemma [7, Lemma 2.1], it follows that T is quadratic.
Next, assume that S : V → X is another quadratic mapping satisfying

(3.3). Then, we have

‖T (x)− S(x)‖ ≤

∥∥∥∥∥T
(
2kx
)
− f

(
2kx
)

4k

∥∥∥∥∥+

∥∥∥∥S(2kx)− f(2kx)

4k

∥∥∥∥
≤ 2

4kβ
· 1

4β

∞∑
j=1

1

4β(j−1)
ϕ
(

2k+j−1x, 2k+j−1x
)

=
2

4β
·
∞∑

l=k+1

2

4β(l−1)
ϕ
(

2l−1x, 2l−1x
)

−→ 0 as k →∞,
for all x ∈ V , from which it follows that T = S. �

Letting ϕ = ε > 0 in Theorem 3.1, we obtain a result on classical Ulam
stability of the quadratic functional inequality.

Corollary 3.2. Let V ba a linear space, and X be a β-homogeneous complex
Banach space with 0 < β ≤ 1. If f : V → X is a mapping satisfying f(0) = 0
and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥f (x+ y

2

)
+ f

(
x− y

2

)
− 1

2
f(x)− 1

2
f(y)

∥∥∥∥+ ε

for all x, y ∈ V , then there exists a unique quadratic mapping T : V → X such
that

‖f(x)− T (x)‖ ≤ ε

4β − 1
, ∀ x ∈ V.
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