
Nonlinear Functional Analysis and Applications
Vol. 29, No. 2 (2024), pp. 393-418

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.02.04
http://nfaa.kyungnam.ac.kr/journal-nfaa

KUPress

A MODIFIED KRASNOSELSKII-TYPE SUBGRADIENT
EXTRAGRADIENT ALGORITHM WITH INERTIAL

EFFECTS FOR SOLVING VARIATIONAL INEQUALITY
PROBLEMS AND FIXED POINT PROBLEM

Araya Kheawborisut1 and Wongvisarut Khuangsatung2

1Department of Mathematics, School of Science,
King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

e-mail: araya.kheaw@gmail.com

2Department of Mathematics and Computer Science, Faculty of Science and Technology,
Rajamangala University of Technology Thanyaburi,

Pathumthani, 12110, Thailand
e-mail: wongvisarut k@rmutt.ac.th

Abstract. In this paper, we propose a new inertial subgradient extragradient algorithm with

a new linesearch technique that combines the inertial subgradient extragradient algorithm

and the KrasnoselskiiMann algorithm. Under some suitable conditions, we prove a weak

convergence theorem of the proposed algorithm for finding a common element of the common

solution set of a finitely many variational inequality problem and the fixed point set of a

nonexpansive mapping in real Hilbert spaces. Moreover, using our main result, we derive

some others involving systems of variational inequalities. Finally, we give some numerical

examples to support our main result.

1. Introduction

Throughout this paper, let H be a real Hilbert space and C be a nonempty
closed convex subset of H with the inner product 〈·, ·〉 and norm ‖ · ‖. Let
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T : C → C be a nonlinear mapping. A point x ∈ C is called a fixed point of T if
Tx = x. The set of fixed points of T is denoted by F (T ) := {x ∈ C : Tx = x}.

In this paper, we consider the classical variational inequality problem, which
consists in finding a point x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of the problem (1.1) is denoted by V I(C,A). The
problem (1.1) was introduced and studied by Stampacchia [28] in 1966. Ad-
ditionally, various topics in economics, engineering mechanics, mathematical
programming, transportation, and other fields can be solved using the prob-
lem (1.1). The solution of the problem (1.1) is well-known to be equivalent
to the solution of the following fixed point equation for finding a point x ∈ C
such that

x = PC(I − λA)x, (1.2)

where λ > 0 is an arbitrary constant and PC is the metric projection from H
onto C (see [18] for details). In 2012, Kangtunyakarn [14] modified the problem
(1.1) and called it the combination of variational inequality problems, which
consists in finding a point x ∈ C such that

〈y − z∗, (aA+ (1− a)B)z∗〉 ≥ 0, ∀y ∈ C, ∀a ∈ (0, 1), (1.3)

where A,B : C → H are the mappings. The solution set of the problem
(1.3) is denoted by V I(C, aA + (1 − a)B). If A ≡ B, then the problem (1.3)
reduces to the problem (1.1). Moreover, Kangtunyakarn [14] also introduced
the mathematical tool related to the problem (1.3) and the problem (1.1) (See
Lemma 2.11 in [14]).

The extragradient algorithm, first described by Korpelevich [20] in 1976, is
one of the most widely used techniques for solving the problem (1.1). The ex-
tragradient algorithm, which consists of two steps, can be expressed as follows

x1 ∈ C,
yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ≥ 1,

(1.4)

where λ ∈ (0, 1
L), A : C → Rn is monotone and Lipschitz continuous with

Lipschitz constant L. If a solution set of the problem (1.1) is nonempty,
then the sequence {xn} generated by process (1.4) converges weakly to an
element in a solution set of the problem (1.1). The extragradient algorithm
has been considered by many authors in recent years (see [37, 39] and the
references therein). However, the extragradient algorithm requires that two
projections are calculated in each iteration. In order to further develop the
extragradient algorithm for solving the problem (1.1) in Hilbert space, Censor
et al. [7] modified the extragradient algorithm by substituting a projection
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onto a half-space for the second projection. This novel method is known as
the subgradient extragradient algorithm, and it is described as follows

x1 ∈ C,
yn = PC(xn − λAxn),

Tn = {x ∈ H : 〈xn − λAxn − yn, x− yn〉 ≤ 0},
xn+1 = PTn(xn − λAyn), ∀n ≥ 1,

(1.5)

where A is monotone, L-Lipschitz continuous, and λ ∈ (0, 1/L). They also
proved that the sequence {xn} generated by process (1.5) converges weakly to
an element in a solution set of the problem (1.1).

The subgradient extragradient algorithm has been studied by numerous
researchers in a number of different ways, for example [12, 17, 19, 22, 36] and
the references therein. In 2021, Kheawborisut and Kangtunyakarn [17] defined

the new half-space Tn = {x ∈ H : 〈xn − λ
∑N

i=1 aiAixn − yn, x − yn〉 ≤ 0} as
a tool for proving the strong convergence theorem. They also introduced the
modified subgradient extragradient algorithm as follows

x1 ∈ C,
yn = PC(xn − λ

∑N
i=1 aiAixn),

Tn = {x ∈ H : 〈xn − λ
∑N

i=1 aiAixn − yn, x− yn〉 ≤ 0},
xn+1 = αnu+ βnPTn(xn − λ

∑N
i=1 aiAiyn) + γnGxn, ∀n ≥ 1,

(1.6)

where for every i = 1, 2, 3, ..., N , Ai is αi-inverse strongly monotone map-
pings with η = mini=1,2,3,...,N αi, G is a nonlinear operator, λ ∈ (0, η) and∑N

i=1 ai = 1, 0 < ai < 1 for every i = 1, 2, ..., N . Furthermore, they demon-
strated the strong convergence of the sequence generated from the suggested
iterative methods for finding a common element of the set of common solu-
tions of finitely many variational inequality problems and the set of solutions
to nonlinear problems in Hilbert spaces.

There has recently been a rise in interest in the research of inertial type
algorithms. The inertial extragradient algorithm [29], the inertial forward-
backward splitting algorithm [8] and the inertial Douglas-Rachford splitting
algorithm [9] are a few examples. In recent years there has been increas-
ing interests in studying inertial subgradient extragradient algorithm, see
[1, 2, 6, 27, 30, 32, 33, 34, 35].

