Nonlinear Functional Analysis and Applications Vol. 29, No. 2 (2024), pp. 477-485 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.02.09 http://nfaa.kyungnam.ac.kr/journal-nfaa

MULTI-VALUED HICKS CONTRACTIONS IN b-MENGER SPACES

$\rm\,Youssef\,Achtoun^1,\,Mohammed\,Seflan\,Lamarti^2,\,Ismail\,Tahiri^3$

¹Department of Mathematics Computing and Physical Sciences, Normal Higher School, Abdelmalek Essaadi University, Martil 209, Morocco e-mail: Achtoun44@outlook.fr

²Department of Mathematics Computing and Physical Sciences, Normal Higher School, Abdelmalek Essaadi University, Martil 209, Morocco e-mail: memdema@yahoo.fr

³Department of Mathematics Computing and Physical Sciences, Normal Higher School, Abdelmalek Essaadi University, Martil 209, Morocco e-mail: istahiri@uae.ac.ma

Abstract. In this work, we will generalize the notion of multivalued (ν, \mathcal{C}) -contraction mapping in b-Menger spaces and we shall give a new fixed point result of this type of mappings. As a consequence of our main result, we obtained the corresponding fixed point theorem in fuzzy b-metric spaces. Also, an example will be given to illustrate the main theorem in ordinary b-metric spaces.

1. INTRODUCTION

The b-Menger space is a new concept which was introduced recently by Mbarki et al. in [5] as a generalization of Menger spaces and many topological properties and fixed point theorems have been proved especially for single

⁰Received August 27, 2023. Revised March 11, 2024. Accepted March 13, 2024.

⁰ 2020 Mathematics Subject Classification: 47H09, 47H10, 54H25.

⁰Keywords: Fixed points, b-Menger spaces, fuzzy b-metric spaces, multivalued (ν, C) contraction.

 0^0 Corresponding author: Y. Achtoun(achtoun44@outlook.fr).

valued mappings [5, 6, 7, 4]. Hadžić in [10] presented the concept of (ν, C) contraction for multivalued mappings as a generalization of $\mathcal{C}\text{-contraction}$ which was presented before by Hicks in [2], a fixed point theorem was proved by using the notions of H-type and weakly demicompacts functions. A generalization of the results proved by Hadžić was presented by Mihet in $[8]$.

Our main goal on this work is to prove a new fixed point theorem for multivalued mapping satisfying (ν, \mathcal{C}) -contractive condition in b-Menger spaces. As an extend of these results, we also obtain the analogous fixed point theorem in the fuzzy b-metric spaces [9]. Our main results generalize and improve upon the finding of Hadžić $[10]$ and Mihet $[8]$.

This paper is structured as the following. In Section 2, we recall some basic definitions and topological proprieties from b-Menger spaces that will be used throughout the work. In Section 3, we will generalize the notion of (ν, C) contraction in the sense of multivalued mappings in b-Menger spaces which was introduced before in Menger spaces by Mihet. After that we shall prove the existence of a fixed point theorem with an extend to the fuzzy b-metric spaces. Furthermore, an example will be given in usual b-metric spaces to illustrate our result.

2. Preliminaries

We will now present some fundamental notations, definitions and topological proprieties of the b-Menger spaces. For more information, we mention [5] to the readers.

Definition 2.1. A mapping $\xi : [0, \infty) \to [0, 1]$ is called a distance distribution function if the following conditions are verified

- (1) ξ is left continuous on [0, ∞),
- (2) ξ is non-decreasing,
- (3) $\xi(0) = 0$ and $\xi(\infty) = 1$.

We represent by Δ^+ the class of all distance distribution functions. The subset $D^+ \subset \Delta^+$ is the set $D^+ = \Big\{ \xi \in \Delta^+ : \lim_{x \to \infty} \xi(x) = 1 \Big\}.$

As a specific element of D^+ is the Heavyside function ϵ_0 given as

$$
\epsilon_0(x) = \begin{cases} 0, & \text{if } x = 0, \\ 1, & \text{if } x > 0. \end{cases}
$$

Definition 2.2. ([11]) A mapping \mathbb{k} : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is said to be a triangular norm (shortly t-norm) if for each $u, v, w \in [0, 1]$ the following conditions are satisfied

(1)
$$
\mathbb{T}(u, v) = \mathbb{T}(v, u);
$$

\n(2) $\mathbb{T}(u, \mathbb{T}(v, w)) = \mathbb{T}(\mathbb{T}(u, v), w);$
\n(3) $\mathbb{T}(u, v) \leq \mathbb{T}(u, w)$ for $v \leq w;$
\n(4) $\mathbb{T}(u, 1) = \mathbb{T}(1, u) = u.$

Among the most used t-norms: $\mathcal{T}_M(u, v) = \min(u, v)$ and $\mathcal{T}_L(u, v) =$ $max(u + v - 1, 0).$

Definition 2.3. Let T be a t-norm and $\{u_n\}_{n\in\mathbb{N}^*}$ is a sequence in [0, 1]. Then $\overline{\mathcal{L}}_{i=1}^n u_i$ is defined recurrently by

$$
\mathbf{T}_{i=1}^1 u_i = u_1 \quad and \quad \mathbf{T}_{i=1}^n u_i = \mathbf{T}(\mathbf{T}_{i=1}^{n-1} u_i, u_n), \ \ \forall n \ge 2.
$$

We are able to extend $\overline{\mathcal{A}}$ to enumerable infinitary operation by taking $\overline{\mathcal{A}}_{i=1}^{\infty} u_i$ for any sequence ${u_i}_{i \in \mathbb{N}^*}$ as $\lim_{n \to \infty} \mathbb{I}_{i=1}^n u_i$.

