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Abstract. In this article, we show that the concept of a TVS-cone 2-metric space by a
nonlinear scalarization function and our theorems extend some results in Du [3]. Then we
prove the equivalence of cone 2-metric and 2-metric, and the main idear is to investigate the
relationship between TVS-cone 2-metric and 2-metric.

1. INTRODUCTION

In 2007, Huang-Zhang [6] generalized the concept of a metric space, replac-
ing the set of real numbers by an ordered Bananch space and introduced the
cone metric space. Later, many authors generalized some theroems on cone
2-metric space. Since a cone metric space is a special case of a TVS-cone met-
ric space. Du [3] has proved that the Banach contraction principle in general
metric spaces and in TVS-cone metric space are equivalent. First, we introd-
uct some concepts which are used, and we expand the concept of TVS-cone
metric space and prove some theorems by the same idea used in [2] and [3].
At last, we provide an example of the conclusion.
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2. PRELIMINARIES

Definition 2.1. ([3]) Let Y be always a topological vector space. A subset P
of Y is called a cone if and only if

(i) P is closed, non-empty and P # {0};
(ii) if a,b € R with a,b > 0 and z,y € P, then ax + by € P;

(iii) P(=P) = {0}.

For a given cone P C Y, we define a partial ordering < with respect to P
by x <y if and only if y —x € P, where x << y means that y — z € intP (the
interior of P). In the following, we assume that Y is a locally convex Hausdorff
t.v.s, P is a proper, closed and convex pointed cone in Y with intP # & and
e € intP. The nonlinear scalarization function & : Y — R is defined by
€(y)=inf{re R:yere—P}forallye.

Lemma 2.2. ([3]) For each v € R and y € Y, the following statements are
satisﬁed:

(y) <reyecre—P;
) e(y) >r<:>y§ére—P;
11) Ce(y) >reyédre—intP;
) &e(y) <r <y €re—intP;
v) &e(.) is positively homogeneous and continuous on Y;
vi)
ii)

Definition 2.3. ([7]) Let X be a nonempty set. For all z,y,z € X, a valued
function p : X x X x X — R is said to be a 2-metric, if the following conditions
hold:

(i) Forall z,y € X and = # y, there is a point z € X, such that p(z,y, z) #

0;
i) p(z,y,2) =0 iff =y ory==zorax=z
(ii)) p(z,y,2) = p(y, z,x) = p(x, 2,y);
p(z,y,z) < p(z,y,w) + p(z,w, z) + p(w,y, 2), Yw € X.

Since we can’t give a metric directly in TVS-cone 2-metic space, we need
introduce the definition of the cone 2-metic, then we have the metric in TVS-
cone 2-metric space by the nonlinear scalarization function in a cone 2-metric.
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Definition 2.4. ([4]) Let X be a nonempty set, E be a real Banach space,
suppose the mapping D : X x X x X — FE satisfies:

(i) For Vx,y € X there is a point z € X, such that D(x,y, z) # 6,
(ii) D(z,y,z) =0 iff t=yory=zor x = z;
(iii) D(z,y,2) = D(x,z,y) = D(y,z,z) for all x,y,z € X
(iv) D(z,y,2) <X D(z,y,w) + D(z,w, z) + D(w,y, z) for all x,y,z,w € X.
Then D is called a cone 2-metric on X and (X, D) is called a cone 2-metric
space.

Now we introduct the definition of TVS-cone 2-metric space and its com-
pleteness.

Definition 2.5. Let X be a non-empty set and Y be a topological vector
space. Suppose that the mapping d : X x X x X — Y satisfies:

(i) d(z,y,z) = 0 for all z,y,z € X

(i) d(z,y,2) =0 if x =yorx =z or y=z;

(iii) d(x,y,2) =d(z, z,y) = d(z,z,y) for all z,y,z € X;

(iv) d(z,y,z) 2 d(z,y,w) + d(z,w, z) + d(w, y, z) for all z,y,z € X.

Then d is called a TVS-valued cone 2-metric on X and (X,d) is called a
TVS-cone 2-metric space.

Definition 2.6. Let (X,d) be a TVS-cone 2-metric space. Let {z,} be a
sequence in X and Ve € P with § <cand a € X.

