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Abstract. In this article, we show that the concept of a TVS-cone 2-metric space by a

nonlinear scalarization function and our theorems extend some results in Du [3]. Then we

prove the equivalence of cone 2-metric and 2-metric, and the main idear is to investigate the

relationship between TVS-cone 2-metric and 2-metric.

1. Introduction

In 2007, Huang-Zhang [6] generalized the concept of a metric space, replac-
ing the set of real numbers by an ordered Bananch space and introduced the
cone metric space. Later, many authors generalized some theroems on cone
2-metric space. Since a cone metric space is a special case of a TVS-cone met-
ric space. Du [3] has proved that the Banach contraction principle in general
metric spaces and in TVS-cone metric space are equivalent. First, we introd-
uct some concepts which are used, and we expand the concept of TVS-cone
metric space and prove some theorems by the same idea used in [2] and [3].
At last, we provide an example of the conclusion.
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2. Preliminaries

Definition 2.1. ([3]) Let Y be always a topological vector space. A subset P
of Y is called a cone if and only if

(i) P is closed, non-empty and P 6= {0};
(ii) if a, b ∈ R with a, b ≥ 0 and x, y ∈ P , then ax+ by ∈ P ;

(iii) P
⋂

(−P ) = {0}.

For a given cone P ⊂ Y , we define a partial ordering � with respect to P
by x � y if and only if y−x ∈ P , where x ≺≺ y means that y−x ∈ intP (the
interior of P ). In the following, we assume that Y is a locally convex Hausdorff
t.v.s, P is a proper, closed and convex pointed cone in Y with intP 6= ∅ and
e ∈ intP . The nonlinear scalarization function ξe : Y → R is defined by
ξe(y) = inf{r ∈ R : y ∈ re− P} for all y ∈ Y .

Lemma 2.2. ([3]) For each r ∈ R and y ∈ Y , the following statements are
satisfied:

(i) ξe(y) ≤ r ⇔ y ∈ re− P ;
(ii) ξe(y) > r ⇔ y /∈ re− P ;

(iii) ξe(y) ≥ r ⇔ y /∈ re− intP ;
(iv) ξe(y) < r ⇔ y ∈ re− intP ;
(v) ξe(.) is positively homogeneous and continuous on Y ;

(vi) y1 ∈ y2 + P ⇒ ξe(y2) ≤ ξe(y1);
(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) for all y1, y2 ∈ Y .

Definition 2.3. ([7]) Let X be a nonempty set. For all x, y, z ∈ X, a valued
function ρ : X×X×X → R is said to be a 2-metric, if the following conditions
hold:

(i) For all x, y ∈ X and x 6= y, there is a point z ∈ X, such that ρ(x, y, z) 6=
θ;

(ii) ρ(x, y, z) = θ iff x = y or y = z or x = z;
(iii) ρ(x, y, z) = ρ(y, z, x) = ρ(x, z, y);
(iv) ρ(x, y, z) � ρ(x, y, w) + ρ(x,w, z) + ρ(w, y, z), ∀w ∈ X.

Since we can’t give a metric directly in TVS-cone 2-metic space, we need
introduce the definition of the cone 2-metic, then we have the metric in TVS-
cone 2-metric space by the nonlinear scalarization function in a cone 2-metric.
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Definition 2.4. ([4]) Let X be a nonempty set, E be a real Banach space,
suppose the mapping D : X ×X ×X → E satisfies:

(i) For ∀x, y ∈ X there is a point z ∈ X, such that D(x, y, z) 6= θ;
(ii) D(x, y, z) = θ iff x = y or y = z or x = z;

(iii) D(x, y, z) = D(x, z, y) = D(y, z, x) for all x, y, z ∈ X;
(iv) D(x, y, z) � D(x, y, w) +D(x,w, z) +D(w, y, z) for all x, y, z, w ∈ X.

Then D is called a cone 2-metric on X and (X,D) is called a cone 2-metric
space.

Now we introduct the definition of TVS-cone 2-metric space and its com-
pleteness.

Definition 2.5. Let X be a non-empty set and Y be a topological vector
space. Suppose that the mapping d : X ×X ×X → Y satisfies:

(i) d(x, y, z) � θ for all x, y, z ∈ X;
(ii) d(x, y, z) = θ iff x = y or x = z or y = z;
(iii) d(x, y, z) = d(x, z, y) = d(z, x, y) for all x, y, z ∈ X;
(iv) d(x, y, z) � d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z ∈ X.

