FIXED POINT THEOREMS FOR SIX MAPS IN G-METRIC SPACES

Shaban Sedghi ${ }^{1}$ and Nabi Shobkolaei ${ }^{2}$
${ }^{1}$ Department of Mathematics, Qaemshahr Branch Islamic Azad University, Qaemshahr, Iran
e-mail: sedghi.gh@qaemshahriau.ac.ir
${ }^{2}$ Department of Mathematics, Babol Branch Islamic Azad University, Babol, Iran
e-mail: nabi_shobe@yahoo.com

Abstract

In this paper we obtain a unique common fixed point theorem for six mappings in G-metric spaces.

1. Introduction

In 1992 Dhage introduced a new class of generalized metric spaces called D-metric spaces $[1-4]$ as a generalization of ordinary metric function (X, d) and went on to present several fixed point results for single and multivalued mappings. Mustafa and Sims [11] and Naidu et al. [7-9] demonstrated that most of the claims concerning the fundamental topological structure of D metric space are incorrect, alternatively, Mustafa and Sims [12] introduce more appropriate notion of generalized metric space which called G-metric spaces, and obtained some topological properties. Later several authors like $[5,6,10$, 13-17] obtained some fixed point theorems for a single map in G-metric spaces.

In this paper, we obtain a unique common fixed point theorem for six mappings in G-metric spaces and obtain some theorems of [10] and [18] as corollaries to our theorem.

[^0]First, we present some known definitions and propositions in G-metric spaces.

Definition 1.1. ([12]) Let X be a nonempty set and let $G: X \times X \times X \rightarrow \mathbb{R}^{+}$ be a function satisfying the following properties :
$\left(G_{1}\right) G(x, y, z)=0$ if $x=y=z$,
$\left(G_{2}\right) 0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
$\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
$\left(G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$, symmetry in all three variables, $\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$.
Then the function G is called a generalized metric or a G-metric on X and the pair (X, G) is called a G-metric space.

Definition 1.2. ([12]) Let (X, G) be a G-metric space and $\left\{x_{n}\right\}$ be a sequence in X. A point $x \in X$ is said to be limit of $\left\{x_{n}\right\}$ if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$. In this case, the sequence $\left\{x_{n}\right\}$ is said to be G-convergent to x.

Definition 1.3. ([12]) Let (X, G) be a G-metric space and $\left\{x_{n}\right\}$ be a sequence in $X .\left\{x_{n}\right\}$ is called G-Cauchy if $\lim _{n, m, l \rightarrow \infty} G\left(x_{l}, x_{n}, x_{m}\right)=0$. And (X, G) is called G-complete if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 1.4. ([12]) In a G-metric space (X, G), the following are equivalent.
(1) The sequence $\left\{x_{n}\right\}$ is G-Cauchy.
(2) For every $\varepsilon>0$, there exists $N \in \mathbf{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$.

Proposition 1.5. ([12]) Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Proposition 1.6. ([12]) Let (X, G) be a G-metric space. Then for any x, y, z, $a \in X$, it follows that
(i) if $G(x, y, z)=0$ then $x=y=z$,
(ii) $G(x, y, z) \leq G(x, x, y)+G(x, x, z)$,
(iii) $G(x, y, y) \leq 2 G(x, x, y)$,
(iv) $G(x, y, z) \leq G(x, a, z)+G(a, y, z)$,
(v) $G(x, y, z) \leq \frac{2}{3}[G(x, a, a)+G(y, a, a)+G(z, a, a)]$.

Proposition 1.7. ([12]) Let (X, G) be a G-metric space. Then for a sequence $\left\{x_{n}\right\} \subseteq X$ and a point $x \in X$, the following are equivalent
(i) $\left\{x_{n}\right\}$ is G-convergent to x,
(ii) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iii) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iv) $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $m, n \rightarrow \infty$.

Definition 1.8. ([12]) Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces, and let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a function. Then f is said to be G-continuous at a point $a \in X$ if and only if, given $\varepsilon>0$, there exists $\delta>0$ such that $x, y \in X$; and $G(a, x, y)<\delta$ implies $G^{\prime}(f(a), f(x), f(y))<\varepsilon$. A function f is G-continuous at X if and only if it is G-continuous at all $a \in X$.