(i) The sequence {z,} is called Cauchy if for Vc € P, ¢ > 0, there exsits
N > 0, when n,m > N and Va € X, such that d(x,, Ty, a) << ¢
(ii) The sequence {z,} is said to be convergent if there exist a positive
integer N > 0 and « € X such that d(z,,z,a) << ¢ for all n > N and
Ya € X;
(iii) A TVS-cone 2 metric space (X,d) is said to be complete if every
Cauchy sequence in X is convergent in X.

3. MAIN RESULTS

Lemma 3.1. Let (X, D) be a cone 2-metric space. Then
p(a,y,z) = mf{||u[|D(z,y,2) < u,u € P}

18 a 2-metric for all x,y,z € X, where D is a cone 2-metric.
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Proof. (i) By Definition 2.4, for all z,y € X, there is a point z € X, such that
we have D(z,y,z) # 0. Let D(z,y, 2) = a. Then we have

p(e,y,z) = nf{|luflla 2 u,u € P} = [laf # 0.

(ii) If p(z,y,2) = 0, that is inf{||u|||D(z,y,2) = u,u € P} = 0, there exists
up, € P, let |Ju,| < %, such that D(z,y,2) = uy,. Since D(z,y,2) =< up
and u, — 0(n — o0), i.e., up, — D(x,y,2) € P = —D(z,y,z) € P and
D(z,y,z) € P, then we have D(z,y,z) =0, and so z = y.

If x = y, by Definition 2.4, D(z,y, z) = 0, that is

p(x,y, z) = inf{||u|||0 < u,u € P} =0.

The same way we prove that y = z and = = z.
(iii) D(z,y,2) = D(x,2,y) = D(y,z,x) implies p(z,y,2) = p(z,2,y) =
p(y, z,x) for all z,y,z € X.
(iv) Now we prove
p(z,y,2) < plz,y, w) + p(z, w, 2) + p(w,y, z)

for all x,y,z,w € X. In fact, since

p(x,y, z) = inf{{lus[[[D(z, y,2) < u1,u1 € P},
p(, y, w) = inf{|uzl|[D(z, y, w) 2 ug,uz € P},
plx,w, z) = inf{||lug|||D(z, w, 2) < ug,us € P},
p(w, y, 2) = it {JJus || D(w, ) < us, us € P},

for ug, us,uq € P, D(z,y,w) <X ug, D(z,w, z) < us, D(w,y, z) =< ug, then
D(z,y,z) = D(z,y,w) + D(z,w,2) + D(w,y,z) < ug + ug + uq.
So
{ug +ug +uq € P|D(z,y,w) = ug, D(z,w, z) 2 us, D(w,y,z) X usg}
C {w € P|D(z,y,z) 2 ui},
which implies
inf{|[u1[|[D(z, y, 2) = u1}
< inf{||lug + us + wa|||D(z, y, w) <X ug, D(z,w,2) < us, D(w,y,z) < ug}
and we note that
inf{||ue + ug + uq|||D(z, y,w) =X ug, D(x,w,z) < us, D(w,y,2) < ug}
inf{[[ual| + [|usll + [ual| | D(z, y, w) 2 ug, D(z, w, 2) = ug, D(w,y,z) = us}
inf{||us|||D(x, y,w) = ug,us € P} + inf{||us|||D(z,w, z) < uz,uz € P}
+ inf{||us|||D(w, y, 2) = ug,uqg € P}.

IN A
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Thus
inf{[|u1[||D(z,y, z) = u1,u1 € P}
< inf{||ue|||D(x,y, w) <X ug,us € P} + inf{||lus|||D(z,w, z) < us,us € P}
+ inf{||uq||| D(w, y, 2) < u4,uq € P},
that is
p(x,y,2) < pl,y, w) + p(z,w, 2) + p(w,y, 2).
From (i),(ii),(iii),(iv), we show that p is a 2-metric on X. O

