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Abstract. This paper is devoted to the existence of solutions for Kirchhoff type equations

with singular nonlinearities, sub-critical and critical exponent. By using the Nehari manifold

and Maximum principle theorem, the existence of at least two distinct positive solutions is

obtained.

1. Introduction

This paper deals with the existence and multiplicity of nontrivial solutions
to the following Kirchhoff problem:{

L (u) [−∆u+ bu] = |u|p−1 u+ µ |u|
−1−β

|x|α u in Ω,

u = 0 on ∂Ω,
(1.1)

where L (u) :=
(
a+ λ

∫
Ω |∇u|

2 + λb
∫

Ω u
2
)

, Ω is a smooth bounded domain

of R3, a, b > 0, p ∈ (3, 5], λ > 0, µ > 0, 0 < α < 3 (p+ β) /p and 0 < β < 1.
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In recent years, many authors have paid much attention to the following
Kirchhoff type problem:{

−
(
a+ b

∫
Ω |∇u|

2
)

∆u = f (x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω is a smooth bounded domain in R3, 0 ∈ Ω, a, b > 0 and f is a
suitable function containing singularities on x. See [1, 3, 4, 9, 13, 17, 19] and
the references therein for the existence and multiplicity of positive solutions
to (1.2). Mao and Luan [14, 15], Zhang and Perera [20] studied the existence
of sign-changing solutions of (1.2). When Ω = RN , in [11] Li and Shi showed
the existence of nontrivial solutions of the following problem with zero mass:{

−
(
a+ b

∫
RN |∇u|

2
)

∆u = h (x) f (u) in RN ,
u ∈ D1,2

(
RN
)
,

(1.3)

where D1,2
(
RN
)

is the closure of the compactly supported smooth functions

with respect to the norm
(∫

RN |∇u|
2dx
) 1

2 , the potential function h (x) is a

nonnegative continuous function, h ∈
[
Ls
(
RN
)
∩ L∞

(
RN
)]
\ {0} for some

s ≥ 2N/ (N + 2) and |x.∇h (x)| ≤ αh (x) for a.e. x ∈ RN and some α ∈ (0, 2).

Kirchhoff type problems are often referred to as being nonlocal because of
the presence of the term

∫
R3 |∇u|2dx which implies that the equation in (1.1)

is no longer a pointwise identity. It is analogous to the stationary case of
equations that arise in the study of string or membrane vibrations, namely,

utt −
(
a+ b

∫
Ω
|∇u|2dx

)
∆u = f (x, u) , (1.4)

where Ω ⊂ RN is a smooth bounded domain (N ≥ 3), u denotes the displace-
ment, f(x, u) is the external force and a is the initial tension while b is related
to the intrinsic properties of the string (such as Young’s modulus). Equations
of this type were first proposed by Kirchhoff in 1883 to describe the transversal
oscillations of a stretched string (see [10, 18]).

For N ≥ 3, a = 1, λ = 0, p = (N + 2) / (N − 2) in the problem (1.1),
El Mokhtar and Matallah [8] have shown the existence of multiple positive
solutions.

It is clear that these problems contribute to the transition from the academic
world to that of application. Indeed, very taken for its physical motivations,
the problem (1.1) is nothing other than a stationary version of the following
model which governs the behavior an elastic thread whose ends are fixed and
which is subjected to non-linear vibrations (1.4) in Ω × (0, T ) where T > 0,
a is the initial tension, b represents the Young’s modulus of the wire material
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and L its length. The latter is known to be an extension of the Alembert
wave equation. Indeed, Kirchhoff took into account the changes caused by the
transverse oscillations along the length of the wire.

Strengthened by their implications in other disciplines, and given the extent
of their fields of application, non-local problems will be used to model several
physical phenomena. They also occur in biological systems where u describes
a process depending on its mean such as the density of population.

