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1. INTRODUCTION

The investigation of common solution problems is driven by their potential
applicability within mathematical models characterized by fixed point con-
straints, particularly in practical domains such as signal processing, network
resource allocation, and image recovery. This aspect holds considerable signifi-
cance across various fields, encompassing signal analysis, composite reduction,
optimization methodologies, and image recovery challenges, as evidenced by
relevant literature (e.g., Maing et al., [20, 21], Iiduka et al., [10], Qin et al.,
[27], An et al., [4]). This study scrutinizes two focal issues within this realm.

Let I denote a nonempty, closed and convex subset of a real Hilbert space
X endowed with the inner product (-,-) and the corresponding induced norm
|| - |l. The study makes a significant contribution by exploring the conver-
gence analysis of iterative algorithms designed to solve variational inequality
problems and fixed point problems in real Hilbert spaces.

Considering an operator N' : K — X, the variational inequality problem
(VIP) (Stampacchia [30], 1964) is formulated as follows:

Find u* € K such that (N (u*),y —u*) >0, for all y € K. (VIP)

Let VI(K,N) denote the solution set corresponding to problem (VIP). Vari-
ational inequalities find applications across diverse domains, including but
not limited to partial differential equations, optimization, engineering, applied
mathematics, and economics (see, for instance, [1, 8, 11, 12, 15, 16, 19, 25, 31]).
The variational inequality problem holds significant importance in the ap-
plied sciences. Numerous researchers have dedicated considerable effort not
only to exploring the existence and stability of solutions but also to devising
iterative algorithms for their resolution. Projection algorithms, in particu-
lar, play a pivotal role in ascertaining the numerical solutions to variational
inequalities. [6, 7, 14, 17, 26, 29] along with others documented in works
2, 3,9, 13, 23, 24, 35, 34].

The majority of algorithms employed for problem-solving rely on the pro-
jection technique computed within the feasible set K. Among these methods,
the extragradient algorithm, originating from the works of Korpelevich [17]
and Antipin [5], stands out prominently. Consider Q : X — X as a mapping.
The associated fixed-point problem with Q is expressed as:

Q(u*) = u™. (FP)

The solution set of the fixed point problem (FP) is denoted as Fiz(Q). A
considerable portion of algorithms aimed at solving (FP) is derived from the
foundational Mann iteration scheme. Specifically, commencing with u; € X,
this scheme generates the sequence {uy,1} for every k > 1 according to the



Accelerated strongly convergent extragradient algorithms 309
recurrence relation:

Upr1 = apug + (1 — o) Qug). (1.1)

For constructing weak convergence necessitates adherence to specific criteria
by the variable sequence {ay }. The Halpern iteration introduces an alternative
structured iterative algorithm, demonstrating heightened efficacy in achieving
strong convergence within infinite-dimensional Hilbert spaces. The iterative
sequence is delineated as follows:

U1 = agul + (1 — o) Quy, (1.2)

where u; € X, and the sequence ay C (0,1) is non-summable and showcases
gradual decline, conforming to the conditions:

+o0
ap — 0 and Zak = +o00.
k=1

Additionally, the viscosity algorithm, as introduced by Moudafi [22], which
merges the cost mapping Q with a contraction mapping iteratively, presents
a generic variant of the Halpern iteration. Alongside the Halpern iteration,
a generalized form known as the viscosity algorithm [22] exists, wherein the
cost mapping @ is integrated with a contraction mapping within the itera-
tive process. Lastly, the hybrid steepest descent approach, proposed in [33],
represents another methodology offering substantial convergence benefits.

Tan et al. [32] introduced a new numerical algorithm called the extra-
gradient viscosity algorithm. It’s designed to solve variational inequalities
that involve a fixed-point problem with a specific kind of mapping called a
p-demicontractive mapping. This algorithm combines ideas from two other al-
gorithms: the extragradient algorithm and the Mann-type technique. The au-
thors showed that all these algorithms have strong convergence if the operator
is both monotonic and satisfies the Lipschitz condition. These methods offer
an advantage because they can be estimated numerically using optimization
tools, as demonstrated in [32]. However, one drawback of these algorithms is
that they heavily rely on viscosity and Mann-type techniques to achieve strong
convergence. Strong convergence is crucial for iterative sequences, especially
in situations with infinite dimensions. Only a few algorithms achieve strong
convergence using inertial schemes. Using Mann and viscosity procedures can
be challenging from an algorithmic perspective, potentially slowing down con-
vergence and limiting practical usefulness. These algorithms also require more
numerical and computational steps, making the system more complex.

