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Abstract. In this paper an Lp-inequality for the sth derivative of a polynomial not vanishing

in |z| < k where k ≥ 1 is obtained, which refines and generalizes some known polynomial

inequalities.

1. Introduction

Let Pn(z) denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j

of degree at most n. For P ∈ Pn, define

‖P‖p :=

{
1

2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p}1/p

, 1 ≤ p <∞,

‖P‖∞ := Max
|z|=1

|P (z)| and m := Min
|z|=k

|P (z)| .

If P ∈ Pn, then ∥∥P ′∥∥∞ ≤ n ‖P‖∞ (1.1)

and
‖P ′‖p ≤ n‖P‖p. (1.2)

Inequality (1.1) is a well-known result of S. Bernstein (see [12] or [15])
whereas inequality (1.2) is due to Zygmund [16]. Arestov [1] proved that the
inequality (1.2) remains true for 0 < p < 1 as well. Equality in (1.1) and (1.2)
holds for P (z) = azn, a 6= 0. If we let p→∞ in (1.2), we get inequality (1.1)
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If we restrict ourselves to the class of polynomials P ∈ Pn having no zero
in |z| < 1, then both the inequalities (1.1) and (1.2) can be improved. In fact,
if P ∈ Pn and P (z) 6= 0 for |z| < 1, then (1.1) and (1.2) can be, respectively,
replaced by ∥∥P ′∥∥∞ ≤ n

2
‖P‖∞ (1.3)

and ∥∥P ′∥∥
p
≤ n

‖1 + z‖p
‖P‖p , p ≥ 1. (1.4)

Inequality (1.3) was conjectured by P. Erdös and later verified by P. D. Lax
[10] whereas the inequality (1.4) was found out by De Bruijn [6]. Rahman
and Schmeisser [13] proved the inequality (1.4) remains true for 0 < p < 1 as
well. Both the estimates are sharp and equality in (1.3) and (1.4) holds for
P (z) = azn + b, |a| = |b| .

As an improvement of inequality (1.3), Aziz and Dawood [2] proved that if
P ∈ Pn and P (z) 6= 0 for |z| < 1, then∥∥P ′∥∥∞ ≤ n

2

{
‖P‖∞ −Min

|z|=1
|P (z)|

}
. (1.5)

Malik [11] generalized inequality (1.3) by proving that if P ∈ Pn and P (z)
does not vanish in |z| < k where k ≥ 1, then∥∥P ′∥∥∞ ≤ n

1 + k
‖P‖∞ . (1.6)

Govil and Rahman [8] extended inequality (1.6) to Lp-norm by proving that
if P ∈ Pn and P (z) 6= 0 for |z| < k where k ≥ 1, then∥∥P ′∥∥

p
≤ n

‖k + z‖p
‖P‖p , p ≥ 1. (1.7)

It was shown by Gardner and Weems [7] and independently by Rather [14]
that the inequality (1.7) remains true for 0 < p < 1 as well. As a refinement
of inequality (1.6), Govil et al.[9] proved that if P ∈ Pn and P (z) 6= 0 for
|z| < k, k ≥ 1, then∥∥P ′∥∥∞ ≤ n{ n|a0|+ k2|a1|

n|a0|(1 + k2) + 2k2|a1|

}
‖P‖∞ . (1.8)

Inequality (1.6) was further generalized by Govil and Rahman [8] to the sth
derivative of P (z) by showing that if P ∈ Pn and P (z) 6= 0 for |z| < k, k ≥ 1,
then ∥∥∥P (s)

∥∥∥
∞
≤ n(n− 1) · · · (n− s+ 1)

1 + ks
‖P‖∞ . (1.9)
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Aziz and Shah [5] extended inequality (1.9) to Lp mean of |P (z)| by proving
that if P ∈ Pn and P (z) 6= 0 for |z| < k, k ≥ 1, then for each p > 0,∥∥∥P (s)

∥∥∥
p
≤ n(n− 1) · · · (n− s+ 1)