Due to this significant impact reinforcing the field of applications, this type
of problem has perceived the interest of mathematicians and many works aim-
ing at the existence of solutions have emerged. In particular after the coup de
grace provided by the famous article by Lions [12] where the latter adopted an
approach based on functional analysis. Nevertheless, in most of these articles,
the favored method is purely topological.

It is only in recent decades that this approach has been abandoned in favor
of variational methods when Alves and his colleagues [1] obtained for the
first time times of existence results via these methods. Since then, there has
been a very fruitful boom which has given rise to a lot of work founding this
advantageous axis see [7, 11, 12].

Nonlocal effect also finds its applications in biological systems. A parabolic
version of (1.1) can, in theory, be used to describe the growth and movement of
a particular species. The movement, modelled by the integral term, is assumed
dependent on the “energy” of the entire system with u being its population
density. Alternatively, the movement of a particular species may be subject to
the total population density within the domain (for instance, the spreading of
bacteria) which gives rise to equations of the type (1.4). Chipot and Lovat [5]
and Correa et al. [6], for examples, studied the existence of solutions and their
uniqueness for such nonlocal problems as well as their corresponding elliptic
problems.

Before giving our main results, we state here some definitions, notations
and known results.

The space H = H1

0 (Ω) is equipped with the norm

‖u‖ =

(∫
Ω

(
|∇u|2 + b |u|2

)
dx

)1/2

.

Let S be the best Sobolev constant. Then

S = inf
u∈H1

0 (Ω)\{0}

‖u‖2(∫
Ω |u|

p+1 dx
)2/(p+1)

. (1.5)

From [9], S is achieved.
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The functional energy J of (1.1) is defined by

J (u) =
1

2
a ‖u‖2 +

1

4
λ ‖u‖4 − 1

p+ 1

∫
Ω
|u|p+1 dx− µ

1− β

∫
Ω

|u|1−β

|x|α
dx. (1.6)

We consider the following approximation equation:{
L (u) [−∆u+ bu] = |u|p−1 u+ µ |u+θ|−1−β

|x|α (u+ θ) in Ω,

u = 0 in ∂Ω,
(1.7)

for any θ > 0 (small another). The energy functional of (1.7) Jθ is defined by

Jθ (u) :=
1

2
a ‖u‖2 +

1

4
λ ‖u‖4 − 1

p+ 1

∫
Ω
|u|p+1 dx− µ

1− β

∫
Ω

|u+ θ|1−β

|x|α
dx.

(1.8)

According to an algebraic relation of Simon [16], the Holder inequality and
by (2.2), we obtain that Jθ is a C1−function on H = H1 (Ω) .

A point u ∈ H is a weak solution of the equation (1.1) if it satisfies〈
J
′
θ (u) , ϕ

〉
: =

(
λ ‖u‖2 + a

)∫
Ω

(∇u∇ϕ+ buϕ) dx

−
∫

Ω
|u|p−1 uϕdx− µ

∫
Ω

|u+ θ|1−β

|x|α
ϕdx (1.9)

= 0

for all ϕ ∈ H, where 〈., .〉 denotes the product in the duality H′ and H.
In our work, we research the critical points as the minimizers of the energy

functional associated to the problem (1.1) on the constraint defined by the
Nehari manifold, which are solutions of our problem.

Let µ∗ and µ∗∗ be positive numbers such that µ∗ = max (µ1, µ2) and µ∗∗ be
positive numbers such that

µ1 : =
(p− 1) a

(p+ β)A
S(1−β/2)

[
2
√

(1 + β) (3 + β) aλ

p+ β
S(p+1)/2

]β+1
p−2

,

µ2 : =
2
√

(p− 1) (p− 3) aλ

(p+ β)A
S(1−β)/2

[
a (1 + β)

p+ β
S(p+1)/2

]β+1
p−1

and

µ∗∗ : =
(p− 1)A

(p+ β) a

(
1− β

2

)(
1 + β

p+ β

) 3−β
p−1

S
2(p+1)2−4(p−1)2+(1+β)(p−1)2

2(p−1)(p+1) ,
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where

A =

[
4π (p+ β)

3 (p+ β)− α (p+ 1)

] p+β
p+1

R
3
p+1

(p+β)−α
0 > 0

with

0 ≤ α < 3

p+ 1
(p+ β) .

