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Abstract. This study depends on the modified conformable fractional derivative definition

to generalize and proves some theorems of the classical power series into the fractional

power series. Furthermore, a comprehensive formulation of the generalized Taylor’s series

is derived within this context. As a result, a new technique is introduced for the fractional

power series. The efficacy of this new technique has been substantiated in solving some

fractional differential equations.

1. Introduction

The field of study known as fractional calculus has garnered a significant
amount of interest in recent years as a result of its capacity to offer explana-
tions that are both more accurate and comprehensive descriptions of various
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phenomena in science and engineering. The creation of effective and trustwor-
thy methods of solving fractional differential equations (FDEs) is one subject
that has recently attracted much attention. The Riemann-Liouville and Ca-
puto fractional derivatives are this field’s most often used definitions. These
definitions and their characteristics are referred to in [3, 7, 9, 10, 12, 13].

Recently, Khalil and his co-authors provided a new definition for both frac-
tional derivative and integral, known as Conformable fractional derivative
(CFD) and Conformable fractional Integral (CFI) [8]. These new definitions
have satisfied some theorems such as the Mean Value Theorem, Rolle Theo-
rem and all linear and non-linear derivative rules such as product, quotient
and chain. In the same vein, Abdeljawad organized and generalized the core
definitions and notions of the CFD and CFI [1]. In addition to this, he out-
lined the definition of the fractional Laplace transform, established a Taylor
power series represented by utilizing the CFD, and proved related theorems
and results.

The conformable fractional derivative has garnered considerable attention
from researchers due to its versatile applications, Notably, Abu Hammad and
Khalil [2] introduced the concept of conformable fractional Fourier series, uti-
lizing it to solve specific partial fractional differential equations. Additionally,
Gonzalez et al. [6] generalized significant results of classical power series to
fractional power series using the Conformable Fractional Power Series. Fur-
thermore, Syouri [14] proposed a conformable method for fractional differential
transformations and established the proof for basic properties of differintegrals.
Simultaneously, Unal and Gokdogan [16] defined a solution for Conformable
Fractional Ordinary Differential Equations using the Differential Transform
Method.

In the same context, some properties have not been defined. These prop-
erties are commutative properties, and the derivatives of higher order do not
line up well with the derivatives of sequential order. To solve these problems,
El-Ajou modified the CFD and re-defined the definition as “Modified Con-
formable Fractional Derivative (MCFD)” [4]. The following section provides
some basic definitions and properties related to the MCFD.

The power series has applications in various scientific fields, including com-
putational science, physics, chemistry, etc. By employing power expansions,
scientists can perform approximate studies of complex systems, facilitating
easier analysis and interpretation of results. Furthermore, fractional power
series (FPS) has become a fundamental tool in the study of elementary func-
tions, particularly in the fractional calculus approach, providing a robust and
efficient means of tackling intricate problems in diverse scientific domains, as
many authors generalize some theorems related to the classical power series
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(CPS) into the FPS. Among them are El-Ajou et al. [5] provided a new re-
sult for generalizing fractional power series along with the Caputo definition.
While Odibat and Shawagfeh [11] have presented a new generalized Taylor’s
formula. Trujillo et al.[15] have introduced the generalized Taylor’s formula
along with the Riemann-Liouville fractional derivative. Recently, Abdeljawad
[1] has formulated a novel generalized Taylor’s formula utilizing CFD, which
is presented as follows:

f(h) =
∞∑
k=0

(T h0α f)k(h0)

(k)!αk
(h− h0)kα, (1.1)

where 0 < α ≤ 1, h0 ≤ h < h0 +R and R > 0

This study introduces a new comprehensive approach to FPS by employing
MCFD. Some important theorems related to the CPS will be constructed and
generalized for the new FPS using MCFD. This novel technique is applied to
obtain solutions for some FDEs. Additionally, the derived generalized Taylor’s
formula is applicable for values of β within the range of m−1 < β ≤ m, where
β ∈ χα.