‖ks + z‖p
‖P‖p . (1.10)

Recently Aziz and Rather [4] refined inequality (1.10) by showing that if
P ∈ Pn and P (z) 6= 0 for |z| < k, k ≥ 1, then for each p > 0 and 1 ≤ s < n,∥∥∥P (s)

∥∥∥
p
≤ n(n− 1) · · · (n− s+ 1)

‖δk,s + z‖p
‖P‖p , (1.11)

where δk,s is defined by

δk,s =

{
C(n, s)|a0|ks+1 + |as|k2s

C(n, s)|a0|+ |as|ks+1

}
. (1.12)

In this paper we present following result which includes not only a refine-
ment of inequality (1.10) as a special case but also leads to some striking
conclusion giving refinements and generalizations of other well known results.

Theorem 1.1. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1,
then for every real or complex number β with |β| ≤ 1, p > 0, 0 ≤ t ≤ 1 and
1 ≤ s < n, ∥∥∥∥P (s) + β

tn(n− 1) · · · (n− s+ 1)m

1 + φ(k, s, t)

∥∥∥∥
p

≤ n(n− 1) · · · (n− s+ 1)

‖φ(k, s, t) + z‖p
‖P‖p

(1.13)

where φ(k, s, t) is defined by

φ(k, s, t) = ks
{
k + λ(k, s, t)

1 + kλ(k, s, t)

}
(1.14)

and

λ(k, s, t) =
|as|ks

C(n, s)(|a0| − tm)
≤ 1. (1.15)

Remark 1.2. For t = 0, inequality (1.13) reduces to inequality (1.11).

Making use of inequalities (1.14) and (1.15) and the fact that

‖φ(k, s, t) + z‖p ≥ ‖k
s + z‖p , p > 0,

we immediately obtain the following refinement as well as generalization of
inequality (1.10).
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Corollary 1.3. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1,
then for every real or complex number β with |β| ≤ 1, p > 0, 0 ≤ t ≤ 1 and
1 ≤ s < n, ∥∥∥∥P (s) + β

tn(n− 1) · · · (n− s+ 1)m

1 + φ(k, s, t)

∥∥∥∥
p

≤ n(n− 1) · · · (n− s+ 1)

‖ks + z‖p
‖P‖p .

(1.16)

Letting p→∞ in (1.13) and choosing argument of β, with |β| = 1, suitably,
we obtain the following interesting refinement of inequality (1.9).

Corollary 1.4. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1,
then for 0 ≤ t ≤ 1 and 1 ≤ s < n,∥∥∥P (s)

∥∥∥
∞
≤ n(n− 1) · · · (n− s+ 1)

1 + φ(k, s, t)
{‖P‖∞ − tm(p, k)} . (1.17)

Taking t = 0 in Corollary 2, we immediately get the following refinement of
inequality (1.9).

Corollary 1.5. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1,
then for 1 ≤ s < n,∥∥∥P (s)

∥∥∥
∞
≤ n(n− 1) · · · (n− s+ 1)

1 + φ(k, s, 0)
‖P‖∞ . (1.18)

2. Lemmas

For the proof of the theorem, we need the following lemmas. The first
lemma is due to Aziz and Rather [4].

Lemma 2.1. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1 and

Q(z) = znP (1/z̄), then for 1 ≤ s < n,

δk,s|P (s)(z)| ≤ |Q(s)(z)| for |z| = 1, (2.1)

where δk,s is defined by

δk,s =

{
C(n, s)|a0|ks+1 + |as|k2s

C(n, s)|a0|+ |as|ks+1

}
. (2.2)

Lemma 2.2. If P ∈ Pn and P (z) has all its zeros in |z| ≤ ρ where ρ ≤ 1,
then for 1 ≤ s < n,

|P (s)(z)| ≥ n(n− 1) · · · (n− s+ 1)

ρn
m(P, ρ) for |z| = 1. (2.3)
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Proof. By hypothesis all the zeros of P (z) lie in |z| ≤ ρ where ρ ≤ 1 and
m(P, ρ) = Min

|z|=ρ
|P (z)|, therefore, all the zeros of F (z) = P (ρz) lie in |z| ≤ 1

and

Min
|z|=1

|F (z)| = Min
|z|=1

|P (ρz)| = Min
|z|=ρ

|P (z)| = m(P, ρ).