2. Preliminaries

Definition 2.1. Let c ∈ R, E a Banach space and I ∈ C1 (E,R).

(i) {un}n is a Palais-Smale sequence at level c ( in short (PS)c) in E for
I if

I (un) = c+ on (1) and I
′
(un) = on (1) ,

where on (1) tends to 0 as n goes at infinity.

(ii) We say that I satisfies the (PS)c condition if any (PS)c sequence in
E for I has a convergent subsequence.

Nehari manifold: It is well known that J is of class C1 inH and the solutions
of (1.1) are the critical points of J which is not bounded below on H. Consider
the following Nehari manifold (see, [1])

M =
{
u ∈ H\{0} :

〈
J
′
θ (u) , u

〉
= 0
}
.

Thus, u ∈M if and only if u ∈ H\{0} and

a ‖u‖2 + λ ‖u‖4 −
∫

Ω
|u|p+1 dx− µ

∫
Ω

|u+ + θ|1−β

|x|α
dx = 0. (2.1)

Note that M contains every nontrivial solution of the problem (1.1). In
order to obtain the first positive solution, we give the following important
lemmas.

Lemma 2.2. J is coercive and bounded from below on M.

Proof. Let R0 > 0 such that Ω ⊂ B (0, R0) =
{
x ∈ R3 : |x| < R0

}
. If u ∈ M,

then by (2.1), the Hölder inequality and for any θ > 0 (small another), we
obtain ∫

Ω

|u+ + θ|1−β

|x|α
dx ≤

[
4π (p+ β)

3 (p+ β)− α (p+ 1)

] p+β
p+1

(2.2)

×R
N
p+1

(p+β)−α
0 ‖u‖1−β (S)

−(1−β)
2 ,
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and we deduce that

Jθ (u) = ((p− 1) /2 (p+ 1)) a ‖u‖2 + ((p− 3) /4 (p+ 1))λ ‖u‖4

−µ ((p+ β) / (p+ 1) (1− β))

∫
Ω

|u+ + θ|1−β

|x|α
dx,

≥ ((p− 1) /2 (p+ 1)) a ‖u‖2 + ((p− 3) /4 (p+ 1))λ ‖u‖4

−µ ((p+ β) / (p+ 1) (1− β))A ‖u‖1−β (S)
−(1−β)

2

with

A =

[
4π (p+ β)

3 (p+ β)− α (p+ 1)

] p+β
p+1

R
3
p+1

(p+β)−α
0 > 0

for 0 ≤ α < 3
p+1 (p+ β) . Thus, Jθ is coercive and bounded from below on

M. �

Define

φ (u) =
〈
J
′
θ (u) , u

〉
.

Then, for u ∈M,〈
φ
′
(u) , u

〉
= 2a ‖u‖2 + 4λ ‖u‖4 − (p+ 1)

∫
Ω
|u|p+1 dx (2.3)

− µ (1− β)

∫
Ω

|u+ + θ|1−β

|x|α
dx

= (1 + β) a ‖u‖2 + (3 + β)λ ‖u‖4 − (p+ β)

∫
Ω
|u|p+1 dx

= µ (p+ β)

∫
Ω

|u+ + θ|1−β

|x|α
dx−

[
(p− 2) a ‖u‖2 + (p− 3)λ ‖u‖4

]
.

Now, we split M in three parts:

M+ =
{
u ∈M :

〈
φ
′
(u) , u

〉
> 0
}
,

M0 =
{
u ∈M :

〈
φ
′
(u) , u

〉
= 0
}
,

M− =
{
u ∈M :

〈
φ
′
(u) , u

〉
< 0
}
.

