Nonlinear Functional Analysis and Applications Vol. 29, No. 2 (2024), pp. 477-485 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.02.09 http://nfaa.kyungnam.ac.kr/journal-nfaa

MULTI-VALUED HICKS CONTRACTIONS IN b-MENGER SPACES

Youssef Achtoun¹, Mohammed Sefian Lamarti², Ismail Tahiri³

¹Department of Mathematics Computing and Physical Sciences, Normal Higher School, Abdelmalek Essaadi University, Martil 209, Morocco e-mail: Achtoun44@outlook.fr

²Department of Mathematics Computing and Physical Sciences, Normal Higher School, Abdelmalek Essaadi University, Martil 209, Morocco e-mail: memdema@yahoo.fr

³Department of Mathematics Computing and Physical Sciences, Normal Higher School, Abdelmalek Essaadi University, Martil 209, Morocco e-mail: istahiri@uae.ac.ma

Abstract. In this work, we will generalize the notion of multivalued (ν, C) -contraction mapping in *b*-Menger spaces and we shall give a new fixed point result of this type of mappings. As a consequence of our main result, we obtained the corresponding fixed point theorem in fuzzy *b*-metric spaces. Also, an example will be given to illustrate the main theorem in ordinary *b*-metric spaces.

1. INTRODUCTION

The *b*-Menger space is a new concept which was introduced recently by Mbarki et al. in [5] as a generalization of Menger spaces and many topological properties and fixed point theorems have been proved especially for single

⁰Received August 27, 2023. Revised March 11, 2024. Accepted March 13, 2024.

⁰2020 Mathematics Subject Classification: 47H09, 47H10, 54H25.

⁰Keywords: Fixed points, *b*-Menger spaces, fuzzy *b*-metric spaces, multivalued (ν, C)-contraction.

⁰Corresponding author: Y. Achtoun(achtoun44@outlook.fr).

valued mappings [5, 6, 7, 4]. Hadžić in [10] presented the concept of (ν, C) contraction for multivalued mappings as a generalization of C-contraction
which was presented before by Hicks in [2], a fixed point theorem was proved
by using the notions of H-type and weakly demicompacts functions. A generalization of the results proved by Hadžić was presented by Mihet in [8].

Our main goal on this work is to prove a new fixed point theorem for multivalued mapping satisfying (ν, C) -contractive condition in *b*-Menger spaces. As an extend of these results, we also obtain the analogous fixed point theorem in the fuzzy *b*-metric spaces [9]. Our main results generalize and improve upon the finding of Hadžić [10] and Mihet [8].

This paper is structured as the following. In Section 2, we recall some basic definitions and topological proprieties from *b*-Menger spaces that will be used throughout the work. In Section 3, we will generalize the notion of (ν, C) -contraction in the sense of multivalued mappings in *b*-Menger spaces which was introduced before in Menger spaces by Mihet. After that we shall prove the existence of a fixed point theorem with an extend to the fuzzy *b*-metric spaces. Furthermore, an example will be given in usual *b*-metric spaces to illustrate our result.

2. Preliminaries

We will now present some fundamental notations, definitions and topological proprieties of the b-Menger spaces. For more information, we mention [5] to the readers.

Definition 2.1. A mapping $\xi : [0, \infty) \to [0, 1]$ is called a distance distribution function if the following conditions are verified

- (1) ξ is left continuous on $[0, \infty)$,
- (2) ξ is non-decreasing,
- (3) $\xi(0) = 0$ and $\xi(\infty) = 1$.