This research is organized into different sections. In the next section, we
will present some of the essential definitions and theorems that will be utilized
throughout this study. In the third section, some theorems related to the FPS
are mentioned and proved. The last section provides a series of solutions for
FDEs using the new technique to demonstrate the proposed method’s practical
applications and efficiency.

2. Preliminaries

This section provides all the important definitions and theorems used in
this study. See [1, 4, 5, 8] for more details and proofs.

2.1. Conformable Fractional Derivative and Integral.

Definition 2.1. ([1]) The CFD of order α ∈ (m − 1,m] starting from a of a
function f : [a,∞)→ R is defined by

(Tαa f) (h) = lim
ε→0

f (m−1)
(
h+ ε(h− a)1−α)− f (m−1)(h)

ε
, h > x (2.1)

(Tαa f) (a) = limt→a+ (Tαa f) (h) provided the limits exist and f(h) is (m− 1)−
differentiable at h > a.

Theorem 2.2. ([1, 8]) Let α ∈ (m− 1,m],m ∈ N, λ is a constant. Then,

(1) Tαa (f(h) + g(h)) = Tαa f(h) + Tαa g(h).
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(2) Tαa (λf(h)) = λTαa f(h).

(3) Tαa f(h) = (h− a)m−αf (m)(h).
(4) Tαa f(λ) = 0.

(5) Tαa (h− a)γ =
∏m−1
k=0 (γ − α)(h− a)γ−α.

Definition 2.3. ([1]) The CFI of order α ∈ (m − 1,m] starting from a of a
function f : [a,∞)→ R is defined by

Iαa f(h) =
1

(m− 1)!

∫ h

a

(h− x)m−1f(x)

(x− a)m−α
dx, α > 0, h > a (2.2)

I0
af(x) = f(x)

Theorem 2.4. ([1]) If α ∈ (m−1,m],m ∈ N, λ is a constant and α+γ−m >
−1, then

(1) Iαa (h− a)γ = Γ(1+γ+α−m)
Γ(1+γ+α) (h− a)γ+α,

(2) Iαa (λ) = λΓ(1+α−m)
Γ(1+α) (h− a)α.

Lemma 2.5. ([1, 8]) If α ∈ (m− 1,m],m ∈ N and f : [a,∞)→ R is (m− 1)-
differentiable, then

(1) Tαa I
α
a f(h) = f(h),

(2) Iαa T
α
a f(h) = f(h)−

∑m−1
k=0 f

(k)(a) (h−a)k

k! , h > a.

Remark 2.6. ([1, 4]) For α, β ∈ (m− 1,m] and the function f : [a,∞)→ R,
(1) the Commutative Property do not satisfy by the CFDs,

that is, Tαa T
β
a 6= T βa Tαa ,

(2) the Commutative Property do not satisfy by the CFIs,

that is, Iαa I
β
a 6= Iβa Iαa .

2.2. Modified Conformable Fractional Derivative and Integral. In the
CFD and CFI properties, TαT β 6= T βTα and IαIβ 6= IβIα, where Tα and Iα

are CFD and CFI, respectively. Also, T β 6= Tnα and Iβ 6= Inα, where β = nα
for some n ∈ N.

To modify the statement as mentioned above, El-Ajou [4] modified the
definition of the CFD and CFI, defined as follows:

Definition 2.7. ([4]) Let 〈α : 0 < α 6 1〉 be a cyclic subgroup of (R,+)
generated by α. The real number β is said to be of the class α if β ∈ 〈α : 0 <
α 6 1〉.
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Note that if β ∈ (m− 1,m],m ∈ N, then we have

β ∈
〈
α :

m− 1

m
< α 6 1, α =

β

m

〉
= χα,

which is the main idea of the MCFD.

Definition 2.8. ([4]) The MCFD of order β ∈ χα of a function f : [a,∞)→ R
is defined by

T βa f(h) = f (β)(h) = lim
ε→0

f ((m−1)α)
(
h+ ε(h− a)1−α)− f ((m−1)α)(h)

ε
, h > a,

(2.3)

T βa f(a) = limh→a+ T
β
a f(h), provided the limits exist and f(h) is (m − 1)α-

differentiable at h > a.