Subsequently, the inertial subgradient extragradient algorithm was modi-
fied, as well as the stepsize, in order to avoid the Lipschitz constant, using
techniques such as linesearch and self-adaptive techniques, see, for example,
[5, 21, 23, 26, 31, 33]. For solving the variational inequality problem and
fixed point problem of a quasi-nonexpansive mapping in real Hilbert spaces,
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Thong and Hieu [31] introduced the inertial subgradient extragradient algo-
rithm with linesearch technique as follows: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1).
Let x0, x1 ∈ H be arbitrary and the sequence {xn} is generated by

wn = xn + θn(xn − xn−1),

yn = PC(wn − τnAwn),

Tn := {z ∈ H : 〈wn − τnAwn − yn, yn − z〉 ≥ 0},
zn = PTn(wn − τnAyn),

xn+1 = αnwn + βnTzn, ∀n ≥ 1,

(1.7)

where τn is chosen to be largest τ ∈ {γ, γl, γl2, ...} satisfying

τ‖Awn −Ayn‖ ≤ µ‖wn − yn‖ (1.8)

and T : H → H is a quasi-nonexpansive mapping such that I−T is demiclosed
at zero, and A : H → H is monotone and Lipschitz continuous on H with the
constant L. Under mild assumptions, the sequences generated by the proposed
algorithm converge weakly an element of F (T ) ∩ V I(C,A).

In 2017, Kanzow and Shehu [16] proposed the inexact KrasnoselskiiMann
algorithm for finding a fixed point of a nonexpansive mapping T in a real
Hilbert space as follows: For arbitrarily given x1 ∈ H, let the sequences {xn}
be generated iteratively by

xn+1 = αnxn + βnTxn + rn, ∀n ≥ 1, (1.9)

where T : H → C is a nonexpansive mapping, rn denotes the residual vector
and {αn}, {βn} are two real number sequences in [0, 1] such that αn +βn ≤ 1.
They proved that if

∑∞
n=1 αnβn = ∞,

∑∞
n=1 ‖rn‖ < ∞, and

∑∞
n=1(1 − αn −

βn) < ∞, then the sequence {xn} generated by (1.9) converges weakly an
element of F (T ). The Krasnoselskii-Mann algorithm has been the focus of
increasing research in many different directions during the past few years, for
example [10, 13, 25, 38] and the references therein.

Question. Can we design a linesearch technique for the algorithm (1.6)
above?

In this paper, we give a positive answer to this question. Motivated and in-
spired by the works in literature, we introduce a modified inertial subgradient
extragradient algorithm by using the concept of the solution sets of the modi-
fied variational inequality problem introduced by Kangtunyakarn [14] with the
new linesearch technique, which combine the inertial subgradient extragradi-
ent algorithm [31] and the Krasnoselskii- Mann algorithm [16], for finding a
common element of the common solution set of finitely many variational in-
equalities problems and the fixed point set of a nonexpansive mapping. In ad-
dition, our algorithm does not require the knowledge of the constant of inverse
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strongly monotone operators. Under some suitable conditions, we provide a
weak convergence theorem of the proposed algorithm in real Hilbert spaces
and, by use of Lemma 2.10 in [24], also get a strong convergence theorem.
Furthermore, we obtain an additional result involving a system of variational
inequalities by using our main result. Finally, we give some numerical exam-
ples to support our main result.

Following is an outline for this paper. Some lemmas that will be utilized as
further proof are listed in Sect. 2. In Sect. 3, we proposed the new algorithms,
then the weak convergence theorem is analyzed. In Sect. 4, we apply our main
result to system of variational inequalities. Several numerical experiments are
provided in Sect. 5.

2. Preliminaries

In this section, let C be a nonempty closed convex subset of a real Hilbert
space H. We use the notations “⇀” and “→” to represent weak convergence
and strong convergence, respectively. For every x ∈ H, there exists a unique
nearest point PCx ∈ C such that

||x− PCx|| ≤ ||x− y||, ∀y ∈ C

and PC is called a metric projection of H onto C.

Next, we provide some useful lemmas that will be used to support our main
result.

Lemma 2.1. ([4]) Given x ∈ H and y ∈ C. Then, y = PCx if and only if
there holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

Lemma 2.2. Let C be a closed convex subset in a real Hilbert space H, x ∈ H.
Then

(i) ||PCx− PCy||2 ≤ 〈PCx− PCy, x− y〉, ∀y ∈ C,

(ii) ||PCx− y||2 ≤ ||x− y||2 − ||x− PCx||2, ∀y ∈ C.

Definition 2.3. Let A : C → H and T : C → C be mappings. Then

(i) a mapping T is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C,

(ii) a mapping T is called quasi-nonexpansive if

‖Tx− y‖ ≤ ‖x− y‖, for all x, y ∈ C and y ∈ F (T ),
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(iii) a mapping T is called Lipschitz continuous on C if there exists L > 0
such that

‖Tx− Ty‖ ≤ L‖x− y‖, for all x, y ∈ C,
(iv) a mapping A is called α-inverse strongly monotone if there exists α > 0

such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, for all x, y ∈ C,
(v) a mapping A is called firmly nonexpansive if

‖Ax−Ay‖2 ≤ 〈x− y,Ax−Ay〉, for all x, y ∈ C.

It is also known that every α-inverse strongly monotone mapping is 1
α -

Lipschitz continuous.

Lemma 2.4. ([11]) Assume that T : H → H is a nonlinear operator with
F (T ) 6= ∅. Then I − T is said to be demiclosed at zero if for any {xn} in H,
the following implication holds:

xn ⇀ x and {(I − T )xn} → 0 ⇒ x ∈ F (T ).

Lemma 2.5. ([16]) Let X be a real inner product space, the following results
hold:

(i) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2,
for all x, y ∈ X and α ∈ [0, 1],

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, for all x, y ∈ X,

(iii) ‖tx+ ty‖2 = t(t+ s)‖x‖2 + s(t+ s)‖y‖2 − st‖x− y‖2,
for all x, y ∈ X and s, t ∈ R.