We represent by Δ^+ the class of all distance distribution functions. The subset $D^+ \subset \Delta^+$ is the set $D^+ = \Big\{ \xi \in \Delta^+ : \lim_{x \to \infty} \xi(x) = 1 \Big\}.$

As a specific element of D^+ is the Heavyside function ϵ_0 given as

$$\epsilon_0(x) = \begin{cases} 0, & \text{if } x = 0, \\ 1, & \text{if } x > 0. \end{cases}$$

Definition 2.2. ([11]) A mapping $\exists : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a triangular norm (shortly *t*-norm) if for each $u, v, w \in [0,1]$ the following conditions are satisfied

$$\begin{array}{ll} (1) \ \ \exists (u,v) = \exists (v,u); \\ (2) \ \ \exists (u,\exists (v,w)) = \exists (\exists (u,v),w); \\ (3) \ \ \exists (u,v) \leq \exists (u,w) \quad \text{for } v \leq w; \\ (4) \ \ \exists (u,1) = \exists (1,u) = u. \end{array}$$

Among the most used t-norms: $\exists_M(u,v) = \min(u,v)$ and $\exists_L(u,v) = \max(u+v-1,0)$.

Definition 2.3. Let \exists be a *t*-norm and $\{u_n\}_{n \in \mathbb{N}^*}$ is a sequence in [0, 1]. Then $\exists_{i=1}^n u_i$ is defined recurrently by

$$\exists_{i=1}^{1} u_i = u_1 \quad and \quad \exists_{i=1}^{n} u_i = \exists (\exists_{i=1}^{n-1} u_i, u_n), \quad \forall n \ge 2.$$

We are able to extend \exists to enumerable infinitary operation by taking $\exists_{i=1}^{\infty} u_i$ for any sequence $\{u_i\}_{i\in\mathbb{N}^*}$ as $\lim_{n\to\infty} \exists_{i=1}^n u_i$.

The operation $\exists^n(u)$ is defined by

$$\exists^{n}(u) = \begin{cases} 1, & \text{if } n = 0\\ \exists (\exists^{n-1}(u), u), & \text{otherwise.} \end{cases}$$

Definition 2.4. ([1]) A *t*-norm \exists is said of H-type if the family $\{\exists^n(x)\}_{n\in\mathbb{N}}$ is equi-continuous at the point x = 1, which means that

 $\forall \epsilon \in (0,1), \ \exists \lambda \in (0,1): \ t > 1 - \lambda \quad \Rightarrow \quad \exists^n(t) > 1 - \epsilon \ for \ all \ n \ge 1.$

Definition 2.5. A *t*-norm \exists is said to be *k*-convergent if for all $k \in (0, 1)$ we have

$$\lim_{n \to \infty} \exists_{i=n}^{\infty} (1 - k^i) = 1.$$

We should note if \neg is k-convergent then,

$$\forall \delta \in (0,1), \ \exists v \in \mathbb{N}: \ \ \mathbf{n}_{i=1}^n (1-k^{v+i}) > 1-\delta, \ \forall n \in \mathbb{N}.$$

As well, if the *t*-norm \exists is *k*-convergent then $\sup_{0 \le x \le 1} \exists (x, x) = 1$.

Definition 2.6. A quadruple $(\mathcal{E}, \mathcal{F}, \neg, s)$ is called a *b*-Menger space if \mathcal{E} is an arbitrary set, \mathcal{F} is a mapping from $\mathcal{E} \times \mathcal{E}$ into Δ^+ , \neg is a *t*-norm and $s \ge 1$ is a real number, such that for all $a, b, c \in \mathcal{E}$ and u, v > 0 we have

It is obvious that a Menger space is also a *b*-Menger space with the constant s = 1. Mbarki et al. in [5] proved that if $(\mathcal{E}, \mathcal{F}, \neg, s)$ is a *b*-Menger space with

a continuous *t*-norm \neg , then $(\mathcal{E}, \mathcal{F}, \neg, s)$ is a Hausdorff topological space in the topology induced by the family of (ϵ, λ) -neighborhoods

$$\mathcal{N} = \{N_p(\epsilon, \lambda): p \in \mathcal{E}, \epsilon > 0 \text{ and } \lambda > 0\},\$$

where

$$\mathcal{N}_p(\epsilon, \lambda) = \{q \in \mathcal{E} : F_{p,q}(\epsilon) > 1 - \lambda\}.$$