Proposition 1.9. ([12]) Let (X, G), and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces. Then a function $f: X \longrightarrow X^{\prime}$ is G-continuous at a point $x \in X$ if and only if it is G-sequentially continuous at x; that is, whenever $\left\{x_{n}\right\}$ is G-convergent to x we have $\left\{f\left(x_{n}\right)\right\}$ is G-convergent to $f(x)$.

We recall that two maps f and g are said to be weak compatible if they commute at their coincidence point, that is, $f x=g x$ implies that $f g x=g f x$.

The main aim of this paper is to present a generalization of Theorem 2.1 in [18].

2. Main Result

Let Φ denote the class of all functions $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that ϕ is non decreasing, continuous and $\sum_{n=1}^{\infty} \phi^{n}(t)<\infty$ for all $t>0$. It is clear that $\phi^{n}(t) \rightarrow$ 0 as $n \rightarrow \infty$ for all $t>0$ and hence, we have $\phi(t)<t$, for all $t>0$.

Theorem 2.1. Let (X, G) be a G-Complete metric space and A, B, C, S, T, R : $X \rightarrow X$ be satisfying:
(i) $A(X) \subseteq T(X), B(X) \subseteq R(X), C(X) \subseteq S(X)$ and either one of $T(X)$, $R(X)$ or $S(X)$ is a closed subset of X,
(ii) the pair $(A, S),(B, T)$ and (C, R) are weakly compatible,
(iii)

$$
G(A x, B y, C z) \leq \phi\left(\max \left\{\begin{array}{c}
G(S x, T y, R z), \frac{1}{2} G(S x, A x, B y), \tag{2.1}\\
\frac{1}{2} G(T y, B y, C z), \frac{1}{2} G(R z, C z, A x)
\end{array}\right\}\right)
$$

for all $x, y, z \in X$, where $\phi \in \Phi$. Then the maps A, B, C, T, R and S have a unique common fixed point, say $p \in X$ and if T, R and S are G-continuous at p then A, B and C are G-continuous at p.

Proof. Choose $x_{0} \in X$. Define the sequence $y_{3 n}=A x_{3 n}=T x_{3 n+1}, y_{3 n+1}=$ $B x_{3 n+1}=R x_{3 n+2}, y_{3 n+2}=C x_{3 n+2}=S x_{3 n+3}, n=0,1,2, \cdots$. Denote $d_{n+1}=$ $G\left(y_{n}, y_{n+1}, y_{n+2}\right)$. Then in general we have

$$
\begin{aligned}
& d_{3 n+1}=G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right) \\
& =G\left(A x_{3 n}, B x_{3 n+1}, C x_{3 n+2}\right) \\
& \leq \phi\left(\max \left\{\begin{array}{c}
G\left(S x_{3 n}, T x_{3 n+1}, R x_{3 n+2}\right), \frac{1}{2} G\left(S x_{3 n}, A x_{3 n}, B x_{3 n+1}\right), \\
\frac{1}{2} G\left(T x_{3 n+1}, B x_{3 n+1}, C x_{3 n+2}\right), \frac{1}{2} G\left(R x_{3 n+2}, C x_{3 n+2}, A x_{3 n}\right)
\end{array}\right\}\right) \\
& =\phi\left(\max \left\{\begin{array}{l}
G\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}\right), \frac{1}{2} G\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}\right), \\
\frac{1}{2} G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right), \frac{1}{2} G\left(y_{3 n+1}, y_{3 n+2}, y_{3 n}\right)
\end{array}\right\}\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{\begin{array}{l}
\left.\left.d_{3 n}, \frac{1}{2} d_{3 n}, \frac{1}{2} d_{3 n+1}, \frac{1}{2} d_{3 n+1}\right\}\right) .
\end{array}\right.\right.
\end{aligned}
$$

Hence, we must have $d_{3 n+1} \leq \phi\left(d_{3 n}\right)$. Similarly, we will have $d_{3 n+2} \leq \phi\left(d_{3 n+1}\right)$ and $d_{3 n+3} \leq \phi\left(d_{3 n+2}\right)$. Thus $d_{n+1} \leq \phi\left(d_{n}\right), n=1,2,3, \cdots$, so,

$$
\begin{align*}
G\left(y_{n}, y_{n+1}, y_{n+2}\right) & \leq \phi\left(G\left(y_{n-1}, y_{n}, y_{n+1}\right)\right) \\
& \leq \phi^{2}\left(G\left(y_{n-2}, y_{n-1}, y_{n}\right)\right) \\
& \cdot \tag{2.2}\\
& \cdot \\
& \cdot \\
& \leq \phi^{n}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)
\end{align*}
$$

