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Abstract. In this paper we obtain a unique common fixed point theorem for six mappings

in G-metric spaces.

1. Introduction

In 1992 Dhage introduced a new class of generalized metric spaces called
D-metric spaces [1-4] as a generalization of ordinary metric function (X, d)
and went on to present several fixed point results for single and multivalued
mappings. Mustafa and Sims [11] and Naidu et al. [7-9] demonstrated that
most of the claims concerning the fundamental topological structure of D-
metric space are incorrect, alternatively, Mustafa and Sims [12] introduce more
appropriate notion of generalized metric space which called G-metric spaces,
and obtained some topological properties. Later several authors like [5, 6, 10,
13-17] obtained some fixed point theorems for a single map in G-metric spaces.

In this paper, we obtain a unique common fixed point theorem for six map-
pings in G-metric spaces and obtain some theorems of [10] and [18] as corol-
laries to our theorem.
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First, we present some known definitions and propositions in G-metric
spaces.

Definition 1.1. ([12]) Let X be a nonempty set and let G : X×X×X → R+

be a function satisfying the following properties :
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables,
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.
Then the function G is called a generalized metric or a G-metric on X and
the pair (X,G) is called a G-metric space.

Definition 1.2. ([12]) Let (X,G) be a G-metric space and {xn} be a sequence
in X. A point x ∈ X is said to be limit of {xn} if lim

n,m→∞
G(x, xn, xm) = 0. In

this case, the sequence {xn} is said to be G-convergent to x.

Definition 1.3. ([12]) Let (X,G) be a G-metric space and {xn} be a sequence
in X. {xn} is called G-Cauchy if lim

n,m,l→∞
G(xl, xn, xm) = 0. And (X,G) is

called G-complete if every G-Cauchy sequence in (X,G) is G-convergent in
(X,G).

Proposition 1.4. ([12]) In a G-metric space (X,G), the following are equiv-
alent.

(1) The sequence {xn} is G-Cauchy.
(2) For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε,

for all n,m ≥ N .

Proposition 1.5. ([12]) Let (X,G) be a G-metric space. Then the function
G(x, y, z) is jointly continuous in all three of its variables.

Proposition 1.6. ([12]) Let (X,G) be a G-metric space. Then for any x, y, z,
a ∈ X, it follows that

(i) if G(x, y, z) = 0 then x = y = z,
(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z) ,

(iii) G(x, y, y) ≤ 2G(x, x, y),
(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),
(v) G(x, y, z) ≤ 2

3 [G(x, a, a) +G(y, a, a) +G(z, a, a)].

Proposition 1.7. ([12]) Let (X,G) be a G-metric space. Then for a sequence
{xn} ⊆ X and a point x ∈ X, the following are equivalent
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(i) {xn} is G-convergent to x,
(ii) G(xn, xn, x)→ 0 as n→∞,

(iii) G(xn, x, x)→ 0 as n→∞,
(iv) G(xm, xn, x)→ 0 as m,n→∞.

Definition 1.8. ([12]) Let (X,G) and (X ′, G′) be two G-metric spaces, and
let f : (X,G) → (X ′, G′) be a function. Then f is said to be G-continuous
at a point a ∈ X if and only if, given ε > 0, there exists δ > 0 such that
x, y ∈ X; and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A function f is
G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition 1.9. ([12]) Let (X,G), and (X
′
, G

′
) be two G-metric spaces.

Then a function f : X −→ X
′

is G-continuous at a point x ∈ X if and only
if it is G-sequentially continuous at x; that is, whenever {xn} is G-convergent
to x we have {f(xn)} is G-convergent to f(x).

We recall that two maps f and g are said to be weak compatible if they
commute at their coincidence point, that is, fx = gx implies that fgx = gfx.

The main aim of this paper is to present a generalization of Theorem 2.1 in
[18].

2. Main Result

Let Φ denote the class of all functions φ : R+ → R+ such that φ is non

decreasing, continuous and
∞∑
n=1

φn(t) <∞ for all t > 0. It is clear that φn(t)→

0 as n→∞ for all t > 0 and hence, we have φ(t) < t, for all t > 0.