Lemma 2.6. ([3]) Let {σn} and {γn} be nonnegative sequences satisfying∑∞
n=1 σn < ∞ and γn+1 ≤ γn + σn, n = 1, 2, .... Then, {γn} is a convergent

sequence.

Lemma 2.7. ([15]) Let C be a nonempty closed convex subset of a real Hilbert
space H and let A,B : C → H be α and β-inverse strongly monotone map-
pings, respectively, with α, β > 0 and

V I(C,A) ∩ V I(C,B) 6= 0.

Then

V I(C, aA+ (1− a)B) = V I(C,A) ∩ V I(C,B), ∀a ∈ (0, 1).

Furthermore, if 0 < γ < min{2α, 2β}, then we find that I − γ(aA+ (1− a)B)
is a nonexpansive mapping.
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Remark 2.8. ([17]) If for every i = 1, 2, ..., N Ai : C → H are ξi-inverse

strongly monotone mappings with η = min1,2,...,N{ξi} and
⋂N
i=1 V I(C,Ai) 6= ∅,

then

V I(C,
N∑
i=1

aiAi) =
N⋂
i=1

V I(C,Ai), (2.1)

where
∑N

i=1 ai = 1 and 0 < ai < 1 for every i = 1, 2, ..., N . Moreover, we have∑N
i=1 aiAi is monotone and µ-Lipschitz continuous mapping.

The following lemma was provided by Kanyanee and Kangtunyakarn [24]
to prove the strong convergence theorem.

Lemma 2.9. ([24]) Let H be a real Hilbert space and let S be a nonempty
closed convex subset of H. Let {xn} be a sequence in H. Suppose that, for all
u ∈ S,

‖xn+1 − u‖ ≤ ‖xn − u‖+ bn

for every n = 1, 2, ... and
∑N

n=1 bn < ∞. Thus {PSxn} converges strongly to
some z ∈ S.

3. Main result

In this section, we propose the modified Krasnoselskii-type subgradient ex-
tragradient algorithm with inertial effects for finding a common element of the
set of finite family variational inequalities problem and the fixed point set of
a nonexpansive mapping. Under some suitable conditions, we provide a weak
convergence theorem of the proposed algorithm in real Hilbert spaces.

Let H be a real Hilbert space. For i = 1, 2, ..., N , let Ai : H → H be
ξi-inverse strongly monotone mappings with η = mini=1,2,...,N{ξi} and let T :
H → H be a nonexpansive mapping with

Γ =

N⋂
i=1

V I(C,Ai) ∩ F (T ) 6= ∅.

Let rn be the residual vector and let {αn}, {βn} be real sequences in [0, 1]
such that αn + βn ≤ 1 satisfying the the following conditions:

(i) there are c, d > 0 with 0 < c ≤ βn ≤ d < 1 for all n ≥ 1;
(ii) limn→∞ θn‖xn − xn−1‖ = 0;

(iii)
∑∞

n=1(1− αn − βn) <∞;
(iv)

∑∞
n=1 ‖rn‖ <∞.

Now, we propose the modified Krasnoselskii-type subgradient extragradient
algorithm with inertial effects. The purposed algorithm is written as follows:
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Algorithm 1:

Initialization: Let x0, x1 ∈ H be arbitrary. Given γ > 0,
l ∈ (0, 1), µ ∈ (0, 1),

∑N
i=1 ai = 1, 0 < ai < 1.

Iterative Steps: Calculate xn+1 as follows:

Step 1: Set wn = xn + θn(xn − xn−1) and compute

yn = PC

(
wn − τn

N∑
i=1

aiAiwn

)
,

where τn is chosen to be largest τ ∈ {γ, γl, γl2, ...} satisfying

τ
N∑
i=1

ai‖Aiwn −Aiyn‖ ≤ µ‖wn − yn‖. (3.1)

Step 2: Compute

zn = PQn

(
wn − τn

N∑
i=1

aiAiyn

)
,

where Qn := {z ∈ H : 〈wn − τn
∑N

i=1 aiAiwn − yn, yn − z〉 ≥ 0}.
Step 3: Compute

xn+1 = αnwn + βnTzn + rn. (3.2)

Set n := n+ 1 and go to Step 1.

Lemma 3.1. The Armijo-like search rule (3.1) is well defined and

min{γ, µlη} < τn ≤ γ.

Proof. Since Ai is ξi-inverse strongly monotone with η = mini=1,2,...,N{ξi}, for
all i = 1, 2, ..., N on H, we have

N∑
i=1

ai‖Aiwn −Ai(PC(wn − γlm
N∑
i=1

aiAiwn))‖

≤
N∑
i=1

ai

(
1

ξi
‖wn − (PC(wn − γlm

N∑
i=1

aiAiwn))‖

)

≤ 1

η
‖wn − PC(wn − γlm

N∑
i=1

aiAiwn)‖,
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this is equivalent to

ηµ
N∑
i=1

ai‖Aiwn −Ai(PC(wn − γlm
N∑
i=1

aiAiwn))‖

≤ µ‖wn − PC(wn − γlm
N∑
i=1

aiAiwn)‖.

This implies that (3.1) holds for all γlm ≤ ηµ, so τn is well defined.
Obviously, τn ≤ γ. If τn = γ, then this lemma is proved; otherwise, if

τn < γ. In this case, we find that
τn
l

dose not satisfy the search rule (3.1),

that is,

N∑
i=1

ai
τn
l
‖Aiwn −Ai(PC(wn −

τn
l

N∑
i=1

aiAiwn))‖

> µ‖wn − PC(wn −
τn
l

N∑
i=1

aiAiwn)‖;

combining this with Ai is ξi-inverse strongly monotone with η = min{ξi}, for
all i = 1, 2, ..., N , we obtain

τn > µlη.

This completes the proof. �

Lemma 3.2. Let H be a real Hilbert space, for every i = 1, 2, ..., N , let Ai :
H → H be ξi-inverse strongly monotone mappings with η = mini=1,2,...,N{ξi}.
Let {xn}∞n=1 be a sequence generated by Algorithm 1. Then

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− µ)‖yn − wn‖2 − (1− µ)‖zn − yn‖2

for all p ∈
⋂N
i=1 V I(C,Ai), where

∑N
i=1 ai = 1 and 0 < ai < 1.