From $\left(G_{3}\right)$ and (2.2), we have

$$
\begin{equation*}
G\left(y_{n}, y_{n}, y_{n+1}\right) \leq G\left(y_{n}, y_{n+1}, y_{n+2}\right) \leq \phi^{n}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \tag{2.3}
\end{equation*}
$$

For $m>n$, since $\sum_{n=1}^{\infty} \phi^{n}(t)<\infty$ for all $t>0$, we have

$$
\begin{aligned}
& G\left(y_{n}, y_{n}, y_{m}\right) \\
& \leq \sum_{i=n}^{m-1} G\left(y_{i}, y_{i}, y_{i+1}\right) \\
& \leq \phi^{n}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)+\phi^{n+1}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)+\ldots+\phi^{m-1}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \\
& \leq \sum_{i=n}^{\infty} \phi^{i}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, $\left\{y_{n}\right\}$ is a G-Cauchy sequence from Proposition 1.4. Since X is G complete, there exists $p \in X$ such that $y_{n} \rightarrow p(n \rightarrow \infty)$, that is, $\lim _{n \rightarrow \infty} y_{n}=$ p,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{n} & =\lim _{n \rightarrow \infty} A x_{3 n}=\lim _{n \rightarrow \infty} B x_{3 n+1}=\lim _{n \rightarrow \infty} C x_{3 n+2} \\
& =\lim _{n \rightarrow \infty} T x_{3 n+1}=\lim _{n \rightarrow \infty} R x_{3 n+2}=\lim _{n \rightarrow \infty} S x_{3 n+3}=p
\end{aligned}
$$

Let $T(X)$ be a closed subset of X. Then there exists $v \in X$ such that $T v=p$. We prove that $B v=p$. For

$$
\begin{aligned}
& G\left(A x_{3 n}, B v, C x_{3 n+2}\right) \\
& \leq \phi\left(\max \left\{\begin{array}{c}
G\left(S x_{3 n}, T v, R x_{3 n+2}\right), \frac{1}{2} G\left(S x_{3 n}, A x_{3 n}, B v\right), \\
\frac{1}{2} G\left(T v, B v, C x_{3 n+2}\right), \frac{1}{2} G\left(R x_{3 n+2}, C x_{3 n+2}, A x_{3 n}\right)
\end{array}\right\}\right) \\
& =\phi\left(\max \left\{\begin{array}{l}
G\left(y_{3 n-1}, p, y_{3 n+1}\right), \frac{1}{2} G\left(y_{3 n-1}, y_{3 n}, B v\right), \\
\frac{1}{2} G\left(p, B v, y_{3 n+2}\right), \frac{1}{2} G\left(y_{3 n+1}, y_{3 n+2}, y_{3 n}\right)
\end{array}\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
G(p, B v, p) \leq \phi\left(\max \left\{0, \frac{1}{2} G(p, p, B v), \frac{1}{2} G(p, B v, p), 0\right\}\right),
$$

and we have $B v=T v=p$, since $\phi(t)<t$ for all $t>0$. Since $p=B v \in$ $B(X) \subseteq R(X)$, there exists $z \in X$ such that $R z=p$. Similarly, putting $x=x_{3 n}, y=x_{3 n+1}, z=p$ in (1) and letting $n \rightarrow \infty$, we get $C z=p$. Since $p=C z \in C(X) \subseteq S(X)$, there exists $u \in X$ such that $S u=p$.

Similarly, putting $x=p, y=x_{3 n+1}, z=x_{3 n+2}$ in (1) and letting $n \rightarrow \infty$, we get $A u=p$. By weak compatible the pair (A, S), we have $A S u=S A u$, and $A p=S p$. Also, $B p=T p$ and $R p=C p$. We prove that $A p=p$. If $A p \neq p$, then