Definition 2.7. Let $(\mathcal{E}, \mathcal{F}, \exists, s)$ be a *b*-Menger space with \exists is a continuous *t*-norm, a sequence $\{u_n\}$ in \mathcal{E} is

- (1) Convergent to $u \in \mathcal{E}$ if for any given $\epsilon > 0$ and $\lambda > 0$ there exist $n_{\epsilon,\lambda} \in \mathbb{N}$ such that $\mathcal{F}_{u_n,u}(\lambda) > 1 \epsilon$, whenever $n \ge n_{\epsilon,\lambda}$.
- (2) A Cauchy sequence if for any $\epsilon > 0$ and $\lambda > 0$ there exist $n_{\epsilon,\lambda} \in \mathbb{N}$ such that $\mathcal{F}_{u_n,u_m}(\lambda) > 1 \epsilon$, whenever $n, m \ge n_{\epsilon,\lambda}$.

A *b*-Menger space $(\mathcal{E}, \mathcal{F}, \neg, s)$ is complete if each Cauchy sequence in \mathcal{E} is convergent to some point into \mathcal{E} .

Definition 2.8. A quadruple $(\mathcal{E}, R, \neg, s)$ is said to be a fuzzy *b*-metric space if \mathcal{E} is an arbitrary nonempty set, \neg is a continuous *t*-norm, $s \ge 1$ is a real number and R is a fuzzy set on $\mathcal{E} \times \mathcal{E} \times (0, \infty)$ such that following conditions are verified:

- (1) R(u, v, 0) = 0,
- (2) R(u, v, r) = 1 for all r > 0 if and only if u = v,
- (3) R(u, v, r) = R(v, u, r),
- (4) $R(u, w, s(r+q)) \ge \exists (R(u, v, r), R(v, w, q)),$
- (5) $R(u, v, .) : [0, \infty) \longrightarrow [0, 1]$ is left-continuous and nondecreasing for all $u, v, w \in \mathcal{E}$ and r, q > 0.

When we take s = 1 then $(\mathcal{E}, R, \neg, 1)$ became a fuzzy metric space in the form of Kramosil and Michalek [3].

Afterward, we assume for the *b*-Menger space $(\mathcal{E}, \mathcal{F}, \neg, s)$ that the *t*-norm \neg is continuous, and we represent by $C(\mathcal{E})$ the class of all nonempty closed subsets of \mathcal{E} , also we consider the gauge functions among the class Γ of all mapping $\nu : [0, \infty] \to [0, \infty]$ such that $\nu(u) < u$ for all u > 0.

Definition 2.9. Let $(\mathcal{E}, \mathcal{F}, \neg, s)$ be a *b*-Menger space, a multi-valued mapping $f : \mathcal{E} \to C(\mathcal{E})$ is continuous if for each $\epsilon > 0$ we can found $\lambda \in (0, 1)$ such that

$$F_{x,y}(\lambda) > 1 - \lambda \quad \Rightarrow \quad \forall p \in fx, \ \exists q \in fy: \ F_{p,q}(\epsilon) > 1 - \epsilon.$$

3. Main result

Here we will prove a new fixed point theorem of multivalued (ν, C) -contraction in *b*-Menger spaces, and before stating the principal result, we introduce the next definition.

Definition 3.1. Let $(\mathcal{E}, \mathcal{F}, \neg, s)$ be a *b*-Menger space and $\nu : [0, \infty) \to [0, \infty)$. A mapping $f : \mathcal{E} \to C(\mathcal{E})$ is said to be a multi-valued (ν, \mathcal{C}) -contraction if for each $x, y \in \mathcal{E}$, and u > 0 we have

$${\it F}_{x,y}(u)>1-u \quad \Rightarrow \quad \forall p\in fx \; \exists q\in fy: \;\; {\it F}_{p,q}(\nu(u))>1-\nu(u)$$

Theorem 3.2. Let $(\mathcal{E}, \mathcal{F}, \neg, s)$ be a complete b-Menger space and $f : \mathcal{E} \to C(\mathcal{E})$ a multi-valued (ν, \mathcal{C}) -contraction in which the series $\sum_{n=1}^{\infty} s^n \nu^n(u)$ is convergent for some u > 1 with $\nu \in \Gamma$. If $\lim_{n \to \infty} \neg_{i=1}^{\infty} (1 - \nu^{n+i-1}(u)) = 1$, then f admits a fixed point.