This brings us to a fundamental question:
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Can we make self-adjusting, strongly convergent inertial extragradient algo-
rithms that don’t need Mann and Viscosity-type methods to solve variational
inequalities and fixed-point problems?

In response, we have developed two strong convergence extragradient-type
algorithms. These are designed to solve monotone variational inequalities
and the p-demicontractive fixed point problem in real Hilbert spaces. Our
inspiration comes from the research discussed in [32]. Additionally, we have
intentionally avoided using any hybrid techniques, like the Mann-type scheme
or the viscosity scheme, to ensure the strong convergence of these algorithms.

The paper is organized into several sections. In Section 2, we present some
fundamental findings. Section 3 introduces four distinct algorithms and verifies
their convergence analysis. Lastly, Section 4 offers numerical data to showcase
the practical application of the presented algorithms.

2. PRELIMINARIES

Let K denote a nonempty, closed and convex subset of a real Hilbert space
X. For any u,y € X, we establish the following properties:

(@) fu+yl? = lul? +2(u, y) + [y
(i) Jlu+yl® < flull® + 20y, u + y);

(i) [[bu + (1 = b)yll* = bllull* + (1 = b)[lyl|* — b(1 = b)]Ju — y|*.
A metric projection Py (u) of u € X is defined as follows:
P (u) = argmin{|lu —y|| : y € K}.

It is well established that Py is nonexpansive and possesses the following
significant properties:

(1) (u— Pc(u),y — Pc(u)) <0, Vy € K;
(2) [|Pc(u) — Pc(y)|* < (Pxc(u) — Pe(y),u—y), Vy € K.

Definition 2.1. Let Q : X — X be a nonlinear mapping with Fiz(Q) # 0.
Then, I — Q is said to be demiclosed at zero if for any sequence {uy} in X,
the following statement holds:

ug —=u and (I —Quy —0 = ue€ Fiz(Q),
where Fiz(Q) = {x € X : Qv =z} is the set of fixed points of Q.

Definition 2.2. Let N : K — K be an operator. It is said to be:
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(1) monotone if
(N(u1) = N(uz),u1 —uz) >0, Vui,up € K;
(2) Lipschitz-continuous with constant L > 0 such that
IV (u1) = N(ug)|| < Lljux — |,  Vur,u € K;

(3) sequentially weakly continuous if a sequence {N (uy)} converges weakly
to N (u) for any sequence {uy} converging weakly to u.

Definition 2.3. Let Q : K — K be a mapping such that Fiz(Q) # (0. Q is
said to be p-demicontractive if for any fixed number 0 < p < 1, the following
holds:

1Q(u1) = ual® < [lur —uz||* + pll(I = Q)(w1) [, Vuz € Fiz(Q),u € X.

Lemma 2.4. ([18]) Let N : X — X be an operator that is L-Lipschitz con-
tinuous and monotone on K. Consider Q = P(I — nN), where n > 0.

If {ug} is a sequence in X such that up — q and ux — N'(ug) — 0, then
g € VI(K,N) = Fiz(Q).

Lemma 2.5. ([28]) Suppose that {c} C [0,400), {dr} C (0,1) and {ex} C R
are sequences satisfying the following conditions:
+oo
i1 < (1= di)ek + dper, VEEN and > dj = +oo.
k=1
If limsup;_, . o yx; <0 for any subsequence {cy,} of {c;} such that
liminf(cg, 41 —cg,) > 0.
lim inf(cg,;+1 — cx,) 2 0
Then limg—y 40 cx = 0.

3. MAIN RESULTS

In this section, we delve into the convergence analysis of two new iner-
tial extragradient algorithms designed for solving fixed point and variational
inequality problems. Initially, we scrutinize the proposed algorithms. To es-
tablish strong convergence, it is presupposed that the following conditions
hold:

e (N1) The common solution set, denoted by Fiz(Q)NVI(K,N), is
nonempty.

e (N2) The operator N : X — X is monotone.

e (N3) The operator N : X — X is Lipschitz continuous.
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e (N4) The mapping Q : X — X is p-demicontractive for 0 < p < 1 and
demiclosed at zero.

e (N5) The operator N : X — X is sequentially weakly continuous.