Theorem 3.2. Let (X,d) be a TVS-cone 2-metric space. Then dy: X x X x
X — [0,00) defined by d, = & o d is a 2-metric.
Proof. (i) Since &.(y) = inf{r € R:y € re — P}, i.e., &(y) = inf{r € R :
re >y}, then & (d(x,y,z)) = inf{r € R:re > d(z,y, 2)}. Since d(z,y,z) = 0,
we have r > 0, so d,(x,y,2) = &(d(x,y,2)) > 0.
(ii) And d(z,y,2) = d(z, z,y) = d(z, z,y), moreover
dp(2,y,2) = Ee(d(@,y, 2)), dp(x, 2,y) = &e(d(, 2,)), dp(z, . y)

= {e(d(z',:r,y))-
Then by Definition 2.5, we have d,(z,y,2) = dy(x,2,y) = dp(z,z,y) for all
x,y,z € X.
(ili) If = y, then d,(x,y,2) = &(0) = 0. Conversely, if dy(z,y,2) =
&e(d(z,y,2)) =0, then d(x,y,z) € PN (—P) = {0} implies x =y or x = z or
Y=z
(iv) Since d(z,y, z) < d(z,y, w)+d(z,w, z)+d(w, y, z), by Lemma 2.2-(vi),(vii),

Ee(d(x,y,2)) < Leld(z, y, w) + (d(z,w, 2) + (d(w,y, 2)) < &e(d(z, y,w))
+ &e(d(@, w, 2)) + Ee(d(w, y, 2)),

we have
e(d(z,y, 2)) < Ee(d(z,y,w)) + Ee(d(z, W, 2)) + &e(d(w, y, 2)),
for all z,y, z,w € X, that is
dp(z,y, 2) < dp(x,y,w) + dp(z,w, 2) + dp(w, y, 2).
O

Corollary 3.3. Let (X, D) be a cone 2-metric space in the sense of Huang-
Zhang [6] and follow the idea in it. Then dp: X x X x X — [0,00) defined by
dp =& o D is a 2-metric space.

Theorem 3.4. Let (X,d) be a TVS-valued cone 2-metric space, x € X and
{70}, eN @ sequence in X. ForYa € X. The following statements hold:
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(i) If {zn} TVS-cone converges to xz, then d,(x,,z,a) = 0 as n — oo;
(ii) If {zn} is a TVS-cone Cauchy sequence in (X,d), then it is a Cauchy
sequence in (X, dp);
(iii) If (X,d) is TVS-cone complete, then (X,d,) is a complete metric
space.
Proof. (i) Applying Theorem 3.2, d,, is a 2-metric on X. Let ¢ > 0, if {z,}
TVS-cone converges to z(n — o0), since e => 0(e € intP), Ing € N such
that

d(xp,z,a) <<ee < —d(rp,x,a)+ce€ P
& —d(xp,r,a0) € —ce+ P
< d(zp,z,a) € ce — P (Lemma 2.2-(1))
& dp(zn,z,0) =& od(zn,z,a) < e
for all n > ng, so dy(zy,x,a) = 0 as n — oco. Therefore, (i) holds.

(ii) Let {x,} be a TVS-cone Cauchy sequence in (X,d). Then there exists
nq1 € N such that

d(Tp, Tm,a) << ce < —d(xp,Tm,a)+ce € P
& —d(xn,Tm,a) € —ce+ P
& d(Tp, Tm,a) € ce — P (Lemma 2.2-(i))
& dp(xn, Tm,a) =& od(zp, Tm,a) < e
for all n,m > ny. So {x,} is a Cauchy sequence in (X, d,), then (ii) holds.
(iii) We can get immediately from (i) and (ii). O

The following results are the main idea of this paper. First, by Lemma 3.1,
we show that the cone 2-metric is equivalent to a 2-metric. Then we proof the
2-metric p in Lemma 3.1 is equivalent with d, in Corollary 3.3. At last, we
give an example which use the metric of Lemma 3.1.

Theorem 3.5. For every cone 2-metric D : X x X x X — E, there exists a
2-metric p: X x X x X — R* which is equivalent to D on X.

Proof. (i) Define p(z,vy, z) = inf{||u|||D(z,y, 2) < u}. By Lemma 3.1 we have
p is a 2-metric. Since p(xn,x,a) = nf{||umn|||D(xn, x,a) = Umn}, we have
Vn,m € N, Juy,, such that

1
||Unm” < p(xn,x,a) + E’D(xnyxva) j Unm-

Put vy, = Unp, then |lvn| < p(zn,z,a) + 1, (n — 00) and D(zp,z,a) < vp.