Definition 2.9. ([4]) The n-sequential MCFD of order β ∈ χα of a function
f : [a,∞)→ R is defined by:

T nβa f(h) = f (nβ)(h) = lim
ε→0

f ((nm−1)α)
(
h+ ε(h− a)1−α)− f ((nm−1)α)(h)

ε
, h > a

(2.4)

T nβa f(a) = limh→a+ T
nβ
a f(h), provided the limits exist and f(h) is (nm− 1)α

- differentiable at h > a.

Lemma 2.10. ([4]) Let β ∈ χα and ζ ∈ R. Then

(1) T βa f(h) = (h− a)1−α d
dt

(
T (m−1)α
a f(h)

)
,

(2) T nβa f(h) = (h− a)1−α d
dt

(
T (nm−1)α
a f(h)

)
,

(3) T βa (h− a)ζ =
m−1∏
k=0

(ζ − kα)(h− a)ζ−β,

(4) T nβa (h− a)ζ =
nm−1∏
k=0

(ζ − kα)(h− a)ζ−nβ.

Remark 2.11. ([4]) If β and µ ∈ χα, then

(1) T βa T µa = T µ+β
a = T µa T βa ,

(2) T nβa = T βa T βa . . . T βa (n-times ) = T αa T αa . . . T αa (nm-times ).

Definition 2.12. ([4]) A real function f(h), h > a is said to be in the space
Cµ, µ ∈ R if there exists a real number κ > µ, such that f(h) = (h− a)κf1(h),
where f1(h) ∈ C[a,∞), which is the main idea of the MCFI.
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Definition 2.13. ([4]) The MCFI of order β ∈ χα of a function f(h) ∈ Cµ, µ >
−α, h > a is defined by

Jβa f(h) =
1

αm−1(m− 1)!

∫ h

a

((h− a)α − (y − a)α)m−1 f(y)

(y − a)1−α dy, (2.5)

J0
af(y) = f(y).

Definition 2.14. ([4]) The n-sequential MCFI of order β ∈ χα of a function
f(h) ∈ Cµ, µ > −α, h > a is defined by

Jnβa f(h) = Jnmαa f(h)

=
1

α(nm−1)(nm− 1)!

∫ h

x

((h− a)α − (y − a)α)(nm−1) f(y)

(y − a)1−α dy. (2.6)

Lemma 2.15. For β ∈ χα, n ∈ N, f ∈ Cµ, µ > −α and h > a, then

(1) Jβa (h− a)ζ =
(h− a)ζ+β

m∏
k=1

(ζ + kα)

,

(2) Jnβa (h− a)ζ =
(h− a)ζ+nβ

nm∏
k=1

(ζ + kα)

,

(3) T nβa Jnβa f(h) = f(h),

(4) Jnβa T nβa f(h) = f(h)−
nm−1∑
r=0

f (rα)(a+)
(h− a)rα

r!αr
.

Remark 2.16. ([4]) Let β, µ ∈ χα . Then

(1) Jβa J
µ
a = Jβ+µ

a = Jµa J
β
a ,

(2) Jnβa = Jβa J
β
a . . . J

β
a (n− times).

2.3. Fractional power series.

Definition 2.17. ([5]) A power series expansion of the form

∞∑
i=0

ci(h− h0)iβ = c0 + c1(h− h0)β + c2(h− h0)2β + c3(h− h0)3β + . . . , (2.7)

where m − 1 < β ≤ m, h > h0 ≥ 0 is called a FPS about h0 and cis are the
coefficients of the series.
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For a special case, when h0 = 0 the expansion
∞∑
i=0

cih
iβ is called a fractional

Maclaurin series. The FPS representation of Eq.(2.7) is always convergent
when h = h0.

Theorem 2.18. ([5]) Consider the FPS
∞∑
i=0

cih
iβ, h > 0. We have the follow-

ing two cases.

(1) If the FPS
∞∑
i=0

cih
iβ converges when h = v > 0, then it’s converges

absolutely for all h with 0 ≤ h < v.

(2) If the FPS
∞∑
i=0

cih
iβ diverges when h = w > 0, then it’s diverges abso-

lutely for all h with h > w.