This implies m(P, ρ)|z|n = m(P, ρ) ≤ |F (z)| for |z| = 1. We first show that
the polynomial G(z) = F (z) +αm(P, ρ)zn has all its zeros in |z| ≤ 1 for every
real or complex number α with |α| < 1. This is obvious if m(P, ρ) = 0, that
is, if F (z) has a zero on |z| = 1. We now assume that all the zeros of F (z) lie
in |z| < 1, so that m(P, ρ) > 0. This gives for |z| = 1 and |α| < 1.

|m(p, ρ)αzn| = m(P, ρ)|α||z|n = m(P, ρ)|α| < m(P, ρ) ≤ |F (z)|.
A direct application of Rouche’s theorem shows that the polynomial G(z) =
F (z)+αm(P, ρ)|z|n has all its zeros in |z| < 1 for every real or complex number
α with |α| < 1. By repeated application of Gauss-Lucas theorem, it follows

that all the zeros of G(s)(z) = F (s)(z) + n(n − 1) · · · (n − s + 1)αm(P, ρ)zn−s

lie in |z| < 1 for every real or complex number α with |α| < 1. This implies

|F (s)(z)| ≥ n(n− 1) · · · (n− s+ 1)m(P, ρ)|z|n−s for |z| ≥ 1. (2.4)

If the inequality (2.4) is not true, then there is a point z = z0 with |z0| ≥ 1
such that

|F (s)(z0)| < n(n− 1) · · · (n− s+ 1)m(P, ρ)|z0|n−s.
We choose

α = − F (s)(z0)

n(n− 1) · · · (n− s+ 1)m(P, ρ)zn−s0

,

then clearly |α| < 1 and with this choice of α, we get G(s)(z0) = 0 where

|z0| ≥ 1. This is a contradiction to the fact that all the zeros of G(s)(z) lie in
|z| < 1. Hence the inequality (2.4) is established. Replacing F (z) by P (ρz) in
(2.4), we obtain

ρs|P (s)(ρz)| ≥ n(n− 1) · · · (n− s+ 1)m(P, ρ)|z|n−s for |z| ≥ 1.

Taking, in particular, z = eiθ/ρ where ρ ≤ 1 so that |z| = (1/ρ) ≥ 1, we get

ρs|P (s)(eiθ)| ≥ n(n− 1) · · · (n− s+ 1)

ρn−s
m(P, ρ), 0 ≤ θ < 2π,

or equivalently,

|P (s)(z)| ≥ n(n− 1) · · · (n− s+ 1)

ρn
m(P, ρ) for |z| = 1.

This completes the proof of Lemma 2.2. �
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Lemma 2.3. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1 and

Q(z) = znP (1/z̄), then for 0 ≤ t ≤ 1 and 1 ≤ s < n,

φ(k, s, t)|P (s)(z)| ≤ |Q(s)(z)| − tn(n− 1) · · · (n− s+ 1)m(P, k) (2.5)

where φ(k, s, t) is defined by

φ(k, s, t) = ks
{
k + λ(k, s, t)

1 + kλ(k, s, t)

}
(2.6)

and

λ(k, s, t) =
|as|ks

C(n, s)(|a0| − tm)
≤ 1. (2.7)

Proof. By hypothesis, P ∈ Pn has all its zeros in |z| ≥ k ≥ 1 and m(P, k) =
Min
|z|=k

|P (z)|, therefore,

m(P, k) ≤ |P (z)| for |z| = k. (2.8)