If 2, — = in (X,p), then p(x,,z,a) — 0 and v, — 0. Therefore for all
¢ == 0, there exsits n € N such that v, < ¢ for all n > N. That implies
D(zy,,z,a) << c¢. Namely z,, — 2 in (X, D).
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(ii) Conversely, we have x,, — x (n — o) in (X, D). For € > 0, choose ¢ € E,
Ve € E with ¢ >=> 6 such that ||c|| < ¢, there exsits N > 0, when n > N, we
have D(zp,x,a) << ¢, Va € X. So

p(an, z,a) = nf{||c[|[D(zn, z,a) X} <l <e.

Then we have z, — = (n — o) in (X, p). O

Theorem 3.6. If p(z,y,z) = inf{||ul||D(x,y, 2) <X u} and d, = &(D(x,y, 2))
where D is a cone 2-metric on X, then p is equivalent with d,,.

Proof. (i) By Corollary 3.3, d, is a 2-metric, now we show that each sequence
{z,} € X which converges to a point z € X in (X, p) also converges to x in
the (X, d,). Let z, — x. Then p(x,,z,a) — 0 (n — 00). By Theorem 3.5, we
have D(zy,z,a) = 0 (n — 00). So Ve > 0, Ve >=> 0, IN > 0, for all n > N
such that

D(zp,x,a) << ce = ce — D(xy,x,a) € intP = D(zy,,x,a) € ce —intP.

By Lemma 2.2-(iv), we have & (D(zy,x,a)) < €, that is dy(zy,x,a) < €, so
dp(xp,z,a) = 0 (n — 00).

(ii) Conversely, we show that each sequence {x,} C X which converges to a
point z € X in (X,d,) also converges to z in the (X, p). Let z,, = 2. Then
dp(xp,x,a) = 0 (n — 00), that is (D (zn, z,a)) — 0, so Ve > 0, IN > 0, for
all n > N, £&(D(zy,x,a)) < g, for some p € intP, by Lemma 2.2-(iv), such
that

D(zy,z,a) € ce —intP = D(zp,x,a) € ee — p = D(xy,z,a) << ce,
this implies that z, — =z (n — o0) in (X, D). By Theorem 3.5, we have

zp — x (n— o0) in (X, p). O

Example 3.7. Let 0 # a € R" and ||a|| = 1, for every z,y,z € R™ define

a, T FYF 2
0, others.

D(w,y,z) = {
Then D is a cone 2-metric on R™ and its equivalent 2-metric p is

L, TFYF 2
0, others.

p(r,y,2) = {



298

[1]

2]

3]

[4]

[5]
[6]

Qian Zhang, Yubo Liu and Meimei Song

REFERENCES

M. Asadi, S.M. Vaezpour and H. Soleimaini, Metrizability of Cone Metric spaces,
arXiv:1102.2353v1 [math.FA] 11 Feb 2011.

M. Asadi, B.E. Rhoades and H. Soleimani, Some notes on the paper “The equivalence of
cone metric spaces and metric spaces”, Fixed Point Theory and Applications, 2012:87
(2012).

W.S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal.,
72 (2010), 2259-2261.

D. Wang, Isometric Theories in Non-Archimedean Normed Spaces and Fized Point
Theorems in Cone Metric Spaces, Papers of master in Tianjin University of Technology,
2012.10(33).

Y. Feng and W. Mao, FEquivalence of cone metric spaces and metric spaces, Fixed Point
Theory, 11(2) (2010), 259-264.

L. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive
mapping, J. Math. Anal. Appl., 332(2) (2007), 1468-1476.

M.S. Khan, On fized point theorems in 2-metric space.Publications de L’institut math-
ema tique, Nouvelle. Serie. tome, 27(41) (1980), 107-112.

Sh. Rezapour and R. Hamlbarani, Some notes on the paper “Cone metric spaces and
fized point theorems of contractive mappings”, J. Math. Anal. Appl., 345 (2008), 719—
724.



