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Abstract. In this paper an LP-inequality for the sth derivative of a polynomial not vanishing
in |z| < k where k > 1 is obtained, which refines and generalizes some known polynomial

inequalities.

1. INTRODUCTION

Let P,(z) denote the space of all complex polynomials P(z) = 377, a;z’
of degree at most n. For P € P,, define

1 2
17, = {5 [

|P| o := Max |P(z)] and m := Min|P(z)|.
|z|=1 |2|=k

o VP
P(e’e)’ } , 1 <p< oo,

If P € P,, then
1P|, <nllPlly (1.1)
and
1Pllp < nl[Pllp. (1.2)

Inequality (1.1) is a well-known result of S. Bernstein (see [12] or [15])
whereas inequality (1.2) is due to Zygmund [16]. Arestov [1] proved that the
inequality (1.2) remains true for 0 < p < 1 as well. Equality in (1.1) and (1.2)
holds for P(z) = az", a # 0. If we let p — oo in (1.2), we get inequality (1.1)
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If we restrict ourselves to the class of polynomials P € P,, having no zero
in |z| < 1, then both the inequalities (1.1) and (1.2) can be improved. In fact,
if P € P, and P(z) # 0 for |z| < 1, then (1.1) and (1.2) can be, respectively,
replaced by

1P|l < 5 1Pl (1.3)

I 2
and

[1P]],, < 1Pl,, p=1. (1.4)

P Hl +2|,
Inequality (1.3) was conjectured by P. Erdos and later verified by P. D. Lax
[10] whereas the inequality (1.4) was found out by De Bruijn [6]. Rahman
and Schmeisser [13] proved the inequality (1.4) remains true for 0 < p < 1 as
well. Both the estimates are sharp and equality in (1.3) and (1.4) holds for
P(z) =az" 40, |a] = |b].

As an improvement of inequality (1.3), Aziz and Dawood [2] proved that if
P e P, and P(z) # 0 for |z| < 1, then

17 < 5 {17 = il Pea} (3)

Malik [11] generalized inequality (1.3) by proving that if P € P, and P(z)
does not vanish in |z| < k where k > 1, then

1Pl - (1.6)

Govil and Rahman (8] extended inequality (1.6) to Ly-norm by proving that
if P € P, and P(z) # 0 for |z| < k where k > 1, then

, n
1Plle < 77

17, < m I1P[l,, p>1. (1.7)

It was shown by Gardner and Weems [7] and independently by Rather [14]
that the inequality (1.7) remains true for 0 < p < 1 as well. As a refinement

of inequality (1.6), Govil et al.[9] proved that if P € P, and P(z) # 0 for
|z| < k,k > 1, then

nlag| + k2|1 |
P < Pl - L.

Inequality (1.6) was further generalized by Govil and Rahman [8] to the sth
derivative of P(z) by showing that if P € P, and P(z) # 0 for |z| < k,k > 1,
then

<n(n—1)---(n—s+1)

ps)
e R

1Pl oo - (1.9)
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Aziz and Shah [5] extended inequality (1.9) to LP mean of |P(z)| by proving
that if P € P, and P(z) # 0 for |z| < k,k > 1, then for each p > 0,
nn—1)---(n—s+1)
P 1£% + =[],
Recently Aziz and Rather [4] refined inequality (1.10) by showing that if
P € P, and P(z) #0 for |z| < k,k > 1, then for each p > 0 and 1 < s < n,
< nn—1)---(n—s+1)
P 10k,s + 2,

HP<8> 1P, - (1.10)

e

121, (1.11)

where 0y, ; is defined by

5 — C(n, s)|ag|k*t + |as|k?
B2 7 Cn, 8)|ao] + laslkoT [

(1.12)

In this paper we present following result which includes not only a refine-
ment of inequality (1.10) as a special case but also leads to some striking
conclusion giving refinements and generalizations of other well known results.

Theorem 1.1. If P € P, and P(z) does not vanish in |z| < k where k > 1,
then for every real or complex number B with |B| <1, p > 0,0 <t <1 and
1 <s<n,

tn(n—1)---(n—s+1)m

P
H L T ,
(1.13)
< nn—1)---(n—s+1) 1Pl
= ok, s, t) + 2], P
where ¢(k, s, t) is defined by
o Ak,
and
Ak, s,t) = 2,k (1.15)

Cln, s)(Jao] — tm) =

Remark 1.2. For ¢ = 0, inequality (1.13) reduces to inequality (1.11).
Making use of inequalities (1.14) and (1.15) and the fact that
ok, s,8) + 211, = [F° + =[,, »>0,

we immediately obtain the following refinement as well as generalization of
inequality (1.10).
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Corollary 1.3. If P € P, and P(z) does not vanish in |z| < k where k > 1,
then for every real or complex number B with |B| <1, p>0,0<t <1 and
1<s<mn,

tn(n—1)---(n—s+1)m

P
e T . -
nn—1)---(n—s+1) '
cnln U 171,
[E= + =],

Letting p — oo in (1.13) and choosing argument of 3, with || = 1, suitably,
we obtain the following interesting refinement of inequality (1.9).