Proof. Let take $p_0 \in \mathcal{E}$ and $p_1 \in f(p_0)$. Since u > 1 we obtain that $\mathcal{F}_{p,q}(u) > 1 - u$ for each $p, q \in \mathcal{E}$, then we get $\mathcal{F}_{p_0,p_1}(u) > 1 - u$. And by using the contractivity relation we obtain that there exists $p_2 \in f(p_1)$ such that

$$F_{p_1,p_2}(\nu(u)) > 1 - \nu(u)$$

Hence, inductively we can construct a sequence $\{p_n\}$ that satisfy

$$p_{n+1} \in f(p_n) \text{ and } F_{p_n, p_{n+1}}(\nu^n(u)) \ge 1 - \nu^n(u), \quad \forall n \in \mathbb{N}.$$
 (3.1)

Subsequently, we show that $\{p_n\}$ is a Cauchy sequence.

Let $\epsilon > 0$ and $\lambda > 0$. Since $\lim_{n \to \infty} \exists_{i=1}^{\infty} (1 - \nu^{n+1-i}(u)) = 1$, there exists $n_1 \in \mathbb{N}$ such that

$$\exists_{i=1}^{\infty}(1-\nu^{n+i-1}(u)) > 1-\epsilon, \quad \forall n \ge n_1.$$

On the other hand we have that the series $\sum_{n=1}^{\infty} s^n \nu^n(u)$ is convergent, so there exists $n_2 \in \mathbb{N}$ such that

$$\sum_{n=n_2}^{\infty} s^n \nu^n(u) < \lambda$$

We take $j = \max(n_1, n_2)$, then for each $n \ge j$ and $l \in \mathbb{N}$ we have

$$\mathcal{F}_{p_n,p_{n+l}}(\lambda) \ge \mathcal{F}_{p_n,p_{n+l}}\left(\sum_{i=n}^{n+l-1} s^i \nu^i(u)\right).$$

And by the *b*-Menger triangle inequality we get

$$F_{p_n,p_{n+l}}(\lambda) \ge \neg \left(F_{p_n,p_{n+1}}(s^{n-1}\nu^n(u)), F_{p_{n+1},p_{n+l}}(\sum_{i=n+1}^{n+l-1}s^{i-1}\nu^i(u)) \right).$$

Continuing in this way, we obtain

$$\begin{split} \mathcal{F}_{p_{n},p_{n+l}}(\lambda) &\geq \mathbb{k}^{l} \Big(\mathcal{F}_{p_{n},p_{n+1}}(s^{n-1}\nu^{n}(u)), \mathcal{F}_{p_{n+1},p_{n+2}}(s^{n-1}\nu^{n+1}(u)), ..., \\ &\qquad \mathcal{F}_{p_{n+l-1},p_{n+l}}(s^{n-1}\nu^{n+l-1}(u)) \Big) \\ &\geq \mathbb{k}^{l} \Big(\mathcal{F}_{p_{n},p_{n+1}}(\nu^{n}(u)), \mathcal{F}_{p_{n+1},p_{n+2}}(\nu^{n+1}(u)), ..., \\ &\qquad \mathcal{F}_{p_{n+l-1},p_{n+l}}(\nu^{n+l-1}(u)) \Big) \\ &\geq \mathbb{k}^{l} \left(1 - \nu^{n}(u), 1 - \nu^{n+1}(u), ..., 1 - \nu^{n+l-1}(u) \right) \\ &\geq \mathbb{k}^{\infty}_{i=1} \left(1 - \nu^{n+i-1}(u) \right) \\ &> 1 - \epsilon. \end{split}$$

Finally we conclude that $\{p_n\}$ is a Cauchy sequence, and from that \mathcal{E} is complete, then it follows that $\{p_n\}$ converges to some $h \in \mathcal{E}$.