We first show that for every real or complex number α with |α| ≤ 1, the
polynomial f(z) = P (z) − αm(P, k) has all its zeros in |z| ≥ k ≥ 1. This is
clear if P (z) has a zero on |z| = k, for then m(P, k) = 0 and f(z) = P (z). In
case P (z) has no zero on |z| = k, the clearly m(P, k) > 0. since m(P, k)/P (z)
is not a constant, by the Maximum Modulus Principle, it follows from (2.8)
that

m(P, k) < |P (z)| for |z| < k. (2.9)

Now if f(z) has a zero in |z| < k, say at z = z0 with |z0| < k, then P (z0) −
αm(P, k) = f(z0) = 0. This implies

|P (z0)| = |αm(P, k)| ≤ m(P, k) where |z0| < k,

which contradicts (2.9) and hence in any case f(z) = P (z) − αm(P, k) has
all its zeros in |z| ≥ k ≥ 1 for every real or complex number α with |α| ≤ 1.
Applying Lemma 2.1 to the polynomial

f(z) = P (z)− αm(P, k) = (a0 − αm(P, k)) +
n∑
j=1

ajz
j ,

we get for every real or complex number α with |α| ≤ 1,

φ1(k, s)|P (s)(z)|

≤ |Q(s)(z)− ᾱn(n− 1) · · · (n− s+ 1)m(P, k)zn−s| for |z| = 1.
(2.10)

where φ1(k, s) is defined by

φ1(k, s) = ks
{
k + λ1(k, s)

1 + kλ1(k, s)

}
(2.11)
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and

λ1(k, s) =
|as|ks

C(n, s)|a0 − αm|
≤ 1 with m = m(P, k). (2.12)

Using |a0| − |α|m ≤ |a0 − αm| and k ≥ 1, it can be easily verified that

φ(k, s, |α|) = ks
{
k + λ(k, s, |α|)
1 + kλ(k, s, |α|)

}
.

= ks

 k + |as|ks
C(n,s)(|a0|−|α|m)

1 + k |as|ks
C(n,s)(|a0|−|α|m)


≤ ks

 k + |as|ks
C(n,s)|a0−αm|

1 + k |as|ks
C(n,s)|a0−αm|


= ks

{
k + λ1(k, s)

1 + kλ1(k, s)

}
= φ1(k, s). (2.13)

Also, since all the zeros Q(z) = znP (1/z̄) lie in |z| ≤ (1/k) ≤ 1 and

Min
|z|= 1

k

|Q(z)| = Min
|z|= 1

k

|znP (1/z̄)| = Min
|z|=1
|z
n

kn
P (k/z̄)| = 1

kn
Min
|z|=k
|P (z)| = m(P, k)

kn
,

we conclude by Lemma 2.2 (with P (z) replaced by Q(z) and ρ by 1/k) that

|Q(s)(z)| ≥ n(n− 1) · · · (n− s+ 1)knm(Q,
1

k
)

= n(n− 1) · · · (n− s+ 1)m(P, k) for |z| = 1. (2.14)

Choosing argument of α, |α| ≤ 1, on the right hand side of (2.10) such that
for |z| = 1,

|Q(s)(z)− ᾱn(n− 1) · · · (n− s+ 1)m(P, k)zn−s|

= |Q(s)(z)| − |α|n(n− 1) · · · (n− s+ 1)m(P, k)

(which is possible by (2.14)), it follows from (2.10) by using (2.13) that for
|β| ≤ 1 and |z| = 1,

φ(k, s, |α|)|P (s)(z)| ≤ |Q(s)(z)| − |α|n(n− 1) · · · (n− s+ 1)m(P, k) (2.15)

where

φ(k, s, |α|) = ks
{
k + λ(k, s, |α|)
1 + kλ(k, s, |α|)

}
(2.16)

and

λ(k, s, |α|) =
|as|ks

C(n, s)(|a0| − |α|m|)
.
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Since (2.11) is true for all α with |α| ≤ 1 and by (2.9), m = m(p, k) < |P (0)| =
|a0|, we can choose argument of α in (2.12) such that |a0−αm| = |a0| − |α|m.
For this choice of the argument of α, we get from (2.12) that