We have the following results.

Lemma 2.3. Suppose that u0 is a local minimizer for Jθ on M. If u0 /∈ M0

then, u0 is a critical point of Jθ.
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Proof. If u0 is a local minimizer for Jθ on M, then u0 is a solution of the
optimization problem

min
{u∈H\{0}/ φ(u)=0}

Jθ (u) .

Hence, there exists a Lagrange multipliers σ ∈ R such that

J
′
θ (u0) = σφ

′
(u0) in H′ .

Thus, 〈
J
′
θ (u0) , u0

〉
= σ

〈
φ
′
(u0) , u0

〉
.

But
〈
φ
′
(u0) , u0

〉
6= 0, since u0 /∈ M0. Hence σ = 0. This completes the

proof. �

Lemma 2.4. There exists a positive number µ∗ such that for all µ verifying

0 < µ < µ∗,

we have M0 = ∅.

Proof. Let us reason by contradiction. Suppose that M0 6= ∅ such that 0 <
µ < µ∗. Then, by (2.3) and for u ∈M0, we have

(1 + β) a ‖u‖2 + (3 + β)λ ‖u‖4 − (p+ β)

∫
Ω
|u|p+1 dx = 0 (∗)

and

µ (p+ β)

∫
Ω

|u+ + θ|1−β

|x|α
dx−

[
(p− 1) a ‖u‖2 + (p− 3)λ ‖u‖4

]
= 0. (∗∗)

Moreover, from (2.2) and since 2ab ≤ a2 + b2, by using Hölder and Sobolev
inequalities, we obtain

‖u‖ ≥

[
2
√

(1 + β) (3 + β) aλ

p+ β
S(p+1)/2

] 1
p−2

(2.4)

and

‖u‖ ≤

[
µ (p+ β)A

2
√

(p− 1) (p− 3) aλ
S−(1−β)/2

] 1
2+β

. (2.5)

On the other hand, from (∗) and (∗∗), the Hölder inequality and the Sobolev
embedding theorem, we also have, respectively

‖u‖ ≥
[
a (1 + β)

p+ β
S−(p+1)/2

] 1
p−1

(2.6)
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and

‖u‖ ≤
[
µ (p+ β)A

2 (p− 1) a
S−(1−β)/2

] 1
1+β

. (2.7)

From (2.4) and (2.7), we obtain

µ ≥ µ1 =
(p− 1) a

(p+ β)A
S(1−β/2)

[
2
√

(1 + β) (3 + β) aλ

p+ β
S(p+1)/2

] p+1
p−2

,

and from (2.5) and (2.6), we obtain

µ ≥ µ2 =
2
√

(p− 1) (p− 3) aλ

(p+ β)A
S(1−β)/2

[
a (1 + β)

p+ β
S(p+1)/2

]β+1
p−1

.

Thus, µ ≥ µ∗ = max (µ1, µ2), which contradicts our hypothesis. �

We know that s M =M+ ∪M−. Define

c := inf
u∈M

Jθ (u) , c+ := inf
u∈M+

Jθ (u) and c− := inf
u∈M−

Jθ (u) .

For the sequel, we need the following lemma.

Lemma 2.5. (i) For all µ such that 0 < µ < µ∗, one has c ≤ c+ < 0.
(ii) There exists µ∗∗ defined in Theorem 3.7 such that for all λ such that

0 < µ < µ∗∗, one has

c− > C0 = C0 (λ, S, β) .