Then d is called a TVS-valued cone 2-metric on X and (X, d) is called a
TVS-cone 2-metric space.

Definition 2.6. Let (X, d) be a TVS-cone 2-metric space. Let {xn} be a
sequence in X and ∀c ∈ P with θ � c and a ∈ X.

(i) The sequence {xn} is called Cauchy if for ∀c ∈ P , c � θ, there exsits
N > 0, when n,m > N and ∀a ∈ X, such that d(xn, xm, a) ≺≺ c;

(ii) The sequence {xn} is said to be convergent if there exist a positive
integer N > 0 and x ∈ X such that d(xn, x, a) ≺≺ c for all n > N and
∀a ∈ X;

(iii) A TVS-cone 2 metric space (X, d) is said to be complete if every
Cauchy sequence in X is convergent in X.

3. Main Results

Lemma 3.1. Let (X,D) be a cone 2-metric space. Then

ρ(x, y, z) = inf{‖u‖|D(x, y, z) � u, u ∈ P}

is a 2-metric for all x, y, z ∈ X, where D is a cone 2-metric.
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Proof. (i) By Definition 2.4, for all x, y ∈ X, there is a point z ∈ X, such that
we have D(x, y, z) 6= 0. Let D(x, y, z) = a. Then we have

ρ(x, y, z) = inf{‖u‖|a � u, u ∈ P} = ‖a‖ 6= 0.

(ii) If ρ(x, y, z) = 0, that is inf{‖u‖|D(x, y, z) � u, u ∈ P} = 0, there exists
un ∈ P , let ‖un‖ < 1

n , such that D(x, y, z) � un. Since D(x, y, z) � un
and un → 0(n → ∞), i.e., un − D(x, y, z) ∈ P ⇒ −D(x, y, z) ∈ P and
D(x, y, z) ∈ P , then we have D(x, y, z) = 0, and so x = y.

If x = y, by Definition 2.4, D(x, y, z) = 0, that is

ρ(x, y, z) = inf{‖u‖|0 � u, u ∈ P} = 0.

The same way we prove that y = z and x = z.
(iii) D(x, y, z) = D(x, z, y) = D(y, z, x) implies ρ(x, y, z) = ρ(x, z, y) =
ρ(y, z, x) for all x, y, z ∈ X.
(iv) Now we prove

ρ(x, y, z) ≤ ρ(x, y, w) + ρ(x,w, z) + ρ(w, y, z)

for all x, y, z, w ∈ X. In fact, since

ρ(x, y, z) = inf{‖u1‖|D(x, y, z) � u1, u1 ∈ P},
ρ(x, y, w) = inf{‖u2‖|D(x, y, w) � u2, u2 ∈ P},
ρ(x,w, z) = inf{‖u3‖|D(x,w, z) � u3, u3 ∈ P},
ρ(w, y, z) = inf{‖u4‖|D(w, y, z) � u4, u4 ∈ P},

for u2, u3, u4 ∈ P, D(x, y, w) � u2, D(x,w, z) � u3, D(w, y, z) � u4, then

D(x, y, z) � D(x, y, w) +D(x,w, z) +D(w, y, z) � u2 + u3 + u4.

So

{u2 + u3 + u4 ∈ P |D(x, y, w) � u2, D(x,w, z) � u3, D(w, y, z) � u4}
⊂ {u1 ∈ P |D(x, y, z) � u1},

which implies

inf{‖u1‖|D(x, y, z) � u1}
≤ inf{‖u2 + u3 + u4‖|D(x, y, w) � u2, D(x,w, z) � u3, D(w, y, z) � u4}

and we note that

inf{‖u2 + u3 + u4‖|D(x, y, w) � u2, D(x,w, z) � u3, D(w, y, z) � u4}
≤ inf{‖u2‖+ ‖u3‖+ ‖u4‖|D(x, y, w) � u2, D(x,w, z) � u3, D(w, y, z) � u4}
≤ inf{‖u2‖|D(x, y, w) � u2, u2 ∈ P}+ inf{‖u3‖|D(x,w, z) � u3, u3 ∈ P}

+ inf{‖u4‖|D(w, y, z) � u4, u4 ∈ P}.
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Thus

inf{‖u1‖|D(x, y, z) � u1, u1 ∈ P}
≤ inf{‖u2‖|D(x, y, w) � u2, u2 ∈ P}+ inf{‖u3‖|D(x,w, z) � u3, u3 ∈ P}

+ inf{‖u4‖|D(w, y, z) � u4, u4 ∈ P},
that is

ρ(x, y, z) ≤ ρ(x, y, w) + ρ(x,w, z) + ρ(w, y, z).

