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Abstract. If p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero

in |z| < k, k ≥ 1 and p′(z) its derivative, then Qazi [19] proved

max
|z|=1

|p′(z)| ≤ n
1 + µ

n

∣∣∣aµa0 ∣∣∣ kµ+1

1 + kµ+1 + µ
n

∣∣∣aµa0 ∣∣∣ (kµ+1 + k2µ)
max
|z|=1

|p(z)|.

In this paper, we not only obtain the Lr version of the polar derivative of the above inequality

for r > 0, but also obtain an improved Lr extension in polar derivative.
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1. Introduction and preliminaries

Let p(z) be a polynomial of degree n. Then, according to a well-known
classical result due to Bernstein [4],

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

Inequality (1.1) is sharp and equality holds if p(z) has all its zeros at the origin.

Now, for a polynomial p(z) of degree n, we define for r > 0

‖p‖r =

{
1

2π

∫ 2π

0
|p(eiθ)|rdθ

} 1
r

. (1.2)

We let r → ∞ in (1.2) and make use of the well-known fact from analysis
[22] that

lim
r→∞

{
1

2π

∫ 2π

0
|p(eiθ)|rdθ

} 1
r

= max
|z=1
|p(z)|, (1.3)

we can suitably denote

‖p‖∞ = max
|z|=1

|p(z)|. (1.4)

Similarly, one can define

‖p‖0 = exp

{
1

2π

∫ 2π

0
log|p(eiθ)|dθ

}
and show that limr→0+ ‖p‖r = ‖p‖0. It would be of further interest that by
taking limit as r → 0+, the stated results concerning Lr inequalities holding
for r > 0, hold for r = 0 as well. Inequality (1.1) can be obtained by letting
r →∞ in the inequality

‖p′‖r ≤ n‖p‖r, r > 0. (1.5)

Inequality (1.5) for r ≥ 1 is due to Zygmund [24]. Arestov [1] proved that
(1.5) remains valid for 0 < r < 1 as well.

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,
then inequalities (1.1) and (1.5) can be respectively improved by

‖p′‖∞ ≤
n

2
‖p‖∞ (1.6)

and

‖p′‖r ≤
n

‖1 + z‖r
‖p‖∞, r > 0. (1.7)

Inequality (1.6) was conjectured by Erdös and later verified by Lax [13],
whereas inequality (1.7) was proved by de-Brujin [8] for r ≥ 1, Rahman and
Schmeisser [20] showed that (1.7) remains true for 0 < r < 1.
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Let Pn,µ be the class of polynomials p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, of

degree n. As a generalization of (1.6), Malik [14] proved that if p ∈ Pn,1 and
p(z) 6= 0 in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k
‖p‖∞. (1.8)

For a polynomial p(z) of degree n, we now define the polar derivative of
p(z) with respect to a real or complex number α as

Dαp(z) = np(z) + (α− z)p′(z).

This polynomial Dαp(z) is of degree at most n − 1 and it generalizes the
ordinary derivative p′(z) in the sense that

lim
α→∞

Dαp(z)

α
= p′(z),

uniformly with respect to z for |z| ≤ R, R > 0.

Aziz [2] was among the first who extended some of the above inequalities to
polar versions. He, in fact, extended inequality (1.8) to polar derivative of a
polynomial by proving that if p(z) is a polynomial of degree n having no zero
in |z| < k, k ≥ 1, then for any complex number α with |α| ≥ 1,

max
|z|=1

|Dαp(z)| ≤ n
(
|α|+ k

1 + k

)
max
|z|=1

|p(z)|. (1.9)

As an Lr analogue of polar derivative of (1.8), Rather [21] proved that for
any complex number α with |α| ≥ 1 and for every r > 0,

‖Dαp(z)‖r ≤ n
(
|α|+ k

‖z + k‖r

)
‖p‖r. (1.10)

Over the last four decades, many different authors produced a large number of
different versions and generalizations of the above inequalities. Many of these
generalizations involve the comparison of polar derivative Dαp(z) with various
choices of p(z), α and other parameters. More information on this topic can
be found in the books of Milovanović et al. [17] and Marden [15], and in the
literatures [6, 7, 10, 12, 16, 23].