Theorem 2.1. Let (X,G) be a G-Complete metric space and A,B,C, S, T,R :
X → X be satisfying:
(i) A(X) ⊆ T (X), B(X) ⊆ R(X), C(X) ⊆ S(X) and either one of T (X),
R(X) or S(X) is a closed subset of X,
(ii) the pair (A,S), (B, T ) and (C,R) are weakly compatible,
(iii)

G(Ax,By,Cz) ≤ φ
(

max

{
G(Sx, Ty,Rz), 12G(Sx,Ax,By),
1
2G(Ty,By,Cz), 12G(Rz,Cz,Ax)

})
(2.1)

for all x, y, z ∈ X, where φ ∈ Φ. Then the maps A,B,C, T,R and S have a
unique common fixed point, say p ∈ X and if T,R and S are G-continuous at
p then A,B and C are G-continuous at p.
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Proof. Choose x0 ∈ X. Define the sequence y3n = Ax3n = Tx3n+1, y3n+1 =
Bx3n+1 = Rx3n+2, y3n+2 = Cx3n+2 = Sx3n+3, n = 0, 1, 2, · · · . Denote dn+1 =
G(yn, yn+1, yn+2). Then in general we have

d3n+1 = G(y3n, y3n+1, y3n+2)
= G(Ax3n, Bx3n+1, Cx3n+2)

≤ φ
(

max

{
G(Sx3n, Tx3n+1, Rx3n+2),

1
2G(Sx3n, Ax3n, Bx3n+1),

1
2G(Tx3n+1, Bx3n+1, Cx3n+2),

1
2G(Rx3n+2, Cx3n+2, Ax3n)

})
= φ

(
max

{
G(y3n−1, y3n, y3n+1),

1
2G(y3n−1, y3n, y3n+1),

1
2G(y3n, y3n+1, y3n+2),

1
2G(y3n+1, y3n+2, y3n)

})
≤ φ

(
max

{
d3n,

1
2d3n,

1
2d3n+1,

1
2d3n+1

})
.

Hence, we must have d3n+1 ≤ φ(d3n). Similarly, we will have d3n+2 ≤ φ(d3n+1)
and d3n+3 ≤ φ(d3n+2). Thus dn+1 ≤ φ(dn), n = 1, 2, 3, · · · , so,

G(yn, yn+1, yn+2) ≤ φ(G(yn−1, yn, yn+1))
≤ φ2(G(yn−2, yn−1, yn))
.
.
.

≤ φn(G(y0, y1, y2)). (2.2)

From (G3) and (2.2), we have

G(yn, yn, yn+1) ≤ G(yn, yn+1, yn+2) ≤ φn(G(y0, y1, y2)). (2.3)

For m > n, since
∞∑
n=1

φn(t) <∞ for all t > 0, we have

G(yn, yn, ym)

≤
m−1∑
i=n

G(yi, yi, yi+1)

≤ φn(G(y0, y1, y2)) + φn+1(G(y0, y1, y2)) + ...+ φm−1(G(y0, y1, y2))

≤
∞∑
i=n

φi(G(y0, y1, y2))

→ 0 as n→∞.

Hence, {yn} is a G-Cauchy sequence from Proposition 1.4. Since X is G-
complete, there exists p ∈ X such that yn → p (n→∞), that is, limn→∞ yn =
p,

lim
n→∞

yn = lim
n→∞

Ax3n = lim
n→∞

Bx3n+1 = lim
n→∞

Cx3n+2

= lim
n→∞

Tx3n+1 = lim
n→∞

Rx3n+2 = lim
n→∞

Sx3n+3 = p.
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Let T (X) be a closed subset of X. Then there exists v ∈ X such that Tv = p.
We prove that Bv = p. For

G(Ax3n, Bv, Cx3n+2)

≤ φ
(

max

{
G(Sx3n, T v,Rx3n+2),

1
2G(Sx3n, Ax3n, Bv),

1
2G(Tv,Bv,Cx3n+2),

1
2G(Rx3n+2, Cx3n+2, Ax3n)

})
= φ

(
max

{
G(y3n−1, p, y3n+1),

1
2G(y3n−1, y3n, Bv),

1
2G(p,Bv, y3n+2),

1
2G(y3n+1, y3n+2, y3n)

})
.

Letting n→∞, we get

G(p,Bv, p) ≤ φ
(

max

{
0,

1

2
G(p, p,Bv),

1

2
G(p,Bv, p), 0

})
,

and we have Bv = Tv = p, since φ(t) < t for all t > 0. Since p = Bv ∈
B(X) ⊆ R(X), there exists z ∈ X such that Rz = p. Similarly, putting
x = x3n, y = x3n+1, z = p in (1) and letting n → ∞, we get Cz = p. Since
p = Cz ∈ C(X) ⊆ S(X), there exists u ∈ X such that Su = p.

Similarly, putting x = p, y = x3n+1, z = x3n+2 in (1) and letting n→∞, we
get Au = p. By weak compatible the pair (A,S), we have ASu = SAu, and
Ap = Sp. Also, Bp = Tp and Rp = Cp. We prove that Ap = p. If Ap 6= p,
then

G(Ap,Bx3n+1, Cx3n+2)

≤ φ
(

max

{
G(Sp, Tx3n+1, Rx3n+2),

1
2G(Sp,Ap,Bx3n+1),

1
2G(Tx3n+1, Bx3n+1, Cx3n+2),

1
2G(Rx3n+2, Cx3n+2, Ap)

})
= φ

(
max

{
G(Ap, y3n, y3n+1),

1
2G(Ap,Ap, y3n+1),

1
2G(y3n, y3n+1, y3n+1),

1
2G(y3n+1, y3n+2, Ap)

})
.