Algorithm 1 (Accelerated Tseng’s Extragradient Algorithm With Monotone
Variable Step Size Rule)

STEP 0: Choose ug,u; € K, 6 € (0,1), u € (0,1), n1 > 0, and a sequence
{sk} € (0,1) satisfying:

+o00
lim ¢, =0 and ng = +00.
k—+o00 1

STEP 1: Compute:

ar = uk + O (uk — up—1) — S [k + O (wr, — wp—1)],

where 0, is defined as follows:

. 6 Xk .
mmns<ss, ————v lf _
{2’ Huk—ukflu} Uk 7 U1,

Ogé’kgék and ék:{@ (31)

5 otherwise.

Additionally, a sequence xj = o(s) satisfies the condition limg_, 4 ’g—k =
0.

STEP 2: Compute:

Yx = Pic(ax — meN (qx))-
If ¢ = yg, then STOP; otherwise, proceed to STEP 3.
STEP 3: Compute:

Dk = Yk + Nk [N(Qk) - J\/(yk)]
STEP 4: For any sequence oy, C (0,1 — p), compute:

up1 = (1 — ag)pr, + . Q(px)-
STEP 5: Compute:

i pllge =yl .
M1 = mm{”’f’ || (qu(yk)} it N(ar) # N (), 5.
k> otherwise.

Update k£ := k + 1 and return to STEP 1.
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Algorithm 2 (Accelerated Tseng’s Extragradient Algorithm With Non-
Monotone Variable Step Size Rule)

STEP 0: Choose initial points ug,u; € K, parameters 0 € (0,1), p €
(0,1), and ;> 0. Also, select a sequence {J;} such that >2,/° 3y < 400
and a sequence {s;} C (0,1 — p) satisfying:

—+o0
lim ¢, =0 and Z S = +o00.
k——+oco =1

STEP 1: Compute
@ = wp + O (uk — wp—1) — i [ug + O (up — up—1)],

where 0, is defined as follows:

. Q Xk o
0<0, <6 and 6= n“n{2’W%—w—ﬂ} e 7 ey g g
g otherwise,
with xx = O(s) satisfying limg_ 4 f—k =
STEP 2: Compute
Yx = Pc(ax — mN(qr))-
If g = yg, then STOP; otherwise, proceed to STEP 3.
STEP 3: Compute
Dk = Yk + Nk [N(Qk) - N(yk)]‘
STEP 4: Choose a sequence ay, C (0,1 — p). Compute
ugy1 = (1 — ag)pr + . Q(pr)-
STEP 5: Compute
win {o+ 3o, ettt bt 2N,

M+ T, otherwise,

where A(yy) denotes a specific operator. Then, increment k& and return to
STEP 1.

Lemma 3.1. Let {n;} be a sequence generated by the expression (3.2). Then,
{nr} is monotonically decreasing and bounded by min {%, 771} <n<n.

Proof. Given that the mapping N is Lipschitz continuous, we have:

plar =yl o pllar — yill
[N (qx) = N(yr)ll — Lllar — yxl|

i
> I (3.5)
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This implies that the sequence {7} is monotonically decreasing and bounded.
[l

Lemma 3.2. A sequence {ni} generated by the expression (3.4) is convergent
to n and bounded by min {%, 771} <n<m+ P, where

P=>) T

k=1
Proof. Given that the mapping N is Lipschitz continuous, we have

plar =yl o pllar — il
[N (qx) = N(yr)ll — Lllar — yxl|

"
=5 (3.6)

By the definition of ng11, we have

mm{%ﬂn}énkﬁnr+P

Let

[Me+1 — M)t = max {0, mey1 — i}
and

(41— nk]™ = max {0, —(ne+1 — mk)}-
Using the definition of {n;}, we have

+00 +oo
> e =)t = max {0, mrp1 — e} < P < +oo. (3.7)
k=1 k=1
“+oo
This implies that the series Z(nk+1 — )T converges. Next, we need to
demonstrate the convergence ](C)f '
+oo
> (1 — k)
k=1
+oo
Suppose Z(nk+1 —ni)” = 400. Then we obtain
k=1

Ner1 — Mk = (M1 — M) ™ — (Mg — 1)~
Hence,
k

k k
Mot —m = Y (ks =) = D (s =)™ =D (a1 — )™ (3.8)

k=0 k=0 k=0



Accelerated strongly convergent extragradient algorithms 315

Letting & — 400 in (3.8), we get np — —oo as k — +oo, which is a logical
k

contradiction. Hence, due to the convergence of the series Z(nkﬂ — )"
k=0
k
and Z(nk+1 — M), taking k — oo in (3.8) yields limg_, o0 7 = 1. This
k=0
completes the proof. O