Proof. Since p ∈
⋂N
i=1 V I(C,Ai) ⊂ C ⊂ Qn, we have p ∈ V I(C,Ai) for every

i = 1, 2, ..., N and Lemma 2.2 (i), we obtain

‖zn − p‖2 = ‖PQn(wn − τn
N∑
i=1

aiAiyn)− PQnp‖2

≤ 〈PQn(wn − τn
N∑
i=1

aiAiyn)− PQnp, wn − τn
N∑
i=1

aiAiyn − p〉

= 〈zn − p, wn − τn
N∑
i=1

aiAiyn − p〉
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=
1

2
‖zn − p‖2+

1

2
‖wn − τn

N∑
i=1

aiAiyn − p‖2−
1

2
‖zn − wn + τn

N∑
i=1

aiAiyn‖2

=
1

2
‖zn − p‖2 +

1

2
[‖wn − p‖2 + τ2

n‖
N∑
i=1

aiAiyn‖2 − 2〈wn − p, τn
N∑
i=1

aiAiyn〉]

− 1

2
[‖zn − wn‖2 + τ2

n‖
N∑
i=1

aiAiyn‖2 − 2〈zn − wn, τn
N∑
i=1

aiAiyn〉]

=
1

2
‖zn − p‖2 +

1

2
‖wn − p‖2 −

1

2
‖zn − wn‖2 − 〈zn − p, τn

N∑
i=1

aiAiyn〉.

It implies that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − p, τn
N∑
i=1

aiAiyn〉. (3.3)

From monotonicity of
∑N

i=1 aiAi, we have

2τn〈
N∑
i=1

aiAiyn −
N∑
i=1

aiAip, yn − p〉 ≥ 0. (3.4)

From (3.3) and (3.4), we get

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − p, τn
N∑
i=1

aiAiyn〉

≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − yn + yn − p, τn
N∑
i=1

aiAiyn〉

+ 2τn〈
N∑
i=1

aiAiyn −
N∑
i=1

aiAip, yn − p〉

= ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − yn, τn
N∑
i=1

aiAiyn〉

− 2〈yn − p, τn
N∑
i=1

aiAiyn〉+ 2τn〈
N∑
i=1

aiAiyn −
N∑
i=1

aiAip, yn − p〉
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= ‖wn − p‖2 − ‖zn − wn‖2 + 2〈yn − zn, τn
N∑
i=1

aiAiyn〉

− 2〈yn − p, τn
N∑
i=1

aiAiyn〉+ 2τn〈
N∑
i=1

aiAiyn −
N∑
i=1

aiAip, yn − p〉

= ‖wn − p‖2 − ‖zn − wn‖2

+ 2〈yn − zn, τn
N∑
i=1

aiAiyn − τn
N∑
i=1

aiAiwn + τn

N∑
i=1

aiAiwn〉

− 2〈yn − p, τn
N∑
i=1

aiAip〉

= ‖wn − p‖2 − ‖zn − wn‖2 + 2τn〈yn − zn,
N∑
i=1

aiAiyn −
N∑
i=1

aiAiwn〉

+ 2τn〈yn − zn,
N∑
i=1

aiAiwn〉 − 2τn〈yn − p,
N∑
i=1

aiAip〉. (3.5)

We estimate 2τn〈yn − zn,
∑N

i=1 aiAiyn −
∑N

i=1 aiAiwn〉. It follows that

2τn〈yn − zn,
N∑
i=1

aiAiyn −
N∑
i=1

aiAiwn〉

≤ 2τn‖
N∑
i=1

aiAiyn −
N∑
i=1

aiAiwn‖‖yn − zn‖

≤ 2τn

N∑
i=1

ai‖Aiyn −Aiwn‖‖yn − zn‖

≤ 2µ‖yn − wn‖‖yn − zn‖
≤ µ‖yn − wn‖2 + µ‖yn − zn‖2. (3.6)

As yn = PC(wn − τn
∑N

i=1 aiAiwn) and zn ∈ Qn, we have

0 ≥ 〈wn − τn
N∑
i=1

aiAiwn − yn, zn − yn〉

= 〈wn − yn, zn − yn〉 − τn〈
N∑
i=1

aiAiwn, zn − yn〉.
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This implies that

2τn〈
N∑
i=1

aiAiwn, yn − zn〉 ≤ 2〈wn − yn, yn − zn〉

= ‖zn − wn‖2 − ‖yn − wn‖2 − ‖zn − yn‖2. (3.7)

Using (3.6) and (3.7), we deduce in (3.5) that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 + 2τn〈yn − zn,
N∑
i=1

aiAiyn −
N∑
i=1

aiAiwn〉

+ 2τn〈yn − zn,
N∑
i=1

aiAiwn〉 − 2τn〈yn − p,
N∑
i=1

aiAip〉

≤ ‖wn − p‖2 − ‖zn − wn‖2 + µ‖yn − wn‖2 + µ‖yn − zn‖2

+ ‖zn − wn‖2 − ‖yn − wn‖2 − ‖zn − yn‖2−2τn〈yn − p,
N∑
i=1

aiAip〉

= ‖wn − p‖2 − (1− µ)‖yn − wn‖2 − (1− µ)‖zn − yn‖2

− 2τn〈yn − p,
N∑
i=1

aiAip〉. (3.8)

Sine p ∈
⋂N
i=1 V I(C,Ai) and Remark 2.8, we obtain 〈yn− p,

∑N
i=1 aiAip〉 ≥ 0.

From (3.8) and 〈yn − p,
∑N

i=1 aiAip〉 ≥ 0, we have

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− µ)‖yn − wn‖2 − (1− µ)‖zn − yn‖2.

�

Theorem 3.3. Let H be a real Hilbert space. For i = 1, 2, ..., N , let Ai : H →
H be ξi-inverse strongly monotone mappings with η = mini=1,2,...,N{ξi} and
let T : H → H be a nonexpansive mapping with

Γ =
N⋂
i=1

V I(C,Ai) ∩ F (T ) 6= ∅.