Using the class of Lacunary-type polynomial, Mir [18] recently extended

(1.9) by proving that if p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then for every r > 0 and for every
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complex number α with |α| ≥ 1,

‖Dαp(z)‖r ≤ n
(|α|+ kµ)

‖z + kµ‖r
‖p‖r. (1.11)

Further, Qazi [19] improved (1.8) by proving:

Theorem 1.1. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

‖A0 + z‖∞
‖p‖∞, (1.12)

where

A0 =
n|a0|kµ+1 + µ|aµ|k2µ

n|a0|+ µ|aµ|kµ+1
. (1.13)

Dewan et al. [9] also improved Theorem 1.1 by involving min
|z|=k

|p(z)|.

Theorem 1.2. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

‖A0 + z‖∞
‖p‖∞ −

n

kn

{
1− 1

‖A0 + z‖∞

}
min
|z|=k

|p(z)|, (1.14)

where A0 is as defined in (1.13).

Dewan et al. [9] extended Theorem 1.1 to Lr analogue for r ≥ 1 and for
r > 0 by Chanam [5].

Theorem 1.3. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then
for each r > 0,

‖p′‖r ≤
n

‖A0 + z‖r
‖p‖r, (1.15)

where A0 is as defined in (1.13).

2. Lemmas

For the proof of the theorem, we require the following lemmas. The first
lemma is due to Qazi [19].

Lemma 2.1. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then

kµ+1

µ
n

∣∣∣aµa0 ∣∣∣ kµ−1 + 1

1 + µ
n

∣∣∣aµa0 ∣∣∣ kµ+1
|p′(z)| ≤ |q′(z)| on |z| = 1 (2.1)

and
µ

n

∣∣∣∣aµa0

∣∣∣∣ kµ ≤ 1, (2.2)

where q(z) = znp
(

1
z̄

)
.
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The next lemma is due to Govil and Kumar [11].

Lemma 2.2. Let p, q be any two positive real numbers such that p ≥ qx,
where x ≥ 1. If γ is any real such that 0 ≤ γ ≤ 2π, then for any y ≥ 1

p+ qy

x+ y
≤
∣∣∣∣p+ qeiγ

x+ eiγ

∣∣∣∣ . (2.3)

Lemma 2.3. Let z1, z2 be two complex numbers independent of α, where α
being real. Then for r > 0,∫ 2π

0
|z1 + z2e

iα|rdα =

∫ 2π

0

∣∣|z1|+ |z2|eiα
∣∣r dα. (2.4)

The above lemma is due to Govil and Kumar [11].

Lemma 2.4. Let p(z) be a polynomial of degree n. Then for every γ with
0 ≤ γ < 2π and r > 0,∫ 2π

0

∫ 2π

0
|p′(eiθ) + eiγq′(eiθ)|rdθdγ ≤ 2πnr

∫ 2π

0
|p(eiθ)|rdθ, (2.5)

where q(z) = znp(1
z̄ ).

The above result is due to Aziz and Rather [3].

3. Main results

In this paper, we obtain Lr analogue of the polar derivative version of
Theorem 1.2 for r > 0 which further extends both Theorems 1.1 and 1.3.
More precisely, we prove:

Theorem 3.1. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then
for every real or complex number α and β with |α| ≥ 1 and |β| < 1

kn and for
each r > 0,

‖Dαp(z) + nαmβzn−1‖r ≤
n(|α|+A)

‖A+ z‖r
‖p(z) +mβzn‖r, (3.1)

where

A =
n|a0|kµ+1 + µ|aµ +mβ|k2µ

n|a0|+ µ|aµ +mβ|kµ+1
and m = min

|z|=k
|p(z)|. (3.2)
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Proof. We have for any r > 0{∫ 2π