Corollary 1.4. If P € P, and P(z) does not vanish in |z| < k where k > 1,
then for 0 <t <1 and1l <s<n,

< nn—1)---(n—s+1)
oo 1+ ¢(k, S, t)

Taking ¢t = 0 in Corollary 2, we immediately get the following refinement of
inequality (1.9).

e

{[Pllo = tm(p, k)} . (1.17)

Corollary 1.5. If P € P, and P(z) does not vanish in |z| < k where k > 1,
then for 1 < s <mn,

nn—1)---(n—s+1)
oo 1+¢(k,8,0)

e

1Pl - (1.18)

2. LEMMAS

For the proof of the theorem, we need the following lemmas. The first
lemma is due to Aziz and Rather [4].

Lemma 2.1. If P € P, and P(z) does not vanish in |z| < k where k > 1 and

Q(z) = 2"P(1/%), then for 1 < s <mn,
Or,s| P (2)] <1QW)(2)| for |2 =1, (2.1)
where 0y, 5 1s defined by

Ss = (2.2)

)

O, )laglk™1 + Jaufk
C(n, s)|ag| + |as|ksH1

Lemma 2.2. If P € P, and P(z) has all its zeros in |z| < p where p < 1,
then for 1 < s <mn,

— 1) (n— 1
(-1 (n-st1)

PG (4 >
[P (2)] > o

(P,p) for |z| =1. (2.3)
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Proof. By hypothesis all the zeros of P(z) lie in |z| < p where p < 1 and

m(P,p) = ]lw‘in|P(z)|, therefore, all the zeros of F(z) = P(pz) liein |z| < 1
z|=p
and

Min |F(z)| = Min |P(pz)| = Min|P(z)| = m(P, p).
|21=1 l2|=1 |2|=p

This implies m(P, p)|z|" = m(P,p) < |F(2)| for |z| = 1. We first show that
the polynomial G(z) = F(z) +am(P, p)z" has all its zeros in |z| < 1 for every
real or complex number « with |a| < 1. This is obvious if m(P, p) = 0, that
is, if F'(z) has a zero on |z| = 1. We now assume that all the zeros of F(z) lie
in |z| < 1, so that m(P, p) > 0. This gives for |z| =1 and |a| < 1.

Im(p, p)az"| = m(P, p)lel|z* = m(P, p)la] <m(P,p) <[F(z)].
A direct application of Rouche’s theorem shows that the polynomial G(z) =
F(z)4+am(P, p)|z|" has all its zeros in |z| < 1 for every real or complex number
a with |a| < 1. By repeated application of Gauss-Lucas theorem, it follows
that all the zeros of G)(2) = F®)(2) + n(n —1)---(n — s + D)am(P, p)2"*
lie in |z] < 1 for every real or complex number o with || < 1. This implies

IFO) > n(n—1)(n— s+ Lm(P,p)|z|""* for |2] > L. (2.4)
If the inequality (2.4) is not true, then there is a point z = zp with |zg] > 1
such that

[F®(z0)] < n(n—1)--(n— s+ L)m(P, p)|zo|"*.
We choose
F)(z)

nn—1)---(n—s+1)m(Pp)zy*
then clearly |a| < 1 and with this choice of a, we get G(*)(z5) = 0 where
20| > 1. This is a contradiction to the fact that all the zeros of G(*)(2) lie in

|z| < 1. Hence the inequality (2.4) is established. Replacing F'(z) by P(pz) in
(2.4), we obtain

PP (pz)] 2 n(n —1)--- (n— s + Lm(P, p)|2["~* for |2| = 1.

o= —

Taking, in particular, z = € /p where p < 1 so that |z| = (1/p) > 1, we get
nn—1)---(n—s+1)
pn—S

P[P ()] > m(P,p), 0<0 <2,

or equivalently,

1 (n— 1
n—1) - n(n s+ )m
This completes the proof of Lemma 2.2. O

PO > 2 (P.p) for |2 = 1.
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Lemma 2.3. If P € P, and P(z) does not vanish in |z| < k where k > 1 and
Q(z) = 2"P(1/%), then for 0 <t <1 and1 < s <mn,

¢k, 5. )| PY ()| < 1QV(2)| = tn(n —1)---(n — s + Hm(Pk)  (2.5)
where ¢(k, s, t) is defined by

s B Ak, s )
o(k, s,t) = k {HMM} (2.6)
and .
Ak, s,t) = 9,k (2.7)