Theorem 2.19. ([5]) For the FPS
∞∑
i=0

cih
iβ, there are three possibilities.

(1) The series converges only when h = 0.
(2) The series converges for each h ≥ 0.
(3) The series converges for 0 ≤ h < R and diverges for h > R where R

is a positive real number.

Note: The number R is called the radius of convergence of the FPS. For
that in case (1), the radius of convergence is defined as R = 0, but in case (2),
it is defined as R =∞.

3. Main results

In this section, we introduce a new technique for the FPS to prove and gen-
eralize Taylor’s series and some theorems of the CPS to the FPS by depending
on the MCFD definition.

Theorem 3.1. Suppose that f(h) =
∞∑
i=0

ci(h− h0)iβ is a FPS function repre-

sentation at h0, where m − 1 < β ≤ m, 0 ≤ h0 ≤ h < h0 + R and R > 0 is
a radius of convergence, then for β ∈ χα, n ∈ N, f ∈ Cµ, µ > −α and h > h0,
we have

T nβh0 f(h) =

∞∑
i=1

ci

(
nm−1∏
k=0

(
iβ − kβ

m

)
(h− h0)(i−n)β

)
, (3.1)

Jnβh0 f(h) =
∞∑
i=0

ci

 (h− h0)(i+n)β∏nm−1
k=0

(
iβ +

kβ

m

)
 . (3.2)
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Proof. Let f(h) =
∞∑
i=0

ci(h− h0)iβ, for m− 1 < β ≤ m, β ∈ χα, 0 ≤ h0 ≤ h <

h0 +R and R > 0 be a radius of convergence. Then, by Lemma 2.10,

T nβh0 f(h) = T nβh0
∞∑
i=0

ci(h− h0)iβ

=

∞∑
i=0

ciT nβh0
(

(h− h0)iβ
)

=

∞∑
i=1

ci

(
nm−1∏
k=0

(iβ − kβ

m
)(h− h0)(i−n)β

)
.

For the another part, by Lemma 2.15, we can defined by

Jnβh0 f(h) = Jnβh0

∞∑
i=0

ci(h− h0)iβ

=
∞∑
i=0

ciJ
nβ
h0

(
(h− h0)iβ

)

=

∞∑
i=0

ci

 (h− h0)(i+n)β∏nm−1
k=0

(
iβ +

kβ

m

)
 .

�

Theorem 3.2. For m− 1 < β ≤ m, β ∈ χα. Suppose that a FPS function f
representation at h0 have the form

f(h) =

∞∑
i=0

ci(h− h0)iβ, (3.3)

where 0 ≤ h0 ≤ h < h0 + R and R > 0 be a radius of convergence. Then the
coefficients cn defined by

cn =
T nβh0 f(h0)

(nm)−1∏
k=0

(
nβ − kβ

m

) .

Proof. Assume that f(h) =
∞∑
i=0

ci(h − h0)iβ is an arbitrary function. If we

put h = h0 into Eq. (3.3), then we get c0 = f(h0).
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Now by using Theorem 3.1, we have

T βh0f(h) = c1

m−1∏
k=0

[
β − kβ

m

]
+ c2

m−1∏
k=0

[
2β − kβ

m

]
(h− h0)β

+ c3

m−1∏
k=0

[
3β − kβ

m

]
(h− h0)2β + . . .

+ cn

m−1∏
k=0

[
nβ − kβ

m

]
(h− h0)(n−1)β + . . . ,

this implies that

T βh0f(h0) = c1

m−1∏
k=0

[
β − kβ

m

]
+ 0 + 0 + 0 + . . . ,

that is,

c1 =
T βh0f(h0)

m−1∏
k=0

[
β − kβ

m

] .
Again using Theorem 3.1, we have

T 2β
h0
f(h) = c2

(2m)−1∏
k=0

[
2β − kβ

m

]
+ c3

(2m)−1∏
k=0

[
3β − kβ

m

]
(h− h0)β + . . .