0
|A+ eiγ |rdγ

}[∫ 2π

0
|Dα{p(eiθ) +mβeinθ}|rdθ

]
=

{∫ 2π

0
|A+ eiγ |rdγ

}[∫ 2π

0
|n{p(eiθ) +mβeinθ}

+ (α− eiθ){p′(eiθ) + nmβei(n−1)θ}|rdθ

]

=

{∫ 2π

0
|A+ eiγ |rdγ

}{∫ 2π

0
|Dαp(e

iθ) + nαmβei(n−1)θ|rdθ
}
. (3.3)

If q(z) = znp

(
1

z̄

)
, then it can be easily verified that for 0 ≤ θ < 2π,

n{p(eiθ) +mβeinθ} − eiθ{p′(eiθ) + nmβei(n−1)θ} = ei(n−1)θq′(eiθ).

Using the above inequality, we have for 0 ≤ θ < 2π,

Dα{p(eiθ) +mβeinθ} = n{p(eiθ) +mβeinθ}

+ (α− eiθ){p′(eiθ) + nmβei(n−1)θ}

= ei(n−1)θq′(eiθ) + α{p′(eiθ) + nmβei(n−1)θ},

which implies

|Dα{p(eiθ) +mβeinθ}| ≤ |q′(eiθ)|+ |α||p′(eiθ) + nmβei(n−1)θ|. (3.4)

Using inequality (3.4) in inequality (3.3), we get{∫ 2π

0
|A+ eiγ |rdγ

}{∫ 2π

0
|Dαp(e

iθ) + nαmβei(n−1)θ|rdθ
}

≤
{∫ 2π

0
|A+ eiγ |rdγ

}[∫ 2π

0

{
|q′(eiθ)|+ |α||p′(eiθ) + nmβei(n−1)θ|

}r
dθ

]
.

(3.5)

By Rouche’s theorem, the polynomial P (z) = p(z) + mβzn has no zero in
|z| < k, k ≥ 1 and if we apply Lemma 2.1 to the polynomial P (z), we have{

n|a0|kµ+1 + µ|aµ|k2µ

n|a0|+ µ|aµ|kµ+1

}
|p′(eiθ) + nmβei(n−1)θ| ≤ |q′(eiθ)|. (3.6)
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Taking p = |q′(eiθ)|, q = |p′(eiθ)+nmβei(n−1)θ|, x = A and y = |α| in Lemma
2.2, we have for all γ ∈ [0, 2π],

|A+ eiγ |
{
|q′(eiθ)|+ |α||p′(eiθ) + nmβei(n−1)θ|

}
≤ (A+ |α|)

∣∣∣|q′(eiθ)|+ eiγ |p′(eiθ) + nmβei(n−1)θ|
∣∣∣ . (3.7)

Further, it can be easily verified that∣∣∣|q′(eiθ)|+ eiγ |p′(eiθ) + nmβei(n−1)θ|
∣∣∣

=
∣∣∣|p′(eiθ) + nmβei(n−1)θ|+ eiγ |q′(eiθ)|

∣∣∣ . (3.8)

Now, inequality (3.7) and inequality (3.8) give∣∣A+ eiγ
∣∣ {|q′(eiθ)|+ |α||p′(eiθ) + nmβei(n−1)θ|

}
≤ (A+ |α|)

∣∣∣|p′(eiθ) + nmβei(n−1)θ|+ eiγ |q′(eiθ)|
∣∣∣ . (3.9)

Applying inequality (3.9) to the right hand side of inequality (3.5), we have
for any r > 0{∫ 2π

0
|A+ eiγ |rdγ

}{∫ 2π

0
|Dαp(e

iθ) + nαmβei(n−1)θ|rdθ
}

≤ (A+|α|)r
{∫ 2π

0

∫ 2π

0

∣∣∣|p′(eiθ)+nmβei(n−1)θ|+eiγ |q′(eiθ)|
∣∣∣r dγdθ} . (3.10)