From (i),(ii),(iii),(iv), we show that ρ is a 2-metric on X. �

Theorem 3.2. Let (X, d) be a TVS-cone 2-metric space. Then dp : X ×X ×
X → [0,∞) defined by dp = ξe ◦ d is a 2-metric.

Proof. (i) Since ξe(y) = inf{r ∈ R : y ∈ re − P}, i.e., ξe(y) = inf{r ∈ R :
re ≥ y}, then ξe(d(x, y, z)) = inf{r ∈ R : re ≥ d(x, y, z)}. Since d(x, y, z) � θ,
we have r ≥ 0, so dp(x, y, z) = ξe(d(x, y, z)) ≥ 0.
(ii) And d(x, y, z) = d(x, z, y) = d(z, x, y), moreover

dp(x, y, z) = ξe(d(x, y, z)), dp(x, z, y) = ξe(d(x, z, y)), dp(z, x, y)

= ξe(d(z, x, y)).

Then by Definition 2.5, we have dp(x, y, z) = dp(x, z, y) = dp(z, x, y) for all
x, y, z ∈ X.
(iii) If x = y, then dp(x, y, z) = ξe(θ) = 0. Conversely, if dp(x, y, z) =
ξe(d(x, y, z)) = 0, then d(x, y, z) ∈ P ∩ (−P ) = {θ} implies x = y or x = z or
y = z.
(iv) Since d(x, y, z) � d(x, y, w)+d(x,w, z)+d(w, y, z), by Lemma 2.2-(vi),(vii),

ξe(d(x, y, z)) ≤ ξe(d(x, y, w) + (d(x,w, z) + (d(w, y, z)) ≤ ξe(d(x, y, w))

+ ξe(d(x,w, z)) + ξe(d(w, y, z)),

we have

ξe(d(x, y, z)) ≤ ξe(d(x, y, w)) + ξe(d(x,w, z)) + ξe(d(w, y, z)),

for all x, y, z, w ∈ X, that is

dp(x, y, z) ≤ dp(x, y, w) + dp(x,w, z) + dp(w, y, z).

�

Corollary 3.3. Let (X,D) be a cone 2-metric space in the sense of Huang-
Zhang [6] and follow the idea in it. Then dp : X ×X ×X → [0,∞) defined by
dp = ξe ◦D is a 2-metric space.

Theorem 3.4. Let (X, d) be a TVS-valued cone 2-metric space, x ∈ X and
{xn}n∈N a sequence in X. For ∀a ∈ X. The following statements hold:
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(i) If {xn} TVS-cone converges to x, then dp(xn, x, a)→ 0 as n→∞;
(ii) If {xn} is a TVS-cone Cauchy sequence in (X, d), then it is a Cauchy

sequence in (X, dp);
(iii) If (X, d) is TVS-cone complete, then (X, dp) is a complete metric

space.

Proof. (i) Applying Theorem 3.2, dp is a 2-metric on X. Let ε > 0, if {xn}
TVS-cone converges to x(n → ∞), since e �� θ(e ∈ intP ), ∃n0 ∈ N such
that

d(xn, x, a) ≺≺ εe ⇔ −d(xn, x, a) + εe ∈ P
⇔ −d(xn, x, a) ∈ −εe+ P

⇔ d(xn, x, a) ∈ εe− P (Lemma 2.2-(i))

⇔ dp(xn, x, a) = ξe ◦ d(xn, x, a) < ε

for all n ≥ n0, so dp(xn, x, a)→ 0 as n→∞. Therefore, (i) holds.
(ii) Let {xn} be a TVS-cone Cauchy sequence in (X, d). Then there exists
n1 ∈ N such that

d(xn, xm, a) ≺≺ εe ⇔ −d(xn, xm, a) + εe ∈ P
⇔ −d(xn, xm, a) ∈ −εe+ P

⇔ d(xn, xm, a) ∈ εe− P (Lemma 2.2-(i))