It left to show that $h \in fh$. As fh is closed, then it suffice to show that $h \in \overline{fh}$, which is mean to prove that for every $\lambda > 0$ and $\epsilon > 0$ there exist $y \in fh$ such that $F_{h,y}(\epsilon) > 1 - \lambda$. From the condition that \neg is continuous it follow that $\sup_{0 \leq a \leq 1} \neg (a, a) = 1$, which is implies that for every $\lambda > 0$ there exists $\theta \in (0, 1)$ such that

$$\exists (1-\theta, 1-\theta) > 1-\lambda.$$

Let $\epsilon > 0$ be given such that $\frac{\epsilon}{2s} < \theta$ and $n'_1 \in \mathbb{N}$ satisfying

$$F_{p_n,h}(\frac{\epsilon}{2s}) > 1 - \frac{\epsilon}{2s} > 1 - \theta, \quad \forall n \ge n'_1.$$

Since $p_{n+1} \in f(p_n)$, we get by the (ν, C) -contraction that there exists $y \in fh$ such that for all $n \geq n'_1$ we have

$$F_{p_{n+1},y}(\frac{\epsilon}{2s}) > F_{p_{n+1},y}\left(\nu(\frac{\epsilon}{2s})\right)$$
$$\geq 1 - \nu(\frac{\epsilon}{2s})$$
$$\geq 1 - \frac{\epsilon}{2s}$$
$$\geq 1 - \theta.$$

From that $\lim_{n\to\infty} p_{n+1} = h$, it follows that there exists $n'_2 \in \mathbb{N}$ that satisfy

$$F_{h,p_{n+1}}(\frac{\epsilon}{2s}) > 1-\theta, \quad \forall n \ge n'_2.$$

By taking $j' = \max(n'_1, n'_2)$, then for every $n \ge j'$ we get

$$\begin{split} \mathcal{F}_{h,y}(\epsilon) &\geq \mathbb{k}\left(\mathcal{F}_{h,p_{n+1}}(\frac{\epsilon}{2s}), \mathcal{F}_{p_{n+1},y}(\frac{\epsilon}{2s})\right) \\ &\geq \mathbb{k}(1-\theta, 1-\theta) \\ &\geq 1-\lambda. \end{split}$$

Therefore the theorem is proved.

Example 3.3. Let (G, d) be a complete separable *b*-metric space with a constant s = 2, (Ω, Π, P) be a probability space and \mathcal{E} the space of measurable mappings from Π to G. We assume that $(\mathcal{E}, \mathcal{F}, \neg_L, 2)$ is a complete *b*-Menger space, where

$$F_{\alpha,\beta}(u) = P\left(w \in \Omega, \ d(\alpha(w), \beta(w)) < u\right) \quad for \ \alpha, \beta \in \mathcal{E}.$$

Indeed, it's obvious that $F_{\alpha,\beta}$ satisfies the conditions (1), (2) and (3) of definition 6, it left to prove that the *b*-Menger triangular inequality hold. Since

$$\frac{1}{2}d\left(\alpha(v),\chi(v)\right) \le d\left(\alpha(v),\beta(v)\right) + d\left(\beta(v),\chi(v)\right), \quad \forall \ \alpha,\beta,\chi \in \mathcal{E} \quad and \quad v \in \Omega,$$

it follows that

$$H \cap L \subset \{v \in \Omega, \ d\left(\alpha(v), \chi(v)\right) < x + y\}$$

where $H = \left\{ v \in \Omega, \ d\left(\alpha(v), \beta(v)\right) < \frac{1}{2}x \right\}$ and $L = \left\{ v \in \Omega, \ d\left(\beta(v), \chi(v)\right) < \frac{1}{2}y \right\}$. From that $P(H \cap L) = P(H) + P(L) - P(H \cup L)$, it implies that $P(H \cap L) \ge P(H) + P(L) - 1$. Hence