Let {xn} be a sequence generated by Algorithm 1, where rn is the residual

vector, {αn}, {βn} ⊂ [0, 1] such that αn + βn ≤ 1 ,
∑N

i=1 ai = 1, 0 < ai < 1.
Assume that conditions (i)− (iv) hold. Then {xn} converges weakly to z ∈ Γ
and furthermore,

z = lim
n→∞

PΓxn.
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Proof. First, we must show that {xn} is bounded.

Let p ∈
⋂N
i=1 V I(C,Ai) ∩ F (T ). From the definition of wn, we have

‖wn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖. (3.9)

From Lemma 3.2, we have

‖zn − p‖ ≤ ‖wn − p‖. (3.10)

From the definition of xn, Lemma 2.5 (iii), (3.9) and (3.10), we have

‖xn+1 − p‖ = ‖αnwn + βnTzn + rn − p‖
= ‖αn(wn − p) + βn(Tzn − p) + rn − (1− αn − βn)p‖
≤ αn‖wn − p‖+ βn‖Tzn − p‖+ ‖rn − (1− αn − βn)p‖
= αn‖wn − p‖+ βn‖Tzn − p‖

+ ‖(1− αn − βn)rn − (1− αn − βn)p+ (αn + βn)rn‖
≤ αn‖wn − p‖+ βn‖zn − p‖+ (1− αn − βn)‖rn − p‖

+ (αn + βn)‖rn‖
≤ αn‖wn − p‖+ βn‖wn − p‖+ (1− αn − βn)‖rn − p‖

+ (αn + βn)‖rn‖
= (αn + βn)‖wn − p‖+ (1− αn − βn)‖rn − p‖+ (αn + βn)‖rn‖
≤ ‖wn − p‖+ (1− αn − βn)‖rn − p‖+ ‖rn‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖+ (1− αn − βn)‖rn − p‖+ ‖rn‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖+ (1− αn − βn)M + ‖rn‖, (3.11)

for some M > 0. Applying Lemma 2.6 and using conditions (i), (ii) and
(iii), we have limn→∞ ‖xn − p‖ exists. In particular, this implies that {xn} is
bounded.

Next, we show that limn→∞ ‖xn − yn‖ = 0.
From the definition of wn and Lemma 2.5 (ii), we obtain

‖wn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

≤ ‖xn − p‖2 + 2θn〈xn − xn−1, wn − p〉
≤ ‖xn − p‖2 + 2θn‖xn − xn−1‖‖wn − p‖. (3.12)

From the definition of xn, Lemma 2.5 (ii), Lemma 3.2 and (3.12), we have
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‖xn+1 − p‖2 = ‖αnwn + βnTzn + rn − p‖2

= ‖αn(wn − p) + βn(Tzn − p) + rn − (1− αn − βn)p‖2

≤ ‖αn(wn − p) + βn(Tzn − p)‖2

+ 2〈rn − (1− αn − βn)p, xn+1 − p〉
= αn(αn + βn)‖wn − p‖2 + βn(αn + βn)‖Tzn − p‖2

− αnβn‖wn − p− (Tzn − p)‖2

+ 2〈rn − (1− αn − βn)p, xn+1 − p〉
≤ αn(αn + βn)‖wn − p‖2 + βn(αn + βn)‖zn − p‖2

− αnβn‖wn − Tzn‖2 + 2〈rn − (1− αn − βn)p, xn+1 − p〉
≤ αn(αn + βn)‖wn − p‖2 + βn(αn + βn)

× [‖wn − p‖2 − (1− µ)‖yn − wn‖2 − (1− µ)‖zn − yn‖2]

− αnβn‖wn − Tzn‖2 + 2〈rn − (1− αn − βn)p, xn+1 − p〉
= (αn + βn)2‖wn − p‖2 − βn(αn + βn)(1− µ)‖yn − wn‖2

− βn(αn + βn)(1− µ)‖zn − yn‖2 − αnβn‖wn − Tzn‖2

+ 2〈rn − (1− αn − βn)p, xn+1 − p〉
≤ ‖wn − p‖2 − βn(αn + βn)(1− µ)‖yn − wn‖2

− βn(αn + βn)(1− µ)‖zn − yn‖2 − αnβn‖wn − Tzn‖2

+ 2〈(1− αn − βn)rn−(1− αn − βn)p+ (αn+βn)rn, xn+1 − p〉
= ‖wn − p‖2 − βn(αn + βn)(1− µ)‖yn − wn‖2

− βn(αn + βn)(1− µ)‖zn − yn‖2 − αnβn‖wn − Tzn‖2

+ 2(1− αn − βn)〈rn − p, xn+1 − p〉+2(αn + βn)〈rn, xn+1 − p〉
≤ ‖wn − p‖2 − βn(αn + βn)(1− µ)‖yn − wn‖2

− βn(αn + βn)(1− µ)‖zn − yn‖2 − αnβn‖wn − Tzn‖2

+ 2(1− αn − βn)‖rn − p‖‖xn+1 − p‖
+ 2(αn + βn)‖rn‖‖xn+1 − p‖
≤ ‖xn − p‖2 + 2θn‖xn − xn−1‖‖wn − p‖
− βn(αn + βn)(1− µ)‖yn − wn‖2

− βn(αn + βn)(1− µ)‖zn − yn‖2 − αnβn‖wn − Tzn‖2

+ [2(1− αn − βn)‖rn − p‖+ 2(αn + βn)‖rn‖]‖xn+1 − p‖.