Proof. (i) Let u ∈M+. By (2.3), we have

1 + β

p+ β
a ‖u‖2 +

3 + β

p+ β
λ ‖u‖4 >

∫
Ω
|u|p+1 dx

and so, since p > 3 and 0 < β < 1,

Jθ (u) <
− (1 + β)

2 (1− β)
a ‖u‖2 − (3 + β)

4 (1− β)
λ ‖u‖4 +

p+ β

(p+ 1) (1− β)

∫
Ω
|u|p+1 dx

< −
[

(p− 1) (1 + β)

2 (p+ 1) (1− β)
a ‖u‖2 +

(p− 3) (3 + β)

4 (p+ 1) (1− β)
λ ‖u‖4

]
< 0

Then, we conclude that c ≤ c+ < 0.

(ii) Let u ∈M−. By (2.3), we get

1 + β

p+ β
a ‖u‖2 +

3 + β

p+ β
λ ‖u‖4 <

∫
Ω
|u|p+1 dx.



Kirchhoff type equations with singular nonlinearities 427

Moreover, by Sobolev embedding theorem, we have∫
Ω
|u|p+1 dx ≤ S−(p+1)/2 ‖u‖p+1 .

This implies

‖u‖ > S
p+1

2(p−1)

[
1 + β

p+ β
a

] 1
p−1

for all u ∈M−. (2.8)

By (2.2), we get J (u) ≥ C0 for all µ such that

0 < µ < µ∗∗

=
(p− 1)A

(p+ β) a

(
1− β

2

)(
1 + β

p+ β

) 3−β
p−1

S
2(p+1)2−4(p−1)2+(1+β)(p−1)2

2(p−1)(p+1) .

�

Proposition 2.6. ([2]) (i) For all µ such that 0 < µ < µ∗, there exists a
(PS)c+ sequence in M+.

(ii) For all µ such that 0 < µ < µ∗∗, there exists a (PS)c− sequence in M−
and for each u ∈ H\{0}, we write

tM := tmax (u) =

[
(p+ 1) (1 + β) a ‖u‖2

(p+ β)
∫

Ω |u|
p+1 dx

] 1
p−1

> 0.

Lemma 2.7. Let λ real parameter such that 0 < µ < µ∗. For each u ∈ H\{0},
there exist unique t+ and t− such that 0 < t+ < tM < t−,

(t+u) ∈M+, (t−u) ∈M−

Jθ
(
t+u
)

= inf Jθ (tu) for 0 ≤ t ≤ tM ,

and

Jθ
(
t−u
)

= sup Jθ (tu) for t ≥ 0.

Proof. With minor modifications, we refer to [4]. �

3. Main Results

Proposition 3.1. For all µ such that 0 < µ < µ∗, the functional Jθ has a
minimizer u+

0 ∈M+ and it satisfies:

(i) Jθ
(
u+

0

)
= c = c+,

(ii) u+
0 is a nontrivial solution of (1.1).
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Proof. If 0 < µ < µ∗, then by Proposition 2.6 (i) there exists a (PS)c+ se-
quence {un} in B̄R ⊂M+ and it bounded by Lemma 2.2. Then, there exists
u+

0 ∈ H and we can extract a subsequence which will denoted by {un} such
that

un ⇀ u+
0 weakly in H, (3.1)

un → u+
0 strongly in L1−β (Ω, |x|−α) ,

un → u+
0 a.e in Ω.

By (2.2) and (3.1), we have

lim
n−→∞

∫
Ω

|un + θ|1−β un
|x|α

dx =

∫
Ω

∣∣u+
0 + θ

∣∣1−β u+
0

|x|α
dx+ o (1) .

Thus, by (3.1), u+
0 is a weak nontrivial solution of (1.1).

Now, we show that {un} converges to u+
0 strongly in H. Suppose otherwise.

By the lower semi-continuity of the norm, then either
∥∥u+

0

∥∥ < lim inf
n−→∞

‖un‖ and

we obtain

c ≤ Jθ
(
u+

0

)
=

p− 1

2 (p+ 1)
a
∥∥u+

0

∥∥2
+

p− 3

4 (p+ 1)
λ
∥∥u+

0

∥∥4

−µ p+ β

(p+ 1) (1− β)

∫
Ω

∣∣u+
0 + θ

∣∣1−β u+
0

|x|α
dx

< lim inf
n−→∞

J (un)

= c.