Lemma 3.3. Let N : X — X be an operator satisfying conditions (N'1)-
(N'5). Suppose that {u} is a sequence generated by Algorithms 1 and 2. For
any u* € VI(K,N'), we have

2
1
o — wl|? < llgx — u|? = [ 1= 125 ) llaw — vl
Me+1

Proof. Consider the following expression

ok — u*[1> = llyr + N (ur) — N (ye)] — u*|?
= [lye — w*1* + nglIV (ur) — N (wi) >
+ 2 (yr — u*, N (ug) — N (k)
= [lyn + wr — wr — w[* + RN (ur) — N (i) ||
+ 2 (yr, — u*, N (uk) — N (k)
=y — url® + [lur — w[1* + 2(yn — wg, u, — u*)
+ 0llV (u) — N (i) I1? + 2 (yr — u*, N (ug) — N (yr)
= Jlur — w1* + [y — wll® + 20y — wr, yp — w*)
+ 20y — ks uk — Yi) + MellN (ur) — N (yi) |I”
+ 2np (yp — u* N (ug) — N (yk))- (3.9)

Additionally, we can express
(we — meN (ur) — Yo,y —yx) <0, Vy € K. (3.10)
For a given u* € VI(K,N'), we can state

(ur, — yr, u* — yr) < (N (ug), v — yx). (3.11)
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By combining equations (3.9) and (3.11), we obtain
s — u||* < Jlug — @[> + llys — url® + 206 (N (ug), 0 = yp)
— 2(ug — Y uk — yr) + NN (ur) — N (yw)|®
= 2n (N (ug) — N (yg), u* — yx)
= lluk = 1> = = el + 0N (ur) = N (o) 12
— 20 (N (), yk — 7). (3.12)
Utilizing the concept of a mapping A on K, we derive
N(W),y—u") = (N(y),y —u") <0, Vyek.
Employing u* € VI(K,N'), we obtain
N(y),y —u*) 20, Vyek.
Substituting y = yi € K yields
N (yr), yp —u*) > 0. (3.13)
From equations (3.12) and (3.13), we deduce

2
P = w[|* < fluw = w[|* = [l =y +#2,7gi1HUk — e’
% |2 2 771% 2
= H“k —u H —(1—p K H“k —ka ) (3.14)

g

Theorem 3.4. Let N : X — X be an operator satisfying the conditions (N'1)-
(N'5). Then, the sequence {uy} generated by Algorithms 1 and 2 converges
strongly to u* € VI(IKC,N') N Fiz(Q), where u* = Py (A Fia(0)(0)-

Proof. Claim 1: {ux} is a bounded sequence.
Let’s consider that
ug1 = (1 — ag)pr + . Q(p)-
By utilizing the definition of the sequence {uj11}, we have
g — w2 = ||(1 = aw)pr + axQ(pr) — u*|?
= [lpr — u*|1* + 200 (pr — u*, Q(px) — pr) + 11 Q(pk) — pic|l”
< llpr = u*[I” + ar(p = D1Qpx) — prll® + | Qpr) — pill?
= [lpr = u*|” = ar(l = p — )| QUpx) — pll*. (3.15)
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By using the value of {g;}, we obtain

llax — u*|| = Jug + O (ur — up—1) — pur — Opsp (up — up—1) — u*||
= [[(1 = sg)(ug — u*) + (1 — ) Or(ug — ug—1) — sku™|
< (1 =) llug — uw || + (1 — ) O l|ur, — up—1| + rellu”||
< (1 —ap)lJugp — u*|| + s M;y, (3.16)

for some fixed number M7, we have
O .
(1- gk)a”“k — w1 || + [Jut]| < M.

By using n, — 1 such that x € (0,1 — p?), we have
02
lim (1—M22’f) =1—p%>x>0.
k——+o0 nk+1
Thus, there exists some fixed kg € N such that

2
(1—/3727’“) >x >0, Vk > ko. (3.17)
Me+1

By using Lemma 3.3, we can rewrite
o = w*[1* < llax — «*[|?, V& > ko (3.18)
From expressions (3.15), (3.16), and (3.18), we infer that

g1 — w*|| < (1= o) llug — u*|| + M1 — ag(1 — p — o) || Q(pk) — prl|*.