C(n, s)(lao| —tm) ~

Proof. By hypothesis, P € P, has all its zeros in |z| > k > 1 and m(P, k) =
M”/} |P(z)|, therefore,
zZ|l=

m(P, k) <|P(z)| for |z| =k. (2.8)
We first show that for every real or complex number a with |a| < 1, the
polynomial f(z) = P(z) — am(P, k) has all its zeros in |z| > k > 1. This is
clear if P(z) has a zero on |z| = k, for then m(P,k) =0 and f(z) = P(z). In
case P(z) has no zero on |z| = k, the clearly m(P, k) > 0. since m(P, k)/P(z)
is not a constant, by the Maximum Modulus Principle, it follows from (2.8)
that

m(P, k) < |P(2)| for |z| <k. (2.9)
Now if f(z) has a zero in |z| < k, say at z = zp with |29| < k, then P(zg) —
am(P, k) = f(z0) = 0. This implies
|P(20)| = |am(P, k)| < m(P, k) where |z| < k,
which contradicts (2.9) and hence in any case f(z) = P(z) — am(P, k) has

all its zeros in |z| > k > 1 for every real or complex number a with |o| < 1.
Applying Lemma 2.1 to the polynomial

n
f(2) = P(2) = am(P.k) = (a0 — am(P. k) + Y _a;2,
j=1
we get for every real or complex number a with |of <1,

$1(k, )| P (2)]

(2.10)
<1Q¥(z) —an(n—1)---(n — s+ )m(P,k)z""*| for |z| =1.
where ¢1(k, s) is defined by
k+ M (k,
i) = e { S0 (2.11)
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and
|as|k*

C(n, s)|ag — am)|

M(k,s) = <1 with m =m(P,k). (2.12)

Using |ag| — |alm < |ag — am| and k > 1, it can be easily verified that

o(k, s, ]a]) = k{ k4 Ak, s, |a]) }

1+ kXK, s, |al)

|a5‘ks
_ s ) BT cEa e
i

(n,5)(|ao|—[alm)

|as|k*
<k k+ C(n,s‘)[\la?k—sam\
1+ kC(n,s)iaofomﬂ
k+ Ai(k,s)
e = k,s). 2.13
{1+k:)\1(k:,s) Pk ) (213)
Also, since all the zeros Q(z) = 2"P(1/z) lie in |z| < (1/k) <1 and
— " 1 Pk
MinlQ()] = Minl2"P(I2)| = Minl = P(/) = - MinlP(a)] = ",

2=t =t

we conclude by Lemma 2.2 (with P(z) replaced by Q(z) and p by 1/k) that
1
QW ()| Zn(n—1)-- (n - s+ Dk"m(Q, z)

=nn—1)---(n—s+1)m(Pk) for |z| =1. (2.14)
Choosing argument of «, |a| < 1, on the right hand side of (2.10) such that
for |z| =1,

Q¥(2) —an(n—1)--- (n— s+ )m(P,k)=""|
=1Q¥(2)| — laln(n = 1)--- (n — s + L)m(P, k)

(which is possible by (2.14)), it follows from (2.10) by using (2.13) that for
181 < 1 and |2] = 1,

(k. s,1a])[PP ()] < |Q¥)(2)] = |afn(n = 1) (n = s + L)m(P, k) (2.15)

where

k+>\(k737’a’)
o 2.16
o(k, s, lal) =k {1+k)\(k,s,|04|) o
and
s|k*
Ak, 5, laf) = ———1%

C(n, s)(lao| — |alml)”



126 N. A. Rather and M. A. Shah

Since (2.11) is true for all @ with |a| < 1 and by (2.9), m = m(p, k) < |P(0)| =

lag|, we can choose argument of « in (2.12) such that |ag — am| = |ag| — |a|m.
For this choice of the argument of «, we get from (2.12) that
Ak, s, |al) = M(k,s) < 1. (2.17)

The inequalities (2.15),(2.16) and (2.17) are equivalent to (2.5),(2.6) and (2.7)
respectively with ¢ = || where 0 < ¢ < 1. This completes the proof of lemma
2.3. O

Lemma 2.4. If P € P, and Q(z) = z"P(1/Z%), then for each a, 0 < o < 27
and p > 0,

/27r /271'
0 0

Lemma 4 is due to Aziz and Rather [4].

P(ew)

2m
P'(e") + eio‘Q'(ew)’deda < np/ ‘pdG. (2.18)
0

Lemma 2.5. If A, B,C are non-negative real numbers such that B+ C < A,
then for every real a,

(A= C)e"* + (B +C)| < |Ae™ + BJ.

Lemma 5 is also due to Aziz and Rather [3].