We get a contradiction. Therefore, {un} converge to u+
0 strongly in H. More-

over, we have u+
0 ∈M+. If not, then by Lemma 2.7, there are two numbers t+0

and t−0 , uniquely defined so that t+0 u
+
0 ∈M+ and t−u+

0 ∈M−. In particular,
we have t−0 < t+0 = 1. Since

d

dt
Jθ
(
tu+

0

)
�t=t+0

= 0 and
d2

dt2
Jθ
(
tu+

0

)
�t=t+0

> 0,

there exists t−0 < t− ≤ t+0 such that Jθ
(
t−0 u

+
0

)
< Jθ

(
t+u+

0

)
. By Lemma 2.7,

we get

Jθ
(
t−0 u

+
0

)
< Jθ

(
t−u+

0

)
< Jθ

(
t+0 u

+
0

)
= Jθ

(
u+

0

)
,

which contradicts the fact that Jθ
(
u+

0

)
= c+. Since Jθ

(
u+

0

)
= Jθ

(∣∣u+
0

∣∣) and∣∣u+
0

∣∣ ∈M+, by Lemma 2.3, we may assume that u+
0 is a nontrivial nonnegative

solution of (1.1). By the Harnack inequality, we conclude that u+
0 > 0, see for

example [18]. �
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Our first main result is follow:

Theorem 3.2. Assume that p ∈ (3, 5], 0 ≤ α < 3
p+1 (p+ β), 0 < β < 1,

a, b > 0, λ > 0 and µ verifying 0 < µ < µ∗. Then the system (1.1) has at least
one positive solutions.

Proof. Now, taking as a starting point the work of Tarantello [19], we establish
the existence of a local minimum for Jθ on M+. �

Next, we establish the existence of a local minimum for Jθ on M−. For
this, we require the following lemmas.

Lemma 3.3. Let {un} be a (PS)c sequence for Jθ for some c ∈ R with

un ⇀ u in H. Then, J
′
θ (u) = 0 and Jθ (u) ≥ −µ

2
1+βC (a, p, β,A, S), with

C (a, p, β,A, S) > 0, where

C (a, p, β,A, S) =
p− 1

2 (p+ 1)
a
[(p+ β)A

(p− 1)a

] 2
1+p 2

1− β
S
−(1−β)
1+β .

Proof. It easy to prove that J
′
θ (u) = 0, which implies that

〈
J
′
θ (u) , u

〉
= 0,

and

a ‖u‖2 + λ ‖u‖4 −
∫

Ω
|u|p+1 dx− µ

∫
Ω

|u+ + θ|1−β

|x|α
dx = 0.

Therefore,

Jθ
(
u+
)

=
p− 1

2 (p+ 1)
a
∥∥u+

∥∥2
+

p− 3

4 (p+ 1)
λ
∥∥u+

∥∥4

−µ p+ β

(p+ 1) (1− β)

∫
Ω

|u+ + θ|1−β

|x|α
dx.

From (2.2) and considering ‖u‖ small another, we get∫
Ω

|u+ + θ|1−β

|x|α
dx ≤

[
4π (p+ β)

3 (p+ β)− α (p+ 1)

] p+β
p+1

(3.2)

×R
N
p+1

(p+β)−α
0 ‖u‖1−β (S)

−(1−β)
2 ,

which implies that

Jθ (u) ≥ p− 1

2 (p+ 1)
a
∥∥u+

∥∥2
+

p− 3

4 (p+ 1)
λ
∥∥u+

∥∥4

−µ p+ β

(p+ 1) (1− β)
A ‖u‖1−β (S)

−(1−β)
2

≥ p− 1

2 (p+ 1)
a ‖u‖2 − µ p+ β

(p+ 1) (1− β)
A ‖u‖1−β (S)

−(1−β)
2
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with

A =

[
4π (p+ β)

3 (p+ β)− α (p+ 1)

] p+β
p+1

R
N
p+1

(p+β)−α
0 .