(3.19)
Thus, for {ax} C (0,1 — p), we obtain
g1 — ul} < (1= ) llue — u™|| + My
< max {[Juy — u*||, M1}
< max { ||lug, — u*||, M1 }. (3.20)

Consequently, we may infer that the sequence {uy} is a bounded sequence.
Claim 2:
2 7713 2 2
1= == | llaw = ywll” + ar(l — p— ) | Q(pr) — prll
k+1
< = w*[1? = fJugs — w*)|* + Mo, (3.21)
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for some fixed My > 0. Indeed, by using the definition of {ug11}, we have

lugsr = u*® = [[(1 = ar)pr + xQlpr) — ||
= llpx — u*||* + 20 (pr — u*, Qpx) — pi) + 0}, | Q) — pill”
< ok — w*|” + carlp = 1) 1 Qpr) — pill” + 0 [1Q(px) — prI?
= |lpx — w*)1* = a1 = p — o) || Qpw) — pill” - (3.22)

By using Lemma 3.3, we obtain

2
n
ok = w*|* < flak —w** - (1 — ) g — wxl* - (3.23)
k+1

By using expression (3.16), we can obtain

lge — w|* < (1= o) llug — u¥[|* + E M7 + 2Migr(1 — ) up — w7
< ug — ¥ + sk [seMF + 2M1 (1 — o) |lug, — u*||]
< lug —u*[|? + g Mo, (3.24)

where My is some fixed constant > 0. From expressions (3.22), (3.23) and
(3.24), we obtain

lupsr = w1 < Jluk = u*|* + Mo — ar(1 = p = ai) [|Q(pr) — vl

2 i 2
— 1= | llaw — el (3.25)

k+1

Claim 3:
Using the value of {qx}, we can express as follows

HQk — u*H2 = Huk + O (up, — ug—1) — Spur — Opsk(up — ugp—1) — u*H2
= H(l — ) (up —u*) + (1 — <) Ok (up — ug—1) — gku*Hz
< (1 = g) (g — )+ (1 = 61) Ok (g — wp—n) || P+ 250 (—u*, g — u*)
= (1 — ) ||us — U*H2+(1 — )0k || uk — Uk—1H2
+ 2051 — )| ur — ||| ue — wer ||

+ 26 (—u", gk — Upy1) + 26 (U, upp — u)
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< (1= ) = [+ 6 o — waa |
200 (1 — )i — [k = wr-a|

+ 2%””*” HQk — Uk+1H + 26 (—u™, uprq — u*)

0
— (1= g fur = ][ + i O] - Uk—lH?:Huk — g |
0
+2(1 = o) [Jur — “*H?:H“k — |

+ 2w [|[lar — wera] +2<U*,U*—uk+1>] (3.26)

Combining equations (3.18) and (3.26), we obtain
0
Huk+1 - u*H2 <(1- §k)HUk — “*HQ + Sk [GkHuk - uk_ng—:Huk — “k—lu
0
200 = 6 = 0 2 o =
2| [lax = wsa]| + 20" 0" = i) (3.27)

. 2
Claim 4: The sequence H“k — u*” converges to zero.

Let’s define
e = |Jug — u*H2

and
0 0
et 1= Ok = | 2 o = e |+ 208 = ) = 2 e = e
Sk Sk

+ 2Hu*H qu — Ulc+1H +2(u*, u" — uggq).
Then, Claim 4 can be restated as
Chr1 < (1 = q)er + spep.

By Lemma 2.5, it’s enough to prove that limsup;_, . exr, < 0 for {cx;} in
{ck} such that

liminf(cg. o1 — cx.) > 0.
jﬁﬂo( k41— Ck;) =

This is equivalent to stating

lim sup (u®, u* — ug,; 1) <0
Jj—+o0o

and
lim sup |k, — ur,41]| <0,
J—+o00
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one from each subsequence {||lug; — u*||} of {||uy — u*[|} following

limn nf (g, 41— '] = ug; = [} = 0.

Suppose {||ug; — u*||} is such a subsequence of {|uy — u*||} satisfying

limn nf (g, 41 = '] = fug; = [} = 0.

Then, we have

. . 2 2
lim inf (lu; 11 — w*[|* = g, — u*||?)

= tim nf ([l o1 — ]| = g, — ) (o 01— "]+ o, — o))

J—ot
> 0.