+ cn

(2m)−1∏
k=0

[
nβ − kβ

m

]
(h− h0)(n−2)β + . . . ,

this implies that

T 2β
t0
f(h0) = c2

(2m)−1∏
k=0

[
2β − kβ

m

]
+ 0 + 0 + . . . ,

that is,

c2 =
T 2β
h0
f(h0)

(2m)−1∏
k=0

[
2β − kβ

m

] .
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By continuing in the same way for (n-times) and substitute h = h0 we can get

cn =
T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

] .
This completes the proof. �

To see the pattern and discover the general formula for Generalization Tay-
lor’s series for the MCFD by substituting of

cn =
T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

] , n = 0, 1, 2, . . .

into the series representation of Eq.(3.3) it will obtained by

f(h) =
∞∑
n=0

T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ, (3.4)

where m− 1 < β ≤ m,β ∈ χα and 0 ≤ h0 ≤ h < h0 +R.

Corollary 3.3. Suppose that the Generalized Taylor’s series of the function
f representation at h0 has the form

f(h) =

∞∑
n=0

T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ, m− 1 < β ≤ m,h0 ≤ h < h0 +R.

If we substituting m = 1 in the previous function, then we have

f(h) =

∞∑
k=0

T kβh0 f(h0)

(k)!βk
(h− h0)kβ h0 ≤ h < h0 +R.

The obtained result of Taylor’s series is in line with the findings of Abdel-
jawad [1].

Theorem 3.4. Suppose that a FPS function f(h) =
∞∑
i=0

ci(h − h0)iβ, for i =

0, 1, 2, . . . , n + 1, β ∈ χα, f ∈ Cµ, µ > −α and h > h0. Then the function f
could be represented by

f(h) = J
(n+1)β
h0

T (n+1)β
h0

f(h)+

n∑
i=0

T iβh0 f(h0)

(im)−1∏
k=0

[
iβ − kβ

m

](h−h0)iβ , h0 ≤ h ≤ h0+R.
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Proof. From the operator of Jβh0 , T
β
h0

and Lemma 2.15, we can find that

J
(n+1)β
h0

T (n+1)β
h0

f(h)

= Jnβh0

[(
Jβh0T

β
h0

)
T nβh0 f(h)

]
= Jnβh0

[
T nβh0 f(h)− T nβh0 f(h0)

]
= Jnβh0 T

nβ
h0
f(h)− Jnβh0 T

nβ
h0
f(h0)

= Jnβh0 T
nβ
h0
f(h)−

 T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ



= J
(n−1)β
h0

[(
Jβh0T

β
h0

)
T (n−1)β
h0

f(h)
]
−

 T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ



= J
(n−1)β
h0

[
T (n−1)β
h0

f(h)− T (n−1)β
h0

f(h0)
]
−

 T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ



= J
(n−1)β
h0

T (n−1)β
h0

f(h)−

 T (n−1)β
h0

f(h0)

(nm)−1∏
k=0

[
(n− 1)β − kβ

m

](h− h0)(n−1)β



−

 T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ



= J
(n−2)β
h0

[(
Jβh0T

β
h0

)
T (n−2)β
h0

f(h)
]
−

 T (n−1)β
h0

f(h0)

(nm)−1∏
k=0

[
(n− 1)β − kβ

m

](h− h0)(n−1)β



−

 T nβh0 f(h0)

(nm)−1∏
k=0

[
nβ − kβ

m

](h− h0)nβ

 .
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If we continue repeating of this process (n-times), then we can find that

J
(n+1)β
h0

T (n+1)β
h0

f(h) = f(h)−
n∑
i=0

T iβh0 f(h0)

(im)−1∏
k=0

[
iβ − kβ

m

](h− h0)iβ.

Hence, we have

f(h)=J
(n+1)β
h0

T (n+1)β
h0

f(h)+
n∑
i=0

T iβh0 f(h0)

(im)−1∏
k=0

[
iβ− kβ

m

](h−h0)iβ , h0 ≤ h ≤ h0+R.