Using (3.2) and function f (t) = Dt2 − µEt1−β, we obtain that

f (t) ≥ −µ
2

1+βC (a, p, β,A, S)

for all t > 0 small another, where

C (a, p, β,A, S) = D

[
(1− β)E

2D

] 2
1+β β

(1− β)

with

D =
p− 1

2 (p+ 1)
a and E =

p+ β

(p+ 1) (1− β)
S
−(1−β)

2 A.

Since 0 < β < 1, we have C (a, p, β,A, S) > 0. Then we conclude that

Jθ (u) ≥ −µ
2

1+βC (a, p, β,A, S) .

�

Lemma 3.4. Let µ ∈ (0, µ∗∗). Then the functional J satisfies the (PS)c
condition in H with c < c∗, where

c∗ =
(p− 1) (p+ β)

2 (1 + β) (p+ 1)
S
p+1
p−1 − µ

2
1+βC (a, p, β,A, S) .

Proof. If 0 < µ < µ∗∗, then by Proposition 2.6 (ii) there exists a (PS)c
sequence {un} in M, and it is bounded by Lemma 2.2. Then, there exists
u ∈ H and we can extract a subsequence which will denoted by {un} such
that

un ⇀ u weakly in H,
un ⇀ u weakly in Lp+1 (Ω) ,

un → u a.e in Ω.

Then, u is a weak solution of (1.1). Let vn = un− u. Then, by Brezis-Lieb [2]
we obtain

‖vn‖2 = ‖un‖2 − ‖u‖2 + on (1) , (3.3)

‖vn‖4 = ‖un‖4 − ‖u‖4 + on (1) (3.4)

and ∫
Ω
|vn|p+1 dx =

∫
Ω
|un|p+1 − dx

∫
Ω
|u|p+1 dx+ on (1) . (3.5)

Since

Jθ (un) = c+ on (1) , J
′
θ (un) = on (1) ,
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and by (3.3) and (3.5) we deduce that

1

2
a ‖vn‖2 +

1

4
λ ‖vn‖4 −

1

p+ 1

∫
Ω
|vn|p+1 dx = c− Jθ (u) + on (1) , (3.6)

a ‖vn‖2 + λ ‖vn‖4 −
∫

Ω
|vn|p+1 dx = on (1) .

Hence, we may assume that

‖vn‖2 −→ l,

∫
Ω
|vn|p+1 dx −→ l. (3.7)

Moreover, by Sobolev inequality we have

‖vn‖2 ≥ S
∫

Ω
|vn|p+1 dx. (3.8)

Combining (3.8) and (3.7), we obtain

l ≥ l
2
p+1S.

Either

l = 0 or l ≥ S
p+1
p−1 .

Then from (3.6), (3.7), Lemma 3.3 and Lemma 3.4 we obtain

c ≥ p− 1

2 (p+ 1)
l + Jθ (un) ≥ c∗,

which is a contradiction. Therefore, l = 0 and we conclude that {un} converges
to u strongly in H. Thus, {Jθ (un)} converges to Jθ (u) = c as n→ +∞. �

Lemma 3.5. There exist v ∈ H and Λ∗ > 0 such that for µ ∈ (0,Λ∗), one
has

sup
t≥0

Jθ (tv) < c∗.

In particular, c < c∗ for all µ ∈ (0,Λ∗).

Proof. Let ϕε (x) satisfies (1.3). Then, we have

λ

1− β

∫
Ω

|ϕε|1−β

|x|α
dx > 0.

We consider the two functions:

f (t) := Jθ (tϕε) and g (t) =
t2

2
a ‖ϕε‖2 −

tp+1

p+ 1

∫
Ω
|ϕε|p+1 dx.