As a result of Claim 2,

s

(3.28)

. 2
limsup [(1 = ks = 1P oy (1= p = )| Qo) — |

J—rtoo kj+1

< lim sup [Hukj —ut|? - lug; +1 — u*Hﬂ + lim sup ¢x; Ko
j—+oo J—rtoo

— _1 : |: ) X2 L * 2:|
linn inf | [fug; 1 — w7 = fug, — o
<0.
The above expressions imply the following mathematical relationships
Jim gy, =yl =0, lim | Q(px;) — pk, || = 0.
Consequently, we have
12k; = e, 1= Nk =+ 1y IN (ay) — Ny )] =y, || < 7y Lllak; — 1)
Thus, it follows that
li —yg.|| = 0.
i {2k, =y, |
Hence, we can deduce
li —qr.|| = 0.
jdim lpr; — ar; |
Moreover, it’s straightforward to derive

li — .|| = 0.
j_gﬂooH% ug, ||

Combining equations (3.33) and (3.34) leads to

I || =0.
i (lp, — || =0

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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Given the equation uy; 1 = (1 — ag;)pk; + ax; Q(pk; ), we observe:
i1 — iy | =, [ Q00n,) — o 1 (1= 1@~ (3:36)
Thus, it follows that
lim [lug; 11 — pr; || = 0. (3.37)

J—+oo

The expressions above imply that

i — . < 1 — p . + i P . — .
aIld

i . — ) < I = ) i = ) = 0. .
jgglooll% ukﬁrl”—jgg_loouq’% pklejggloollpk] up; 1] = 0. (3.39)

Given that the sequence {uk]} is bounded, without loss of generality, we as-
sume that {uy, } converges weakly to some @ € X.

Next, we need to prove that 4 € VI(K,N). Since {qx;} converges weakly
to @ and because lim;_, 1« [|qr; — Y&, || = 0, the sequence {yy;} also converges
weakly to @. We then need to prove that @ € VI(KC, N'). This implies

Yk, = Pxlar, — miN ()],

which is equivalent to

(ar; — e N (ak;) — Yk ¥ — yky) <0, Vy € X (3.40)
From the inequality above, we have
<ij - yk’jay - ykj> S 77]6]' <N(qk3)7y - yk‘j>7 vy € X. (341)
Consequently, we obtain

1
—(@k; =Yk Y= Uhy) N (@, )s Uy — k) < N(ar,)s y—ar;), Yy € X. (3.42)
s

Given that min {%, 171} <n<mn and {qkj} forms a bounded sequence, utiliz-
ing the limits lim; oo [lqx; — ¥&, || = 0 and j — 400 in (3.42), we deduce

lim inf(N (gx;),y — ar;) >0, Vy € X. (3.43)
J—+oo

Moreover, it implies
N ;)5 v = yk;) = N (y;) — Naw,)» v — ax;)
+ N(ak;),y — ar;) + N (Y, )s Gy — Yi;j)- (3.44)

As lim; 4+ o [|qk; — Yk, || = 0 and under the Lipschitz condition on the mapping
N, we obtain

lim [NV (gx;) — N (yx;)|| =0, (3.45)

j—+oo
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which, coupled with (3.44) and (3.45), yields
lim inf(N (yx;),y — yx;) >0, Yy € X. (3.46)

j—+oo
For further proof, let’s consider a positive sequence {¢;} that converges to zero
and decreases. For each {¢;}, there exists a least positive integer denoted by
m; such that

<N(Qki)’y_qm>+€j >0, Vi > my, (347)
where the existence of m; follows from expression (3.46). As {¢;} is decreasing,
the sequence m; is evidently increasing. If there exists a natural number
No € N such that N ((up,,, ) # 0 for all ny,, > No, then we consider

he = M Gkn,)
" NV g, )P

Using the provided value of Ay, , we derive the following equation

¥k, > No. (3.48)

N (@ )s Piyn,) = 1, Vi, > No. (3.49)
Combining equations (3.47) and (3.49), we obtain
NGk, )Y + kP, — Qi) > 0. (3.50)
Utilizing the definition of the pseudomonotone mapping N, we express
(N(y + exhn,, sy + exhin,, — ax,. ) > 0. (3.51)

For all k,,, > Ny, we have
N Y = @y, ) = N () = Ny + erlin,,, ),y + erlin,,, — Q)
— N (), I, )-

Given that the sequence {qx,} weakly converges to & € X, it follows that
{N(qx, )} weakly converges to N (u). Suppose N (u) # 0, implying

(@) | < lim o | (e, (3.53)

(3.52)

Since {qk,,, } C {qr, } and limj_, o € = 0, we have

€L 0 B
1S - 68

< . = 1
0= Hm lewhon, Il = Hm oo —

By letting n — 400 in equation (3.52), we obtain
(N(y),y—a) >0, VyeX. (3.55)
Let u € X be an arbitrary element and 0 < ¢ < 1. Consider the expression
Uy = Yu+ (1 —)a.
Then, @, € X. From Equation (3.55), we have
W (N (ty),u — @) 2 0.
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Thus,