$$
\left.\left.\begin{array}{l}
G\left(A p, B x_{3 n+1}, C x_{3 n+2}\right) \\
\leq \phi\left(\max \left\{\begin{array}{c}
G\left(S p, T x_{3 n+1}, R x_{3 n+2}\right), \frac{1}{2} G\left(S p, A p, B x_{3 n+1}\right), \\
\frac{1}{2} G\left(T x_{3 n+1}, B x_{3 n+1}, C x_{3 n+2}\right), \frac{1}{2} G\left(R x_{3 n+2}, C x_{3 n+2}, A p\right)
\end{array}\right\}\right) \\
G\left(A p, y_{3 n}, y_{3 n+1}\right), \frac{1}{2} G\left(A p, A p, y_{3 n+1}\right), \\
\frac{1}{2} G\left(y_{3 n}, y_{3 n+1}, y_{3 n+1}\right), \frac{1}{2} G\left(y_{3 n+1}, y_{3 n+2}, A p\right)
\end{array}\right\}\right) .
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
G(A p, p, p) & \leq \phi\left(\max \left\{G(A p, p, p), \frac{1}{2} G(A p, A p, p), 0, \frac{1}{2} G(p, p, A p)\right\}\right) \\
& \leq \phi\left(\max \left\{G(A p, p, p), G(A p, p, p), 0, \frac{1}{2} G(p, p, A p)\right\}\right)
\end{aligned}
$$

and we have $A p=p$, since $\phi(t)<t$ for all $t>0$. Similarly, putting $x=$ $x_{3 n}, y=p, z=x_{3 n+2}$ and $x=x_{3 n}, y=x_{3 n+1}, z=p$ in (1) and letting $n \rightarrow \infty$, we get $B p=p$ and $C p=p$, respectively. Thus p is a common fixed point of A, B, C, T, R and S.

Suppose p^{\prime} is another common fixed point of A, B, C, T, R and S. Then from (1), we have

$$
G\left(A p, B p, C p^{\prime}\right) \leq \phi\left(\max \left\{G\left(p, p, p^{\prime}\right), 0, \frac{1}{2} G\left(p, p, p^{\prime}\right), \frac{1}{2} G\left(p^{\prime}, p^{\prime}, p\right)\right\}\right) .
$$

Thus, $G\left(p, p, p^{\prime}\right) \leq \phi\left(G\left(p, p, p^{\prime}\right)\right.$ so that $p=p^{\prime}$. Thus, p is the unique common fixed point of A, B, C, T, R and S. Let $\left\{y_{n}\right\}$ be any sequence in X
such that $\left\{y_{n}\right\}$ is G-convergent to p. Then we have

$$
\begin{aligned}
& G\left(A y_{n}, A p, A p\right)=G\left(A y_{n}, B p, C p\right) \\
& \leq \phi\left(\max \left\{\begin{array}{c}
G\left(S y_{n}, p, p\right), \frac{1}{2} G\left(S y_{n}, A y_{n}, p\right), \\
0, \frac{1}{2} G\left(p, p, A y_{n}\right)
\end{array}\right\}\right) \\
& \leq \phi\left(\max \left\{\begin{array}{c}
G\left(S y_{n}, p, p\right), \frac{1}{2} G\left(S y_{n}, p, p\right)+\frac{1}{2} G\left(p, A y_{n}, p\right), \\
0, \frac{1}{2} G\left(p, p, A y_{n}\right)
\end{array}\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, then since S is G-continuous at p we get, $\alpha \leq \phi\left(\frac{1}{2} \alpha\right)$, where

$$
\alpha=\lim _{n \rightarrow \infty} G\left(A y_{n}, A p, A p\right) .
$$

This implies that $\alpha=0$. Then from Proposition 1.9, we deduce that A is G continuous at p. Similarly, we can show that B and C are also G-continuous at p.

Corollary 2.2. (Corollary 2.1 of [18]) Let (X, G) be a G-Complete metric space and $A, B, C: X \rightarrow X$ be satisfying:

$$
G(A x, B y, C z) \leq \phi\left(\max \left\{\begin{array}{c}
G(x, y, z), \frac{1}{2} G(x, A x, B y), \tag{2.4}\\
\frac{1}{2} G(y, B y, C z), \frac{1}{2} G(z, C z, A x)
\end{array}\right\}\right)
$$

for all $x, y, z \in X$, where $\phi \in \Phi$. Then the maps A, B, C have a unique common fixed point, say $p \in X$ and A, B and C are G-continuous at p.

Proof. Take $T=R=S=I$ identity map in Theorem 2.1.