�

Theorem 3.5. If |T (n+1)β
h0

f(h)| ≤ M on h0 ≤ h ≤ d, where m − 1 < β ≤
m, β ∈ χα, f ∈ Cµ, µ > −α, then the reminder Rn(h) of the Generalized
Taylor’s series will be satisfies the inequality

|Rn| ≤
M(h− h0)(i+n)β∏nm−1
k=0

(
iβ +

kβ

m

) , h0 ≤ h ≤ d. (3.5)

Proof. Assume that T iβh0 f(h) exist for i = 0, 1, 2, . . . , n+ 1 and that

|T (n+1)β
h0

f(h)| ≤M on h0 ≤ h ≤ d. (3.6)

From the definition of the reminder

Rn(h) = f(h)−
n∑
i=0

T iβh0 f(h0)

(im)−1∏
k=0

[
iβ − kβ

m

](h− h0)iβ.

One can get it Rn(h0) = T βh0Rn(h0) = T 2β
h0
Rn(h0) = · · · = T nβh0 Rn(h0) = 0 and

T (n+1)β
h0

Rn(h) = T (n+1)β
h0

f(h), h0 ≤ h ≤ d. By Eq.(3.6) that |T (n+1)β
h0

f(h)| ≤
M . Hence,

−M ≤ T (n+1)β
h0

f(h) ≤M, h0 ≤ h ≤ d.
On the other hand, we have

J
(n+1)β
h0

(−M) ≤ J (n+1)β
h0

T (n+1)β
h0

f(h) ≤ J (n+1)β
h0

(M). (3.7)

Since from Theorem 3.4, we obtain J
(n+1)β
h0

T (n+1)β
h0

f(h) = Rn(h), and substi-

tuting that in Eq.(3.7), we can find the inequality

−M (h− h0)(i+n)β∏nm−1
k=0

(
iβ +

kβ

m

) ≤ Rn ≤ M (h− h0)(i+n)β∏nm−1
k=0

(
iβ +

kβ

m

) , h0 ≤ h ≤ d,
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which is equivalent to |Rn| ≤
M (h− h0)(i+n)β∏nm−1
k=0

(
iβ +

kβ

m

) , h0 ≤ h ≤ d. �

4. Applications

In this part, we solve some FDEs by using the new technique for the FPS.
In the first application, we solve fractional Airy differential equation. In the
second application, we solve homogeneous FDEs with initial conditions.

4.1. Application. Consider the fractional Airy differential equation

T 2β
h0
y(h)− β2hβy (h) = 0 m− 1 < β ≤ m, h ≥ 0. (4.1)

Solution: By using the FPS expansion (2.7), we assume that the solution
y(h) of Equations (4.1) can be defined by

y(h) =

∞∑
i=0

cih
iβ. (4.2)

From formula (3.1), we can obtain

T 2β
h0
y(h) =

∞∑
i=2

ci

[
2m−1∏
k=0

(
iβ − kβ

m

)
h(i−2)β

]

=
∞∑
i=0

ci+2

[
2m−1∏
k=0

(
(i+ 2)β − kβ

m

)
hiβ

]
. (4.3)

By substituting Eq.(4.2) and (4.3) into both sides of Eq.(4.1), yields that

∞∑
i=0

ci+2

[
2m−1∏
k=0

(
(i+ 2)β − kβ

m

)
hiβ

]
− β2hβ

∞∑
i=0

cih
iβ = 0

and

c2

2m−1∏
k=0

(
2β− kβ

m

)
+
∞∑
i=1

(
ci+2

[
2m−1∏
k=0

(
(i+ 2)β− kβ

m

)]
−β2

∞∑
i=1

ci−1

)
hiβ = 0.

(4.4)
Now, by equating coefficients of hiβ to zero in both sides of Eq (4.4). Then
we have the following

c2 = 0; ci+2 =
β2 ci−1[

2m−1∏
k=0

(
(i+ 2)β − kβ

m

)] . (4.5)
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Hence, we obtain the following: c2 = c5 = c8 = c11 = . . . = 0 and

c(3i) =
β2i c0[

2m−1∏
k=0

(
(3i)β − kβ

m

)]
. . .

[
2m−1∏
k=0

(
(3)β − kβ

m

)] , i = 1, 2, 3, 4, . . . ,

c(3i+1) =
β2i c1[

2m−1∏
k=0

(
(3i+ 1)β− kβ

m

)]
. . .