Using Lemma 2.3 and then applying Lemma 2.4 to the right hand side of
inequality (3.10), we get{∫ 2π

0
|A+ eiγ |rdγ

}{∫ 2π

0
|Dαp(e

iθ) + nαmβei(n−1)θ|rdθ
}

≤ (A+ |α|)r2πnr
{∫ 2π

0
|p(eiθ) +mβeinθ|rdγdθ

}
,

which is equivalent to{
1

2π

∫ 2π

0
|A+ eiγ |rdγ

} 1
r
{

1

2π

∫ 2π

0
|Dαp(e

iθ) + nαmβei(n−1)θ|rdθ
} 1
r

≤ (A+ |α|)n
{

1

2π

∫ 2π

0
|p(eiθ) +mβeinθ|rdθ

} 1
r

,

which completes the proof. �
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Remark 3.2. If we take β = 0 and divide both sides of inequality (3.1), by
|α| and letting |α| → ∞, Theorem 3.1 reduces to the integral analogue of
Theorem 1.1.

If we let r →∞ in (3.1), we get the following result.

Corollary 3.3. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then
for every real or complex numbers α and β with |α| > 1 and |β| < 1

kn ,

max
|z|=1

|Dαp(z) + nαmβzn−1| ≤ n(|α|+A)

(A+ 1)
max
|z|=1

|p(z) +mβzn|. (3.11)

Remark 3.4. If we take β = 0, Theorem 3.1 reduces to the following inter-
esting result which provides the polar version of Theorem 1.3.

Corollary 3.5. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then
for every real or complex number α with |α| > 1 and for each r > 0,

‖Dαp(z)‖r ≤
n(|α|+A)

‖A+ z‖r
‖p‖r, (3.12)

where A is as defined in Theorem 3.1.

Remark 3.6. If we divide both sides of (3.12) of Corollary 3.5 by |α| and
take limit as |α| → ∞, we obtain inequality (1.15) of Theorem 1.3, which
corresponds the Lr analogue of Theorem 1.1.

Remark 3.7. By (2.2) of Lemma 2.1, it is evident that

A =
n|a0|kµ+1 + µ|aµ|k2µ

n|a0|+ µ|aµ|kµ+1
≥ kµ

for 1 ≤ µ ≤ n and hence for |α| ≥ 1 and for each r > 0,

(|α|+A)

‖A+ z‖r
≤ (|α|+ kµ)

‖kµ + z‖r
. (3.13)

Using (3.13) to Corollary 3.5, we get inequality (1.11).

Remark 3.8. Dividing both sides of inequality (3.1) by |α| and taking limit
as |α| → ∞, we have the following result independently proved by Chanam
[5].

Corollary 3.9. If p ∈ Pn,µ, 1 ≤ µ ≤ n and p(z) 6= 0 in |z| < k, k ≥ 1, then
for every real or complex number β with |β| < 1

kn and for each r > 0,

‖p′(z) +mnβzn−1‖r ≤
n

‖A+ z‖r
‖p(z) +mβzn‖r, (3.14)

where A and m are as defined in Theorem 3.1.
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Remark 3.10. If we let r →∞ on both sides of (3.14), we have

max
|z|=1

|p′(z) +mnβzn−1| ≤ n

1 +A
max
|z|=1

|p(z) +mβzn|

≤ n

1 +A

{
max
|z|=1

|p(z)|+m|β|
}
, (3.15)

where A and m are as defined in Theorem 3.1.

Let z0 on |z| = 1 be such that

max
|z|=1

|p′(z)| = |p′(z0)|.

Then, in particular, inequality (3.15) becomes

|p′(z0) +mnβzn−1
0 | ≤ n

1 +A

{
max
|z|=1

|p(z)|+m|β|
}
.

Choosing the argument of β suitably such that

|p′(z0) +mnβzn−1
0 | = |p′(z0)|+mn|β|,

and finally making limit as |β| → 1
kn , we get as cited earlier, the best possible

inequality due to Dewan et al. [9].
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