(N (typ),u—1a) > 0.
As ¢ — 0, @, — 1 along a line segment. By the continuity of the operator,
N (1) converges to N (@) as ¢ — 0. Hence, we have:

(N(a),u —a) > 0.
Therefore, 4 is a solution of problem (VIP). Given u* = Py annriz(0)(0);
we have:
0—u"y—u*) <0, VyeVIK,N)NFix(Q).
From Equation (3.34), it follows that {q,} converges weakly to @& € X'. Sim-
ilarly, from Equation (3.35), {p,} converges weakly to & € X. By the demi-
closedness of (I — Q), we conclude 4 € Fiz(Q). Therefore, 4 € VI(IK,N)N
Fiz(Q), leading to:
: * * o ] — * * 5 < .

jgg_noo <u LU uk]> (u*,u* —a)y <0
Furthermore, since lim;_, 4 Huij — U H = 0, we have
lim sup <u*, ut — ukj+1> < lim sup <u*,u* — ukj>+lim sup <u*,ukj — ukj+1> <0.
j—4o00 Jj—r+oo J—=+oo
Combining Claim 3 and Lemma 2.5, we observe that uy — u* as k — +4o0.
This completes the proof. [l

4. NUMERICAL ILLUSTRATIONS

This section investigates the algorithmic implications of the provided method-
ologies, as well as explores how variations in control parameters affect the
numerical efficacy of the suggested algorithms.

Example 4.1. Consider a mapping N : R™ — R™ defined as
N (u) = Mu,
where ¢ = 0. Here, M = NNT + B+ D, with N = rand(m) and K = rand(m)

chosen randomly, and B = 0.5K —0.5K”, D = diag(rand(m, 1)). The feasible
set IC is defined as
K={ueR":-10 <wu; <10}.
It is evident that the mapping N is monotone and Lipschitz continuous with
constant L = || M||. Additionally, a function Q : X — X is defined as
1
Qu) = U

The initial points for the tests are ug = u; = (2,2, - ,2). Different dimensions
of the Hilbert space are considered to study its behavior in higher dimensions.
The stopping condition for these experiments is Dy = |lgx — yi| < 10710,
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Figures 1 to 6 and Tables 1 to 2 depict empirical observations for Example 2.
The following control criteria are enforced:

(1) Algorithm 1 (Algol):

m =043, 0=0.56, u=0.64,

10 o %
T T YT BE+rs) YT Bhro)

(2) Algorithm 2 (Algo2):

m =043, 0=0.56, u=0.64,
10 1 2k
= _ o — .
T T e PTG+ T Bkto)

(3) Algorithm 1 in [32] (Algo3.1):

7 =043, 6=056, u=0.64,

10 1 %

T AT YT Bkrs) T Brt2)
u

f(u)_ga

(4) Algorithm 2 in [32] (Algo3.2):

71 =043, 6=0.56, p=0.64,

10 1 k

= — o = ———
K2 P T Bk+s) T Bk+2)
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102 ‘
—— Algo3.1
100 - - -Algo3.2| ]
----- Algol
.......... A]g02
102
10 1
S
108 ]
108 1
10710 e, . ) ]
10712 | | s . .
0 10 20 30 40 50 60

Number of Iterations

FiGURE 1. Numerical comparison of Algorithm 1 and Algo-
rithm 2 with Algorithm 1 in [32], Algorithm 2 in [32] when
m = 9.

102 w
- ——Algo3.1

\ R
100k . Algo3.2| ]

10-2 L

10-4 L

Dy,

10-10 L

1012 . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Elapsed Time [sec]

FIGURE 2. Numerical comparison of Algorithm 1 and Algo-
rithm 2 with Algorithm 1 in [32], Algorithm 2 in [32] when
m = 0.
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10°
—— Algo3.1
- - -Algo3.2
10°
]
10°
10-10

Number of Iterations

FiGURE 3. Numerical comparison of Algorithm 1 and Algo-
rithm 2 with Algorithm 1 in [32], Algorithm 2 in [32] when
m = 10.