It implies that
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βn(αn + βn)(1− µ)‖yn − wn‖2

+ βn(αn + βn)(1− µ)‖zn − yn‖2 + αnβn‖wn − Tzn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2θn‖xn − xn−1‖‖wn − p‖
+ [2(1− αn − βn)‖rn − p‖+ 2(αn + βn)‖rn‖]‖xn+1 − p‖. (3.13)

From (3.13), limn→∞(‖xn − p‖2 − ‖xn+1 − p‖2) = 0, condition (ii), (iii) and
(iv), we have

lim
n→∞

‖yn − wn‖2 = lim
n→∞

‖zn − yn‖2 = lim
n→∞

‖wn − Tzn‖2 = 0. (3.14)

Since

‖xn − yn‖ ≤ ‖xn − wn‖+ ‖wn − yn‖
= ‖xn − (xn + θn(xn − xn−1))‖+ ‖wn − yn‖
= θn‖xn − xn−1‖+ ‖wn − yn‖,

condition (ii) and (3.14), we obtain

lim
n→∞

‖xn − yn‖ = 0. (3.15)

Since

‖xn − wn‖ ≤ ‖xn − yn‖+ ‖yn − wn‖,

(3.14) and (3.15), we have

lim
n→∞

‖xn − wn‖ = 0. (3.16)

Since

‖xn − zn‖ ≤ ‖xn − yn‖+ ‖yn − zn‖,

(3.14) and (3.15), we get

lim
n→∞

‖xn − zn‖ = 0. (3.17)

From (3.14), (3.17) and

‖Tzn − zn‖ ≤ ‖Tzn − wn‖+ ‖wn − zn‖
≤ ‖Tzn − wn‖+ ‖wn − yn‖+ ‖yn − zn‖,

we have

lim
n→∞

‖Tzn − zn‖ = 0. (3.18)

Now, we have to show that {xn} converge weakly to z ∈ Γ and z =
limn→∞ PΓxn, that is, it has a least one weak accumulation point. If ε is a
weak limit point of some subsequence {xnj} of {xn}, then xnj ⇀ ε as j →∞.
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From (3.17) and xnj ⇀ ε as j →∞, we have znj ⇀ ε as j →∞. From (3.17)
and Lemma 2.4, we obtain

ε ∈ F (T ). (3.19)

From (3.16) and xnj ⇀ ε as j →∞, we have wnj ⇀ ε as j →∞.
On the other hand, since ‖xn − yn‖ → 0 as n → ∞ implies that ynj ⇀ p

and since ynj ∈ C, we have ε ∈ C. For all x ∈ C and using the property of

the projection PC , we have (
∑N

i=1 aiAi is monotone by Remark 2.5 in [17])

0 ≤ 〈ynj − xnj + τnj

N∑
i=1

aiAixnj , x− ynj 〉

= 〈ynj − xnj , x−ynj 〉+τnj 〈
N∑
i=1

aiAixnj , xnj−ynj 〉+τnj 〈
N∑
i=1

aiAixnj , x−xnj 〉

≤ 〈ynj − xnj , x−ynj 〉+τnj 〈
N∑
i=1

aiAixnj , xnj−ynj 〉+τnj 〈
N∑
i=1

aiAixnj , x−xnj 〉

Let j →∞, using (3.15) and the facts τn > min{γ, µlη} for all n ∈ N, we get

〈
N∑
i=1

aiAiε, x− ε〉 ≥ 0, ∀x ∈ C.

This implies that ε ∈ V I(C,
∑N

i=1 aiAi). Applying Remark 2.8, we have

ε ∈
N⋂
i=1

V I(C,Ai). (3.20)

From (3.19) and (3.20), we have ε ∈
⋂N
i=1 V I(C,Ai) ∩ F (T ) = Γ.

In order to show that the entire sequence {xn} weakly converges to ε, assume

xnj ⇀ ε′ as j →∞, with ε′ 6= ε and ε′ ∈
⋂N
i=1 V I(C,Ai) ∩ F (T ).

By Opial’s property, we have

lim
n→∞

‖xn − ε‖ = lim inf
j→∞

‖xnj − ε‖

< lim inf
j→∞

‖xnj − ε′‖

= lim
n→∞

‖xn − ε′‖

= lim inf
j→∞

‖xnj − ε′‖

< lim inf
j→∞

‖xnj − ε‖

= lim
n→∞

‖xn − ε‖.
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This is a contradiction, thus ε = ε′. This implies that the sequence {xn}
converge weakly to the same point ε ∈ Γ.

Finally, if we take

un = PΓxn, (3.21)

then by (3.11) and Lemma 2.9, we have {PΓxn} converges strongly to some
z ∈ Γ. From (3.21) and Lemma 2.1, we get

〈xn − un, un − ε〉 ≥ 0, ∀ε ∈ Γ.

Take n→∞, we have

〈ε− z, z − ε〉 ≥ 0,

and hence z = ε. Therefore {PΓxn} converges strongly to ε ∈ Γ, this completes
the proof. �

Remark 3.4. It is worth mentioning that there are some advantages of our
main result as follows:

(1) Theorem 3.3 is more convenient than the results of Kheawborisut and
Kangtunyakarn [17] in practice. In fact, we do not require to know the
constant of inverse strongly monotone operators which is not easy in
computation.

(2) The traditional “Two Cases Method” which is widely used in various
studies in order to guarantee convergence analysis (See, for example,
[17, 22]), is not used in proof of Theorem 3.3.

Taking A ≡ Ai for all i = 1, 2, 3, ..., N and rn = 0 in Theorem 3.3, then we
have the following corollary:

Corollary 3.5. Let H be a real Hilbert space. Let A : H → H be an α-inverse
strongly monotone mapping and let T : H → H be a nonexpansive mapping
with

Γ̄ = V I(C,A) ∩ F (T ) 6= ∅.
Let {wn}, {yn}, {zn} and {xn} be sequences generated by x0, x1 ∈ H and

wn = xn + θn(xn − xn−1),

yn = PC(wn − τnAwn),

Qn := {z ∈ H : 〈wn − τnAwn − yn, yn − z〉 ≥ 0},
zn = PQn(wn − τnAyn),

xn+1 = αnwn + βnTzn, ∀n ≥ 1,

(3.22)

where τn is chosen to be largest τ ∈ {γ, γl, γl2, ...} satisfying

τ‖Awn −Ayn‖ ≤ µ‖wn − yn‖,
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and {αn}, {βn} ⊂ [0, 1] with αn + βn ≤ 1, γ > 0, l ∈ (0, 1) and µ ∈ (0, 1).
Suppose the following conditions hold:

(i) there are c, d > 0 with 0 < c ≤ βn ≤ d < 1 for all n ≥ 1;

(ii) limn→∞ θn‖xn − xn−1‖ = 0;

(iii)
∑∞

n=1(1− αn − βn) <∞.

Then {xn} converges weakly to z ∈ Γ̄ and furthermore,

z = lim
n→∞

PΓ̄(xn).