$$\mathcal{F}_{\alpha,\chi}(x+y) \ge \max\left(\mathcal{F}_{\alpha,\beta}(\frac{x}{2}) + \mathcal{F}_{\beta,\chi}(\frac{y}{2}) - 1, 0\right) = \exists_L \left(\mathcal{F}_{\alpha,\beta}(\frac{x}{2}), \mathcal{F}_{\beta,\chi}(\frac{y}{2})\right).$$

Therefore $(\mathcal{E}, \mathcal{F}, \neg_L, 2)$ is a *b*-Menger space.

It clear that if (G, d) is complete then $(\mathcal{E}, \mathcal{F}, \exists_L, 2)$ is complete. Let d_2 be the function defined by

$$d_2(\alpha,\beta) = \sup \left\{ u \ge 0, P(v \in \Omega, \ d(\alpha(v),\beta(v)) > u) > u \right\}, \ \forall \alpha, \beta \in \mathcal{E}.$$

It's not hard to show that d_2 is a *b*-metric with the constant s = 2. We consider $f : \mathcal{E} \to C(\mathcal{E})$ a multivalued mapping that verify

$$\sup_{p \in f(\alpha)} \inf_{q \in f(\beta)} d_2(p,q) < \nu \left(\left(d_2(\alpha,\beta) \right) \right),$$

where $\nu \in \Gamma$ is strictly increasing and the series $\sum_{n=1}^{\infty} 2^n \nu^n(u)$ is convergent. It's clear that for every $\alpha, \beta \in \mathcal{E}$ we have

$$d_2(\alpha, \beta) = \sup \{x > 0, \ F_{\alpha, \beta}(x) < 1 - x\}.$$

So if we suppose that $F_{\alpha,\beta}(x) > 1 - x$, then we get $d_2(\alpha,\beta) < x$. And by the monotonicity of ν we obtain that

$$\nu\left(d_2(\alpha,\beta)\right) < \nu(x)$$

Therefore,

$$\sup_{p \in f(\alpha)} \inf_{q \in f(\beta)} d_2(p,q) < \nu(x).$$

That means for every $p \in f(\alpha)$ there exists $q \in f(\beta)$ such that $d_2(p,q) < \nu(x)$, which implies $\mathbb{F}_{p,q}(\nu(x)) > 1 - \nu(x)$. Hence, by Theorem 3.2 f admits a fixed point.

Remark 3.4. It should mark that in our proof of Theorem 3.2, the condition of H-type was not necessary as in [10]. Also note that if f is (ν, \mathcal{C}) -contraction then f is a continuous multi-valued mapping. In fact, let $\epsilon > 0$ be given and $\lambda \in (0,1)$ be such that $\nu(\lambda) < \epsilon$, if $\mathbb{F}_{x,y}(\lambda) > 1 - \lambda$ then for each $p \in fx$ there exists $q \in fy$ such that $\mathbb{F}_{p,q}(\nu(\lambda)) > 1 - \nu(\lambda)$, which implies that $\mathbb{F}_{p,q}(\epsilon) \ge \mathbb{F}_{p,q}(\nu(\lambda)) > 1 - \nu(\lambda) > 1 - \epsilon$. Hence f is continuous.

In what follows, we give some consequences of Theorem 3.2. Taking up s = 1, we get the result proved by Mihet in [8].

Corollary 3.5. ([8]) Let $(\mathcal{E}, \mathcal{F}, \mathbb{k})$ be a complete Menger space with $\sup_{0 \le x < 1} \mathbb{k}(x, x) = 1$ and $f : \mathcal{E} \to C(\mathcal{E})$ a multi-valued (ν, \mathcal{C}) -contraction in which the series $\sum_{n=1}^{\infty} \nu^n(u)$ is convergent for some u > 1. If $\lim_{n \to \infty} \mathbb{k}_{i=1}^{\infty} (1 - \nu^{n+i-1}(u)) = 1$, then f admits a fixed point.