λ(k, s, |α|) = λ1(k, s) ≤ 1. (2.17)

The inequalities (2.15),(2.16) and (2.17) are equivalent to (2.5),(2.6) and (2.7)
respectively with t = |α| where 0 ≤ t ≤ 1. This completes the proof of lemma
2.3. �

Lemma 2.4. If P ∈ Pn and Q(z) = znP (1/z̄), then for each α, 0 ≤ α < 2π
and p > 0,∫ 2π

0

∫ 2π

0

∣∣∣P ′(eiθ) + eiαQ′(eiθ)
∣∣∣p dθdα ≤ np ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ. (2.18)

Lemma 4 is due to Aziz and Rather [4].

Lemma 2.5. If A,B,C are non-negative real numbers such that B +C ≤ A,
then for every real α,∣∣(A− C)eiα + (B + C)

∣∣ ≤ ∣∣Aeiα +B
∣∣ .

Lemma 5 is also due to Aziz and Rather [3].

3. Proof of the theorem 1.1

Proof. By hypothesis P ∈ Pn and P (z) does not vanish in |z| < k, k ≥ 1,
therefore, by Lemma 2.3, for each θ, 0 ≤ θ < 2π, we have

φ(k, s, t)|P (s)(z)| ≤ |Q(s)(z)| − tn(n− 1) · · · (n− s+ 1)m(P, k)

where φ(k, s, t) is defined by (2.6). This implies

φ(k, s, t)

{
|P (s)(z)|+ tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)

}

≤
{
|Q(s)(z)| − tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)

}
. (3.1)

Taking

A = |Q(s)(eiθ)|, B = |P (s)(eiθ)| and C =
tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)
,

in Lamma 2.5 and noting by (3.1) that for φ(k, s, t) ≥ 1,

B + C ≤ φ(k, s, t)(B + C) ≤ (A− C) ≤ A,
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we get for every real α,∣∣∣∣ {|Q(s)(eiθ)| − tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)

}
eiα

+

{
|P (s)(eiθ)|+ tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)

} ∣∣∣∣
≤
∣∣∣|Q(s)(eiθ)|eiα + |P (s)(eiθ)|

∣∣∣ .
This implies for each p > 0,∫ 2π

0
|G(θ) + eiαF (θ)|pdθ ≤

∫ 2π

0

∣∣∣|P (s)(eiθ)|+ eiα|Q(s)(eiθ)|
∣∣∣p dθ, (3.2)

where

F (θ) = |Q(s)(eiθ)| − tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)
|

and

G(θ) = |P (s)(eiθ)|+ tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)
|.

Integrating both sides of (3.2) with respect to α on [0,2π], we get for each
p > 0 and α real, ∫ 2π

0

∫ 2π

0
|G(θ) + eiαF (θ)|pdθdα

≤
∫ 2π

0

∫ 2π

0

∣∣∣|P (s)(eiθ)|+ eiα|Q(s)(eiθ)|
∣∣∣p dθdα. (3.3)

Now for points eiθ, for which P (s)(eiθ) 6= 0, we have∫ 2π

0

∣∣∣P (s)(eiθ) + eiαQ(s)(eiθ)
∣∣∣p dα = |P (s)(eiθ)|p

∫ 2π

0

∣∣∣∣∣Q(s)(eiθ)

P (s)(eiθ)
eiα + 1

∣∣∣∣∣
p

dα

= |P (s)(eiθ)|p
∫ 2π

0

∣∣∣∣∣
∣∣∣∣∣Q(s)(eiθ)

P (s)(eiθ)

∣∣∣∣∣ eiα+1

∣∣∣∣∣
p

dα

=

∫ 2π

0

∣∣∣|P (s)(eiθ)|+ eiα|Q(s)(eiθ)|
∣∣∣p dα.