Letting n→∞, we get

G(Ap, p, p) ≤ φ

(
max

{
G(Ap, p, p),

1

2
G(Ap,Ap, p), 0,

1

2
G(p, p,Ap)

})
≤ φ

(
max

{
G(Ap, p, p), G(Ap, p, p), 0,

1

2
G(p, p,Ap)

})
and we have Ap = p, since φ(t) < t for all t > 0. Similarly, putting x =
x3n, y = p, z = x3n+2 and x = x3n, y = x3n+1, z = p in (1) and letting n→∞,
we get Bp = p and Cp = p, respectively. Thus p is a common fixed point of
A,B,C, T,R and S.

Suppose p ′ is another common fixed point of A,B,C, T,R and S. Then
from (1), we have

G(Ap,Bp,Cp ′) ≤ φ
(

max

{
G(p, p, p ′), 0,

1

2
G(p, p, p ′),

1

2
G(p ′, p ′, p)

})
.

Thus, G(p, p, p ′) ≤ φ(G(p, p, p ′) so that p = p ′. Thus, p is the unique
common fixed point of A,B,C, T,R and S. Let {yn} be any sequence in X
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such that {yn} is G-convergent to p. Then we have

G(Ayn, Ap,Ap) = G(Ayn, Bp, Cp)

≤ φ
(

max

{
G(Syn, p, p),

1
2G(Syn, Ayn, p),

0, 12G(p, p,Ayn)

})

≤ φ
(

max

{
G(Syn, p, p),

1
2G(Syn, p, p) + 1

2G(p,Ayn, p),
0, 12G(p, p,Ayn)

})
.

Letting n→∞, then since S is G-continuous at p we get, α ≤ φ(12α), where

α = lim
n→∞

G(Ayn, Ap,Ap).

This implies that α = 0. Then from Proposition 1.9, we deduce that A is G-
continuous at p. Similarly, we can show that B and C are also G-continuous
at p. �

Corollary 2.2. (Corollary 2.1 of [18]) Let (X,G) be a G-Complete metric
space and A,B,C : X → X be satisfying:

G(Ax,By,Cz) ≤ φ
(

max

{
G(x, y, z), 12G(x,Ax,By),

1
2G(y,By,Cz), 12G(z, Cz,Ax)

})
(2.4)

for all x, y, z ∈ X, where φ ∈ Φ. Then the maps A,B,C have a unique
common fixed point, say p ∈ X and A,B and C are G-continuous at p.

Proof. Take T = R = S = I identity map in Theorem 2.1. �

Corollary 2.3. Let (X,G) be a G-Complete metric space and A,B : X → X
be satisfying:
(i) A(X) ⊆ B(X), B(X) is a closed subset of X and the pair (A,B) is weakly
compatible,
(ii)

G(Ax,Ay,Az) ≤ φ
(

max

{
G(Bx,By,Bz), 12G(Bx,Ax,Ay),
1
2G(By,Ay,Az), 12G(Bz,Az,Ax)

})
(2.5)

for all x, y, z ∈ X, where φ ∈ Φ. Then the maps A,B have a unique common
fixed point, say p ∈ X and if B is G-continuous at p then A is G-continuous
at p.

Proof. Take B = C = A and T = R = S = B in Theorem 2.1. �

The following example illustrates Theorem 2.1 with φ(t) = t
2 .
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Example 2.4. Let X = [0, 1] and G(x, y, z) = |x− y| + |y − z| + |z − x| for
all x, y, z ∈ X. Define A,B,C, T,R, S : X → X as Ax = Cx = 1, Bx = 3+x

4 ,

Tx = x, Sx = x2+x
2 , Rx = 2+x2

3 for all x ∈ X.

G(Ax,By,Cz)

= 1−y
2

= 1
42(1− y)

= 1
4G(y,By,Cz) = 1

2(12G(Ty,By,Cz))
≤ 1

2 max
{
G(Sx, Ty, Cz), 12G(Sx,Ax,By), 12G(Ty,By,Cz), 12G(Rz,Cz,Ax)

}
.

Also, it is easy to see that A(X) ⊆ T (X), B(X) ⊆ R(X), C(X) ⊆ S(X) and
T (X) = X is a closed subset of X. Moreover, the pair (A,S), (B, T ) and
(C,R) are weakly compatible. Hence the all of conditions of Theorem 2.1 are
hold and 1 is the unique common fixed point of A,B,C, T,R and S.
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