[
2m−1∏
k=0

(
(4)β− kβ

m

)] , i = 1, 2, 3, 4, . . .

If we compile all of these coefficient values and put them back into the Eq.
(4.2). Then the solution of Eq.(4.1) takes the general form:

y(h) = c0y1(h) + c1y2(h), (4.6)

where

y1 (h) = 1 +

∞∑
i=1

β2i h3iβ[
2m−1∏
i=0

(
3i)β − kβ

m

)]
. . .

[
2m−1∏
k=0

(
(3)β − kβ

m

)] , (4.7)

y2 (h) = 1 +
∞∑
i=1

β2i h(3i+1)β[
2m−1∏
k=0

(
(3i+ 1)β − kβ

m

)]
. . .

[
2m−1∏
k=0

(
(4)β − kβ

m

)] . (4.8)

4.2. Application. Consider the following homogeneous FDE

T βh0y(h) = λy(h), m− 1 < β ≤ m, h ≥ h0 (4.9)

subject to the non-homogeneous initial conditions

y(r)(h0) = a0, r = 0, 1, 2, . . . ,m− 1, (4.10)

where λ and a0 are constants.
Solution: To achieve our goal, by using the FPS expansion (2.7), we suppose
that this solution takes the form

y(h) =

∞∑
i=0

ci(h− h0)iβ. (4.11)

From formula (3.3), we can obtain

T βh0y(h) =

∞∑
i=1

ci

(
m−1∏
k=0

[
iβ − kβ

m

]
(h− h0)(i−1)β

)
. (4.12)
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Substituting the expansion formulas of Eq.(4.11) and (4.12) back into both
sides of Eq. (4.9), respectively, yields that

∞∑
i=0

ci+1

(
m−1∏
k=0

[
(i+ 1)β − kβ

m

]
(h− h0)iβ

)
− λ

∞∑
i=0

ci(h− h0)iβ = 0. (4.13)

Equating the coefficients of (h− h0)iβ in both sides of Eq. (4.13) will leads to
the following

ci+1 =
λci

m−1∏
k=0

[
(i+ 1)β − kβ

m

] , i = 0, 1, 2, . . . . (4.14)

Considering the initial conditions of Eq. (4.10) one can obtain c0 = a0 and

c1 =
λa

m−1∏
k=0

[
β − kβ

m

] ,
c2 =

λc1

m−1∏
k=0

[
2β − kβ

m

] =
λ2a

m−1∏
k=0

[
2β − kβ

m

]
m−1∏
k=0

[
β − kβ

m

] ,
c3 =

λc2

m−1∏
k=0

[
3β − kβ

m

] =
λ3a

m−1∏
k=0

[
3β − kβ

m

]
m−1∏
k=0

[
2β − kβ

m

]
m−1∏
k=0

[
β − kβ

m

] ,
...

cn =
λna

m−1∏
k=0

[
nβ − kβ

m

]
· · ·

m−1∏
k=0

[
2β − kβ

m

]
m−1∏
k=0

[
β − kβ

m

] . (4.15)

For the conduct of proceedings in the solution, collecting the previous results
and substituting Eq. (4.15) into Eq. (4.11), to formulate the solution of Eqs.
(4.9) and (4.10) in the following form

y(h) = a0

1 +

∞∑
i=1

λi (h− h0)iβ

m−1∏
k=0

[
iβ − kβ

m

]
· · ·

m−1∏
k=0

[
2β − kβ

m

]
m−1∏
k=0

[
β − kβ

m

]
 .

5. Conclusions

This study utilized the MCFD definition to generalize and prove some the-
orems of the CPS into the FPS. We construct and prove several important
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theorems related to the CPS into the FPS. Moreover, a comprehensive for-
mulation of the generalized Taylor’s series is derived within this context. The
practical utility of this new technique is underscored by its successful appli-
cation in the resolution of FDEs. The presented formula may simplify and
modify some methods used to solve linear and nonlinear FDEs, such as the
differential transform method and variation of parameters method.
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