Remark 3.6. We remark that Corollary 3.5 is modified from Algorithm 1 in
[31] in the following aspects:

(1) From a monotone and Lipschitz continuous operator to a inverse strongly
monotone operator.

(2) From a quasi-nonexpansive mapping to a nonexpansive mapping.

4. Application

In this section, we introduce a weak convergence theorem for finding a com-
mon element of the set of a finite family of variational inequalities problems
and the solution of the modification of system of variational inequality prob-
lems using our main result Theorem 3.3.

In 2013, Kangtunyakarn [15] introduced a modification of system of varia-
tional inequalities as follows: finding (x∗, z∗) ∈ C × C such that

{
〈x∗ − (I − λ1D1)(ax∗ + (1− a)z∗), x− x∗〉 ≥ 0, ∀x ∈ C,
〈z∗ − (I − λ2D2)x∗, x− z∗〉 ≥ 0, ∀x ∈ C, (4.1)

where D1, D2 : C → H be two mappings, for every λ1, λ2 ≥ 0 and a ∈ [0, 1].

Lemma 4.1. ([15]) Let C be a nonempty closed convex subset of a real Hilbert
space H and let D1, D2 : C → H be mappings. Then, for every λ1, λ2 > 0 and
b ∈ [0, 1], the following statements are equivalent:

(1) (x∗, z∗) ∈ C × C is a solution of problem (4.1),

(2) x∗ is a fixed point of mapping Ĝ : C → C, i.e., x∗ ∈ F (Ĝ), defined by

Ĝ(x) = PC(I − λ1D1)(bx+ (1− b)PC(I − λ2D2)x), (4.2)

where z∗ = PC(I − λ2D2)x∗. Moreover Ĝ is nonexpansive mapping.
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Algorithm 2:

Initialization: Let x0, x1 ∈ H be arbitrary. Given γ > 0,
l ∈ (0, 1), µ ∈ (0, 1),

∑N
i=1 ai = 1, 0 < ai < 1, λ1 ∈ (0, 2d1), λ2 ∈ (0, 2d2).

Iterative Steps: Calculate xn+1 as follows:

Step 1: Set wn = xn + θn(xn − xn−1) and compute

yn = PC(wn − τn
N∑
i=1

aiAiwn),

where τn is chosen to be largest τ ∈ {γ, γl, γl2, ...} satisfying

τ
N∑
i=1

ai‖Aiwn −Aiyn‖ ≤ µ‖wn − yn‖.

Step 2: Compute

zn = PQn(wn − τn
N∑
i=1

aiAiyn),

where Qn := {z ∈ H : 〈wn − τn
∑N

i=1 aiAiwn − yn, yn − z〉 ≥ 0}.
Step 3: Compute

xn+1 = αnwn + βnĜzn + rn. (4.3)

Set n := n+ 1 and go to Step 1.

Theorem 4.2. Let H be a real Hilbert space. For i = 1, 2, ..., N , let Ai : H →
H be ξi-inverse strongly monotone mappings with η = mini=1,2,...,N{ξi} and let
D1, D2 : C → H be d1, d2-inverse strongly monotone mappings, respectively.

Define the mapping Ĝ : H → H by (4.2). Assume that

Ω =

N⋂
i=1

V I(C,Ai) ∩ F (Ĝ) 6= ∅.

Let {xn} be a sequence generated by Algorithm 2, where rn is the residual

vector,
∑N

i=1 ai = 1, 0 < ai < 1, {αn}, {βn} ⊂ [0, 1] such that αn + βn ≤ 1,
λ1 ∈ (0, 2d1), λ2 ∈ (0, 2d2) and b ∈ [0, 1]. Suppose the following conditions
hold:

(i) there are c, d > 0 with 0 < c ≤ βn ≤ d < 1 for all n ≥ 1;
(ii) limn→∞ θn‖xn − xn−1‖ = 0;

(iii)
∑∞

n=1(1− αn − βn) <∞;
(iv)

∑∞
n=1 ‖rn‖ <∞.
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Then {xn} converges weakly to z ∈ Ω and furthermore,

z = lim
n→∞

PΩxn.

Proof. Putting T ≡ Ĝ in Theorem 3.3, we obtain the desired conclusion. �

5. Example and numerical results

The following examples are provided in this section to illustrate our main
theorem.

Example 5.1. Let H = R2 be the two dimensional space of real numbers with
an inner product 〈·, ·〉 : R2 ×R2 → R defined by 〈x,y〉 = x · y = x1y1 + x2y2

and a usual norm || · || : R2 × R2 → R give by ||x|| =
√
x2

1 + x2
2 for all

x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2.
Let

C1 = {(x1, x2) ∈ H| − 2x1 + x2 ≤ 1}
and

C2 = {(x1, x2) ∈ H|4x1 − 2x2 ≤ 3} .
Define the mapping A1 : C1 → R2 by A1(x1, x2) = (3x1

2 , 3x2
2 ). Define

the mapping A2 : C2 → R2 by A2(x1, x2) = (2x1, 2x2). Let the mapping
T : R2 → R2 defined by T (x1, x2) = (x12 ,

x2
2 ). Let C = C1 ∩ C2. Also, it is

well known that

PC(x1, x2) =



(−1999x1 + 1000x2 + 750, 4000x1 − 1999x2 − 1500),

if − 40x1 + 20x2 < −15;

(x1, x2),

if − 15 ≤ −40x1 + 20x2 ≤ 5;

(−1999x1 + 1000x2 − 250, 4000x1 − 1999x2 − 500),

if − 40x1 + 20x2 > 5.

Let x0 = (x0
1, x

0
2),x1 = (x1

1, x
1
2) ∈ R2, and {xn} be a sequence generated by

Algorithm 1. Let {θn} = 1
n3 , {αn} = 1

n+1 , {βn} = 1 − 2
n+1 ⊂ [0, 1] and

a = 0.5 ∈ (0, 1). Show that {xn} converge strongly to 0 = (0, 0).
In fact, since A1 and A2 are 2

3 and 1
2 -inverse strongly monotone mappings,

respectively, then η = 1
2 . From definition of T , we have T is nonexpansive

mapping. It is easy to see that the sequences {θn} , {αn} and {βn} satisfy all
conditions in Theorem 3.3 and

(0, 0) ∈ V I(C,A1) ∩ V I(C,A2) ∩ F (T ).