If we take $\nu(u) = ku$ with u > 0 and $k \in (0, 1)$, then a (ν, C) -contraction becomes a C-contraction, i.e., for any $x, y \in \mathcal{E}$ and u > 0 we have:

$$F_{x,y}(u) > 1 - u \quad \Rightarrow \quad \forall p \in fx, \ \exists q \in fy : F_{p,q}(ku) > 1 - ku$$

Corollary 3.6. Let $(\mathcal{E}, \mathcal{F}, \neg, s)$ be a complete b-Menger space and $f : \mathcal{E} \to C(\mathcal{E})$ a multivalued \mathcal{C} -contraction with $k \in (0, \frac{1}{s})$. If \neg is k-convergent then there exists $h \in \mathcal{E}$ such that $h \in fh$.

Since the condition $\mathcal{F}_{p,q}(\infty) = 1$ have been not used in the proof of Theorem 3.2, we give the corresponding result in fuzzy *b*-metric spaces where $\mathcal{F}_{x,y}(u) = R(x, y, u)$ for all u > 0.

Corollary 3.7. Let $(\mathcal{E}, R, \neg, s)$ be a complete fuzzy b-metric space with a continuous t-norm \neg and $f : \mathcal{E} \to C(\mathcal{E})$ be a multi-valued (ν, \mathcal{C}) -contraction in which the series $\sum_{n=1}^{\infty} s^n \nu^n(u)$ is convergent for some u > 1 with $\nu \in \Gamma$. If $\lim_{n \to \infty} \neg_{i=1}^{\infty} (1 - \nu^{n+i-1}(u)) = 1$ for all u > 0, then f admits a fixed point.

4. Conclusion

In this work, we defined the multi-valued (ν, \mathcal{C}) -contraction mapping and proved a fixed point theorem in *b*-Menger space which is a recent space of the literature. As a consequence of our result, we obtained Hicks's theorem for multivalued \mathcal{C} -contraction in *b*-Menger spaces by modifying the assumptions on the constant $k \in (0, \frac{1}{s})$ with the extended version on the *b*-fuzzy metric spaces. Also an example was presented in a particular *b*-metric space to support the results thus obtained. The results presented develop and generalize in a sense the fixed point theorems for multi-valued (ν, \mathcal{C}) -contraction proved by Hadžić and Mihet.

References

- O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [2] T.L. Hicks, Fixed point theory in probabilistic metric spaces, Zb.Rad. Prirod. Mat. Fak. Ser. Mat., 13 (1983), 63–72.
- [3] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 326–334.
- [4] A. Mbarki and J. Hlal, Weakly-H contraction fixed point theorem in b-Menger spaces, Int. J. Appl. Math., 35(2) (2022), 225-232; doi: 10.12732/ijam.v35i2.2.
- [5] A. Mbarki and R. Oubrahim, Probabilistic b-metric spaces and nonlinear contractions, Fixed Point Theory Appl., 2017 (2017), 15–29.
- [6] A. Mbarki and R. Oubrahim, Common fixed point theorem in b-Menger spaces with a fully convex structure, Int. J. Appl. Math., 32(2) (2019), 219-238; doi: 10.12732/ijam.v32i5.1.
- [7] A. Mbarki and R. Oubrahim, Fixed point theorem satisfying cyclical conditions in b-Menger spaces, Moroccan J. Pure. Appl. Anal., 5(1) (2019), 31–36.
- [8] D. Mihet, Multi-valued generalization of probabilistic contractions, J. Math. Anal. Appl., 304 (2005), 464-472.
- [9] S. Nădăban, Fuzzy b-metric Spaces, Int. J. Comput. Commun., 11 (2016), 273-281.
- [10] E. Pap, O. Hadžić and R. Mesiar, A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory, J. Math. Anal. Appl., 202 (1996), 433-449.
- [11] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.