Then, for all µ ∈ (0, µ∗∗),

f (0) = 0 < c∗.
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By the continuity of f , there exists t0 > 0 such that

f (t) < c∗, ∀t ∈ (0, t0) .

On the other hand, we have

max
t≥0

g (t) :=
(p− 1) (p+ β)

2 (1 + β) (p+ 1)
aS

p+1
p−1 .

Then, we obtain

sup
t≥0

Jθ (tϕε) <
(p− 1) (p+ β)

2 (1 + β) (p+ 1)
S
p+1
p−1 − µ

2
1+βC (a, p, β,A, S) .

Now, taking µ > 0 such that

−µt
1−β
0

1− β

∫
Ω

|ϕε|1−β

|x|α
dx < −µ

2
1+βC (a, p, β,A, S) ,

we obtain

0 < µ <
t1+β
0

[(1− β)C (a, p, β,A, S)]
1+β
1−β

[∫
Ω

|ϕε|1−β

|x|α
dx

] 1+β
1−β

= Λ1.

Set

Λ∗ = min {µ∗∗,Λ1} .
We deduce that c− < c∗ for all µ ∈ (0,Λ∗), then there exists tn > 0 such that
tnwn ∈M− with wn satisfying (1.3) ,

c− ≤ Jθ (tnwn) ≤ sup
t≥0

Jθ (twn) < c∗.

�

Lemma 3.6. For all µ such that 0 < µ < Λ∗ = min {µ∗∗,Λ1}, the functional
Jθ has a minimizer u−0 in M− and it satisfies

(i) Jθ
(
u−0
)

= c− > 0,

(ii) u−0 is a nontrivial solution of (1.1) in H.

Proof. By (ii) in Proposition 2.6, there exists a (PS)c− sequence {un} for Jθ,
in M− for all µ ∈ (0, µ∗∗). From Lemmas 3.4, 3.5 and by (ii) in Lemma
2.5, for µ ∈ (0,Λ1), Jθ satisfies (PS)c− condition and c− > 0. Then, we get
that {un} is bounded in H. Therefore, there exist a subsequence of {un} still
denoted by {un} and u−0 ∈M− such that {un} converges to u−0 strongly in H
and Jθ

(
u−0
)

= c− > 0 for all µ ∈ (0,Λ∗).
Finally, by using the same arguments as in the proof of the Proposition 3.1

for all µ ∈ (0, µ∗), we have that u−0 is a solution of (1.1). �
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Theorem 3.7. In addition to the assumptions of the Theorem 3.2, there exists
Λ∗ ∈ (0, µ∗∗) such that if µ satisfying 0 < µ < Λ∗, then (1.1) has at least two
positive solutions.

Proof. For the complete proof of this theorem, by Proposition 3.1 and Lemma
3.6, we obtain that (1.1) has two positive solutions u+

0 ∈ M+ and u−0 ∈ M−.
Since M+ ∩M− = ∅, u+

0 and u−0 are distinct.
Finally, for every θ ∈ (0, 1) , problem (1.7) has solution uθ ∈ H\{0} such

that Jθ (uθ) = cθ and J ′θ (uθ) = 0. Thus there exist {θn} ⊂ (0, 1) with θn −→ 0
as n −→∞. Then we get u = lim

n−→∞
uθn . �

4. Conclusion

In our work, we have searched the critical points as the minimizers of the
energy functional associated to the problem on the constraint defined by the
Nehari manifoldM, which are solutions of our problem. Under some sufficient
conditions on coefficients of equation of (1.1) such that a, b > 0, p ∈ (3, 5],
λ ≥ 0, µ > 0, 0 < α < 3 (p+ β) /p and 0 < β < 1, we split M in two disjoint
subsetsM+ andM− thus we consider the minimization problems onM+ and
M− respectively.
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