From Theorem 3.3, we can conclude that the sequence {xn} converge strongly
to (0, 0). The numerical and graphical results of Example 5.1 are shown in
Table 1 and Figure 1.



Krasnoselskii-type subgradient extragradient 413

n xn1 xn2
0 5.0000 4.0000
1 4.0000 3.0000
2 1.9062 1.8568
3 0.8894 1.0890
...

...
...

14 0.0129 0.0177
Table 1. Computational results of xn = (xn1 , x

n
2 ) for Example

5.1 with x0 = (5, 4), x1 = (4, 3) and n = 14.

Figure 1. The convergence behaviour of xn = (xn1 , x
n
2 ) for

Example 5.1 with x0 = (5, 4), x1 = (4, 3) and n = 14.

Next, we consider the problem in the infinite-dimensional Hilbert space
(L2).

Example 5.2. Let H = L2([−1, 1]) with product 〈f, g〉 =
∫ 1
−1 f(t)g(t)dt and

the associated norm given as ||f || :=
√∫ 1
−1 f(t)g(t)dt for all f, g ∈ L2([−1, 1]).

Take C = {x ∈ H : ||x|| ≤ 2}. Define the mappingA1 : L2([−1, 1])→ L2([−1, 1])
byA1(h(t)) = h(t)−2t for all t ∈ [−1, 1]. Define the mappingA2 : L2([−1, 1])→
L2([−1, 1]) by A2(h(t)) = 3

2h(t) − 3t for all t ∈ [−1, 1]. Let the mapping

T : L2([−1, 1])→ L2([−1, 1]) defined by T (h(t)) = h(t)
16 −

15t
8 for all t ∈ [−1, 1].

Also, it is well known that

PC(f(t)) =

{
f(t), if ||f(t)|| ≤ 2;
2f(t)
||f(t)|| , if ||f(t)|| > 2.
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Let x0, x1 ∈ L2 and {xn} be a sequence generated by Algorithm 1. Let
{θn} = 1

n3 , {αn} = 1
n+1 , {βn} = 1− 2

n+1 ⊂ [0, 1] and a = 0.5 ∈ (0, 1). Show

that {xn} and {yn} converge strongly to 2t for all t ∈ [−1, 1].
Since A1 and A2 are 2

3 and 1
2 -inverse strongly monotone mappings, respec-

tively, then η = 1
2 . From definition of T , T is nonexpansive mapping. It is

easy to see that the sequences {θn} , {αn} and {βn} satisfy all conditions in
Theorem 3.3 and 2t ∈ V I(C,A1) ∩ V I(C,A2) ∩ F (T ). From Theorem 3.3, we
can conclude that the sequence {xn} converge strongly to 2t. The numerical
and graphical results of Example 5.1 are shown in Table 2 and Figure 2.

n E(xn)
1 8.0000
2 2.7406
3 0.5499
4 0.1110
...

...
14 0.0094

Table 2. Computational results of E(xn) for Example 5.2
with x0 = −3t, x1 = 5t and n = 14.

Figure 2. The convergence behaviour of E(xn) for Example
5.2 with x0 = −3t, x1 = 5t and n = 14.

We next give a comparison between Algorithm (3.22) in Corollary 3.5 and
Algorithm 1 in [31].
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Example 5.3. Let H = R. Take C = [−1, 1]. Define the mapping A1 :
C1 → R by A1(x) = 3x

2 . Let the mapping T : R → R defined by T (x) = x
2 .

It is easy to see that the solution 0 ∈ V I(C,A1) ∩ F (T ) and moreover, A1 is
2
3 -inverse strongly monotone and T is nonexpansive mapping. The parameters
are chosen as follows:
Algorithm (3.22): θn = 1

n3 , αn = 1
n+1 , βn = 1− 2

n+1 , τn = 2
3 , rn = (1

3)n.

Algorithm 1 in [31]: αn = 1
n3 , βn = 1− 2

n+1 , τn = 2
3 .

We now make comparisons of two algorithms with the starting point x0 = 2
and x1 = 1. From Table 3 and Figure 3, it is observed that Algorithm (3.22)
is greatly better than Algorithm 1 in [31].

n xn : Algorithm (3.22) xn : Algorithm 1 in [31]
0 2.0000 2.0000
1 1.0000 1.0000
2 0.4028 0.2917
3 0.1322 0.1327
4 0.0379 0.0781
...

...
...

12 0.0000 0.0117
13 0.0000 0.0099

Table 3. Detailed analysis of computational methods (3.22)
and Algorithm 1 in [31] for Example 5.3 with x0 = 2, x0 = 1
and n = 13.

Figure 3. Comparison between algorithms 3.22 and Algo-
rithm 1 in [31] for Example 5.3 with x0 = 2, x1 = 1 and
n = 13.
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Remark 5.4. From our numerical experiments in Example 5.1, 5.2 and 5.3,
we make the following observations.

(1) Table 1 and Figure 1 show that {xn} converge strongly to (0, 0), where
(0, 0) ∈ V I(C,A1) ∩ V I(C,A2) ∩ F (T ). The convergence of {xn} of
Example 5.1 can be guaranteed by Theorem 3.3.

(2) Table 2 and Figure 2 show that {xn} converge strongly to 2t. The
convergence of {xn} of Example 5.2 can be guaranteed by Theorem
3.3.

(3) From Table 3 and Figure 3, we see that Algorithm (3.22) is greatly
better than Algorithm 1 in [31], in terms of the number of iterations.

6. Conclusion

We apply inertia technique and the Krasnoselskii-Mann algorithm to the
subgradient extragradient algorithm for solving a common element of the set
of a finite family of variational inequalities problems and the fixed point set
of a nonexpansive mapping in real Hilbert spaces. the weak convergence of
the algorithm has been proved. Furthermore, the constant of inverse strongly
monotone operators are not required as an input parameter in our algorithms.
Moreover, using our main result, we obtain the additional results involving
system of variational inequalities. Some computational results have been re-
ported to demonstrate the algorithm’s efficacy.
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