3. PROOF OF THE THEOREM 1.1

Proof. By hypothesis P € P, and P(z) does not vanish in |z| < k, k > 1,
therefore, by Lemma 2.3, for each 6, 0 < 6 < 27, we have

(k5. t)| P ()| < 1QW(2)| — tn(n —1)--- (n — s + )m(P. k)
where ¢(k, s,t) is defined by (2.6). This implies
tn(n—1)---(n—s+ 1)m(P, k)
1+ ¢(k,s,1) }

B tn(n—l)-~-(n—s+1)m(P,k)}
1+ ¢(k,s,1) '

ok, 5.1) {|P<s><z>\ n

< {|@<8><z>| (3.)
Taking

— 1) (n—s+1)m(P,k)
L+ o(k, s,1) ’
in Lamma 2.5 and noting by (3.1) that for ¢(k,s,t) > 1,

B+C<¢k,s,t)(B+C) < (A-C) <A,

A= 109, B = |PW(e®)] and € =
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we get for every real «,
(s) (0 _tn(n_l)"'(n_s—i_l)m(ka) ia
{|Q ) T+ 60, 5,1) ‘
(s)( 0 tn(n—1)---(n—s+ 1)m(P, k)
PO T+ 60k, 5,)

< [IQW(E)lei + [P ()]

This implies for each p > 0,

/0 T 160) + e r @) < /0 " 1PO ()] + e |Q) (e[ as, (3.2)
where

F) = 1] - =D s B
and N

tn(n—1)---(n—s+ 1)m(P,k)’
1+ ¢(k,s,1) '

Integrating both sides of (3.2) with respect to a on [0,27], we get for each

p > 0 and « real,

G(8) = |PP(e”)] +

2 2
/ / |G(0) + ¢ F(0)[Pdfdo
0 0

27 27
0 0

Now for points e*, for which P()(e?) # 0, we have

/27r
0

|PO) ()] + €| Q) (e10)] "’ dfda. (3.3)

2
P(s)(eig)+€iaQ(S)(6iQ))pda _ |P(s)(€i6)|p/
0

2T
= PoEype
0

2
= [P+ 1@ e | da
0

Since this inequality is trivially true for points e for which P(*) (e) =0, it
follows that

27 21
[P0+ e Q0 da = [P + Qe a3
0 0
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Let f(z) = P(2) + €"*Q(z) where Q(z) =

f(z) = PP (2) +QV(2),

2"P(1/Z), then f € P, and we have

which is clearly a polynomial of degree at most n — s, 1 < s < n. Integrating
the two sides of (3.4) with respect to 6 from 0 to 27, we obtain by repeated

application of inequality (1.2), for each p > 0,
oIS PO ()] + e|QE) ()| | doda
= OQW fo% ‘P(S)(ew) + emQ(S)(ew)‘p dfdo

<2m(n — s+ 1P [T [27 | PG () 4 el D ()|’ doda
§27T(n—s+1) n—s+2)P---(n—1)P

f027r |P'(ei) + emQ’(eiG)’p dfdo
<27T(n—s+1) (n—s+2)P---(n—1) pnprW]P

Combining (3.3) and (3.5), it follows for each p > 0,

[ e

(e?)|Pd.

) + €“G(0)[Pdfda

2
< 27r(n—8+1)p(n—3+2)p-~(n—1)pnp/ | P(e)[Pdb.
0

Now for every real a and R > r > 1, we have
|R + em] > |r+ em|,

which implies for each p > 0,
21 ) 21 )
/ |R + e'*|Pdav > / |r 4+ e"*Pdar.
0 0

If G(0) # 0, we take
= [F(0)|/|G(0)] and r = ¢(k,s,1),

then by (3.1), R > r > 1 and we get
21 ) 2T
/ G(O) + P (O)Pda = |G(O)P /
0 0
27T F 9)
— 1G(O)] )
cor [ e
27
= jaop | '
0

p

F(6 o

gla_Fl

P
da

27
> (GO [ otk )+ e da.
0

(3.5)
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For G(6) = 0, this inequality is trivially true. Using this in (3.6), we conclude
that for each p > 0 and « real,

2 27 p
s Dteel” da () (it 4 M = 1) - (n — s + D)m(P, k)
[ ots. e aa 1P e Vs

2m
<2mnP(n—1)P---(n—s+ 1)”/ P(7)|" db.
0

)p

This implies for every real or complex number S with |5 < 1, p > 0 and «
real,

n ia|P T sy oy qtn(n=1)---(n— s+ )m(P, k)
/0 |p(k, s,t)+e \da/o ’P e+ T o5 0)

P
do

2m
<2mnP(n—1)P - (n—s+ 1)
0

P(e)|" do,

)p

which immediately leads to (1.13) and this completes the proof of the Theorem
1.1. O
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