⇔ dp(xn, xm, a) = ξe ◦ d(xn, xm, a) < ε

for all n,m ≥ n1. So {xn} is a Cauchy sequence in (X, dp), then (ii) holds.
(iii) We can get immediately from (i) and (ii). �

The following results are the main idea of this paper. First, by Lemma 3.1,
we show that the cone 2-metric is equivalent to a 2-metric. Then we proof the
2-metric ρ in Lemma 3.1 is equivalent with dp in Corollary 3.3. At last, we
give an example which use the metric of Lemma 3.1.

Theorem 3.5. For every cone 2-metric D : X ×X ×X → E, there exists a
2-metric ρ : X ×X ×X → R+ which is equivalent to D on X.

Proof. (i) Define ρ(x, y, z) = inf{‖u‖|D(x, y, z) � u}. By Lemma 3.1 we have
ρ is a 2-metric. Since ρ(xn, x, a) = inf{‖umn‖|D(xn, x, a) � umn}, we have
∀n,m ∈ N , ∃unm such that

‖unm‖ < ρ(xn, x, a) +
1

m
,D(xn, x, a) � unm.

Put vn = unn, then ‖vn‖ < ρ(xn, x, a) + 1
n , (n → ∞) and D(xn, x, a) � vn.

If xn → x in (X, ρ), then ρ(xn, x, a) → 0 and vn → 0. Therefore for all
c �� θ, there exsits n ∈ N such that vn � c for all n ≥ N . That implies
D(xn, x, a) ≺≺ c. Namely xn → x in (X,D).
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(ii) Conversely, we have xn → x (n→∞) in (X,D). For ε > 0, choose c ∈ E,
∀c ∈ E with c �� θ such that ‖c‖ < ε, there exsits N > 0, when n > N , we
have D(xn, x, a) ≺≺ c, ∀a ∈ X. So

ρ(xn, x, a) = inf{‖c‖|D(xn, x, a) � c} ≤ ‖c‖ < ε.

Then we have xn → x (n→∞) in (X, ρ). �

Theorem 3.6. If ρ(x, y, z) = inf{‖u‖|D(x, y, z) � u} and dp = ξe(D(x, y, z))
where D is a cone 2-metric on X, then ρ is equivalent with dp.

Proof. (i) By Corollary 3.3, dp is a 2-metric, now we show that each sequence
{xn} ⊆ X which converges to a point x ∈ X in (X, ρ) also converges to x in
the (X, dp). Let xn → x. Then ρ(xn, x, a)→ 0 (n→∞). By Theorem 3.5, we
have D(xn, x, a) → 0 (n → ∞). So ∀ε > 0, ∀e �� 0, ∃N > 0, for all n ≥ N
such that

D(xn, x, a) ≺≺ εe⇒ εe−D(xn, x, a) ∈ intP ⇒ D(xn, x, a) ∈ εe− intP.

By Lemma 2.2-(iv), we have ξe(D(xn, x, a)) < ε, that is dp(xn, x, a) < ε, so
dp(xn, x, a)→ 0 (n→∞).
(ii) Conversely, we show that each sequence {xn} ⊆ X which converges to a
point x ∈ X in (X, dp) also converges to x in the (X, ρ). Let xn → x. Then
dp(xn, x, a)→ 0 (n→∞), that is ξe(D(xn, x, a))→ 0, so ∀ε > 0, ∃N > 0, for
all n ≥ N , ξe(D(xn, x, a)) < ε, for some p ∈ intP , by Lemma 2.2-(iv), such
that

D(xn, x, a) ∈ εe− intP ⇒ D(xn, x, a) ∈ εe− p⇒ D(xn, x, a) ≺≺ εe,

this implies that xn → x (n → ∞) in (X,D). By Theorem 3.5, we have
xn → x (n→∞) in (X, ρ). �

Example 3.7. Let 0 6= a ∈ Rn and ‖a‖ = 1, for every x, y, z ∈ Rn define

D(x, y, z) =

{
a, x 6= y 6= z;

0, others.

Then D is a cone 2-metric on Rn and its equivalent 2-metric ρ is

ρ(x, y, z) =

{
1, x 6= y 6= z;

0, others.
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