Corollary 2.3. Let (X, G) be a G-Complete metric space and $A, B: X \rightarrow X$ be satisfying:
(i) $A(X) \subseteq B(X), B(X)$ is a closed subset of X and the pair (A, B) is weakly compatible,
(ii)

$$
G(A x, A y, A z) \leq \phi\left(\max \left\{\begin{array}{c}
G(B x, B y, B z), \frac{1}{2} G(B x, A x, A y), \tag{2.5}\\
\frac{1}{2} G(B y, A y, A z), \frac{1}{2} G(B z, A z, A x)
\end{array}\right\}\right)
$$

for all $x, y, z \in X$, where $\phi \in \Phi$. Then the maps A, B have a unique common fixed point, say $p \in X$ and if B is G-continuous at p then A is G-continuous at p.

Proof. Take $B=C=A$ and $T=R=S=B$ in Theorem 2.1.
The following example illustrates Theorem 2.1 with $\phi(t)=\frac{t}{2}$.

Example 2.4. Let $X=[0,1]$ and $G(x, y, z)=|x-y|+|y-z|+|z-x|$ for all $x, y, z \in X$. Define $A, B, C, T, R, S: X \rightarrow X$ as $A x=C x=1, B x=\frac{3+x}{4}$, $T x=x, S x=\frac{x^{2}+x}{2}, R x=\frac{2+x^{2}}{3}$ for all $x \in X$.
$G(A x, B y, C z)$
$=\frac{1-y}{2}$
$=\frac{1}{4} 2(1-y)$
$=\frac{1}{4} G(y, B y, C z)=\frac{1}{2}\left(\frac{1}{2} G(T y, B y, C z)\right)$
$\leq \frac{1}{2} \max \left\{G(S x, T y, C z), \frac{1}{2} G(S x, A x, B y), \frac{1}{2} G(T y, B y, C z), \frac{1}{2} G(R z, C z, A x)\right\}$.
Also, it is easy to see that $A(X) \subseteq T(X), B(X) \subseteq R(X), C(X) \subseteq S(X)$ and $T(X)=X$ is a closed subset of X. Moreover, the pair $(A, S),(B, T)$ and (C, R) are weakly compatible. Hence the all of conditions of Theorem 2.1 are hold and 1 is the unique common fixed point of A, B, C, T, R and S.

References

[1] B.C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Cal. Math. Soc., 84(4) (1992), 329-336.
[2] B.C. Dhage, On generalized metric spaces and topological srtucture II, Pure. Appl. Math. Sci., 40(1-2) (1994), 37-41.
[3] B.C. Dhage, A common fixed point principle in D-metric spaces, Bull. Cal. Math. Soc., 91(6) (1999), 475-480.
[4] B.C. Dhage, Generalized metric spaces and topological srtucture I, Annalele Stiintifice ale Universitatii Al.I.Cuza, 46(1) (2000), 3-24.
[5] M. Abbas and B.E. Rhoades, Common fixed point results for noncomuting mappings without continuity in generalized metric spaces, Applied Mathematics and Computation, 215 (2009), 262-269.
[6] R. Chugh, T. Kadian, A. Rani and B.E. Rhoades, Property P in G-metric spaces, Fixed Point Theory and Applications, 2010 (2010), Article ID 401684, 12 Pages.
[7] S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci. 2004(51) (2004), 2719-2740.
[8] S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci., 2005(1) (2005), 133-141.
[9] S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J. Math. Math. Sci., 2005(12) (2005), 1969-1988.
[10] W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ-maps in G metric spaces, Fixed Point Theory and Applications, 2010 (2010), Article ID 181650, 9 Pages.
[11] Z. Mustafa and B. Sims, Some remarks concerninig D-metric spaces, Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, Valencia (Spain), July (2003), 189-198.
[12] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7(2) (2006), 289-297.
[13] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, 2008 (2008), Article ID 189870, 12 Pages.
[14] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Internat. J. Math. Math. Sci, 2009 (2009), Article ID 283028, 10 pages.
[15] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G metric spaces, Fixed Point Theory and Applications, 2009 (2009), Article ID 917175, 10 Pages.
[16] Z. Mustafa and H. Obiedat, A fixed points theorem of Reich in G-metric spaces, Cubo A Mathematics Journal, 12(1) (2010), 83-93.
[17] Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sciences, 5(50) (2010), 2463-2472.
[18] K.P.R. Rao, K.B. Lakshmi, Z. Mustafa and V.C.C. Raju, Fixed and Related Fixed Point Theorems for Three Maps in G-metric spaces, Journal of Advanced Studies in Topology, 3(4) (2012), 12-19.

[^0]: ${ }^{0}$ Received January 30, 2013. Revised June 2, 2013.
 ${ }^{0} 2000$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: G-metric, common fixed points, complete space.