Since this inequality is trivially true for points eiθ for which P (s)(eiθ) = 0, it
follows that∫ 2π

0

∣∣∣|P (s)(eiθ)|+ eiα|Q(s)(eiθ)|
∣∣∣p dα =

∫ 2π

0

∣∣∣P (s)(eiθ) + eiαQ(s)(eiθ)
∣∣∣p dα.(3.4)
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Let f(z) = P (z) + eiαQ(z) where Q(z) = znP (1/z̄), then f ∈ Pn and we have

f (s)(z) = P (s)(z) + eiαQ(s)(z),

which is clearly a polynomial of degree at most n− s, 1 ≤ s < n. Integrating
the two sides of (3.4) with respect to θ from 0 to 2π, we obtain by repeated
application of inequality (1.2), for each p > 0,∫ 2π

0

∫ 2π
0

∣∣|P (s)(eiθ)|+ eiα|Q(s)(eiθ)|
∣∣p dθdα

=
∫ 2π
0

∫ 2π
0

∣∣P (s)(eiθ) + eiαQ(s)(eiθ)
∣∣p dθdα

≤ 2π(n− s+ 1)p
∫ 2π
0

∫ 2π
0

∣∣P (s−1)(eiθ) + eiαQ(s−1)(eiθ)
∣∣p dθdα

≤ 2π(n− s+ 1)p(n− s+ 2)p · · · (n− 1)p

×
∫ 2π
0

∫ 2π
0

∣∣P ′(eiθ) + eiαQ′(eiθ)
∣∣p dθdα

≤ 2π(n− s+ 1)p(n− s+ 2)p · · · (n− 1)pnp
∫ 2π
0 |P (eiθ)|pdθ. (3.5)

Combining (3.3) and (3.5), it follows for each p > 0,∫ 2π

0

∫ 2π

0
|F (θ) + eiαG(θ)|pdθdα

≤ 2π(n− s+ 1)p(n− s+ 2)p · · · (n− 1)pnp
∫ 2π

0
|P (eiθ)|pdθ. (3.6)

Now for every real α and R ≥ r ≥ 1, we have

|R+ eiα| ≥ |r + eiα|,
which implies for each p > 0,∫ 2π

0
|R+ eiα|pdα ≥

∫ 2π

0
|r + eiα|pdα.

If G(θ) 6= 0, we take

R = |F (θ)|/|G(θ)| and r = φ(k, s, t),

then by (3.1), R ≥ r ≥ 1 and we get∫ 2π

0
|G(θ) + eiαF (θ)|pdα = |G(θ)|p

∫ 2π

0

∣∣∣∣F (θ)

G(θ)
eiα + 1

∣∣∣∣p dα
= |G(θ)|p

∫ 2π

0

∣∣∣∣∣∣∣∣F (θ)

G(θ)

∣∣∣∣ eiα + 1

∣∣∣∣p dα
= |G(θ)|p

∫ 2π

0

∣∣∣∣∣∣∣∣F (θ)

G(θ)

∣∣∣∣+ eiα
∣∣∣∣p dα

≥ |G(θ)|p
∫ 2π

0

∣∣φ(k, s, t) + eiα
∣∣p dα.



An Lp inequality for polynomials 129

For G(θ) = 0, this inequality is trivially true. Using this in (3.6), we conclude
that for each p > 0 and α real,∫ 2π

0

∣∣φ(k, s, t)+eiα
∣∣p dα∫ 2π

0

{
|P (s)(eiθ)|+ tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)

}p
dθ

≤ 2πnp(n− 1)p · · · (n− s+ 1)p
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ.

This implies for every real or complex number β with |β| ≤ 1, p > 0 and α
real,∫ 2π

0

∣∣φ(k, s, t)+eiα
∣∣p dα∫ 2π

0

∣∣∣∣P (s)(eiθ)+β
tn(n− 1) · · · (n− s+ 1)m(P, k)

1 + φ(k, s, t)

∣∣∣∣p dθ
≤ 2πnp(n− 1)p · · · (n− s+ 1)p

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

which immediately leads to (1.13) and this completes the proof of the Theorem
1.1. �
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