10° w
——Algo3.1

- = =Algo3.2

10°

Dy,

10—10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Elapsed Time [sec]

FIGURE 4. Numerical comparison of Algorithm 1 and Algo-
rithm 2 with Algorithm 1 in [32], Algorithm 2 in [32] when
m = 10.
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10° ‘
—— Algo3.1

- - -Algo3.2

Dy,

‘
0 10 20 30 40 50 60 70
Number of Iterations

FiGURE 5. Numerical comparison of Algorithm 1 and Algo-
rithm 2 with Algorithm 1 in [32], Algorithm 2 in [32] when
m = 20.

10° ‘
——Algo3.1
- = =Algo3.2
----- Algol
.......... Algo?2
10° 1
S
10 1
\'\.
- ~ .~~
~ ~.
10710k ‘ ‘ ‘ e S S k|

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Elapsed Time [sec]

FIGURE 6. Numerical comparison of Algorithm 1 and Algo-
rithm 2 with Algorithm 1 in [32], Algorithm 2 in [32] when
m = 20.
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TABLE 1. Numerical values for Figures 1-6.

The number of iterations
m  Algo3.1 Algo3.2

Algol Algo2

5 54 46 27 21
10 59 49 42 23
20 61 51 44 25
50 67 56 45 34
100 73 61 48 36

TABLE 2. Numerical values for Figures 1-6.

Time required to complete

m  Algo3.1 Algo3.2 Algol Algo2

5 0.41096080 0.33812320 0.20280990 0.16518980
10 0.64628270 0.57689310 0.49204840 0.29402830
20 0.48693460 0.36085080 0.30036720 0.26893690
50  0.57369690 0.40373730 0.37593220 0.29847481
100 0.67855063 0.53929280 0.41928400 0.30193762

Example 4.2. Let K denote the feasible set defined as follows:
K :={ue L?([0,1]) : ||lul| 2 < 1}.
We define an operator N :  — X’ by

N(u)(t) = max{u(t),O} = W

Here, X = L?([0, 1]) represents a real Hilbert space with its inner product and
norm given by

1
(u,y) :/0 u(t)y(t)dt, Yu,yeX

and

1
lull e = /0 fu(t) 2dt.

It can be readily verified that N is monotone and 1-Lipschitz continuous. The
projection onto I is straightforward

Pe(u) =4 Tz if  fullgz > 1,
¢ if fluflpe < 1.
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A mapping Q : L?([0,1]) — L?([0, 1]) takes the form

1
Q(u)(t) :/0 tu(s)ds, te€]0,1].

A simple analysis shows that Q is 0-demicontractive, with the solution being
u*(t) = 0. These trials commence with a halting requirement Dy = ||qx —
yrll2 < 1076. The tables 3 and 4 present numerical results pertaining to
Example 4.2. The following conditions serve as control criteria:

(1) Algorithm 1 (Algol):

m =043, 0=056, u=0.64,
10 1 2%k
= - - ap =— ———-
AT YT Bk+s) T Br+2)]

(2) Algorithm 2 (Algo2):

m =043, 6=0.56, p=0.64,
10 ! 2k
T 0 YT BE+s)) YT Bhto)

(3) Algorithm 1 in [32] (Algo3.1):

71 =043, 0=056, u=0.64,

10 1 2k
= I E—— = T A = T
T AT YT Bkrs) T Bk+2)
u
f(u) - ga

(4) Algorithm 2 in [32] (Algo3.2):

71 =043, 6=0.56, p=0.64,

10 1 k
= — = —_— o — ——
AT YT Bk+s) T Br+2)
u
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TABLE 3. Numerical values for Example 4.2.

Total number of iterations

up =u; Algo3.1 Algo3.2 Algol Algo2
t3 76 65 45 32
tcos(t) 87 68 49 33
texp(t) 92 74 57 41
t2! 98 79 61 43

TABLE 4. Numerical values for Example 4.2.
Required CPU time

up =u; Algo3.1 Algo3.2 Algol Algo2

3 1.1745382 1.1275749 0.5867949 0.3525294
tcos(t) 1.1976944 1.4869759 0.8563924 0.6273644
texp(t) 2.0575325 1.5486922 0.9949494  0.7264347
t2! 2.0025344 1.69576969 1.2207376 1.03811294

5. CONCLUSION

The paper introduces two explicit extragradient-like algorithms designed
to address an equilibrium problem within a real Hilbert space, featuring a
pseudomonotone and Lipschitz-type bifunction, constrained by fixed points.
A novel stepsize rule is proposed, independent of Lipschitz-type constants.
Various experiments are conducted to demonstrate the numerical performance
of the proposed algorithms and compare them with established approaches in
the literature.
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