The operation $\mathbb{T}^n(u)$ is defined by

$$
\mathsf{T}^n(u) = \begin{cases} 1, & \text{if } n = 0\\ \mathsf{T}(\mathsf{T}^{n-1}(u), u), & \text{otherwise.} \end{cases}
$$

Definition 2.4. ([1]) A t-norm $\overline{\mathsf{I}}$ is said of H-type if the family $\{\overline{\mathsf{I}}^n(x)\}_{n\in\mathbb{N}}$ is equi-continuous at the point $x = 1$, which means that

 $\forall \epsilon \in (0,1), \exists \lambda \in (0,1) : t > 1 - \lambda \Rightarrow \exists^{n}(t) > 1 - \epsilon \text{ for all } n \geq 1.$

Definition 2.5. A t-norm $\overline{}$ is said to be k-convergent if for all $k \in (0, 1)$ we have

$$
\lim_{n \to \infty} \mathbb{I}_{i=n}^{\infty} (1 - k^i) = 1.
$$

We should note if $\overline{\mathsf{I}}$ is k-convergent then,

$$
\forall \delta \in (0,1), \ \exists v \in \mathbb{N}: \ \mathbb{T}_{i=1}^n (1 - k^{v+i}) > 1 - \delta, \ \forall n \in \mathbb{N}.
$$

As well, if the t-norm $\overline{\mathcal{A}}$ is k-convergent then $\sup_{0\leq x<1} \overline{\mathcal{A}}(x, x) = 1$.

Definition 2.6. A quadruple $(\mathcal{E}, F, \mathcal{T}, s)$ is called a b-Menger space if \mathcal{E} is an arbitrary set, F is a mapping from $\mathcal{E} \times \mathcal{E}$ into Δ^+ , \Box is a t-norm and $s \geq 1$ is a real number, such that for all $a, b, c \in \mathcal{E}$ and $u, v > 0$ we have

(1)
$$
F_{a,a} = \epsilon_0
$$
,
\n(2) $F_{a,b} \neq \epsilon_0$ if $a \neq b$,
\n(3) $F_{a,b} = F_{b,a}$,
\n(4) $F_{a,b}(s(u+v)) \geq \exists (F_{a,c}(u), F_{c,b}(v)).$

It is obvious that a Menger space is also a b-Menger space with the constant s = 1. Mbarki et al. in [5] proved that if $(\mathcal{E}, F, \mathcal{T}, s)$ is a b-Menger space with a continuous t-norm \mathcal{A} , then $(\mathcal{E}, \mathcal{F}, \mathcal{A}, s)$ is a Hausdorff topological space in the topology induced by the family of (ϵ, λ) -neighborhoods

$$
\mathcal{N} = \{ N_p(\epsilon, \lambda) : p \in \mathcal{E}, \epsilon > 0 \text{ and } \lambda > 0 \},
$$

where

$$
\mathcal{N}_p(\epsilon,\lambda) = \{q \in \mathcal{E} : F_{p,q}(\epsilon) > 1 - \lambda\}.
$$

Definition 2.7. Let $(\mathcal{E}, F, \mathcal{L}, s)$ be a b-Menger space with \mathcal{L} is a continuous t-norm, a sequence $\{u_n\}$ in $\mathcal E$ is

- (1) Convergent to $u \in \mathcal{E}$ if for any given $\epsilon > 0$ and $\lambda > 0$ there exist $n_{\epsilon,\lambda} \in \mathbb{N}$ such that $\mathcal{F}_{u_n,u}(\lambda) > 1 - \epsilon$, whenever $n \geq n_{\epsilon,\lambda}$.
- (2) A Cauchy sequence if for any $\epsilon > 0$ and $\lambda > 0$ there exist $n_{\epsilon,\lambda} \in \mathbb{N}$ such that $F_{u_n,u_m}(\lambda) > 1 - \epsilon$, whenever $n, m \geq n_{\epsilon,\lambda}$.

A b-Menger space $(\mathcal{E}, F, \mathbb{k}, s)$ is complete if each Cauchy sequence in $\mathcal E$ is convergent to some point into $\mathcal{E}.$

Definition 2.8. A quadruple $(\mathcal{E}, R, \mathcal{T}, s)$ is said to be a fuzzy *b*-metric space if $\mathcal E$ is an arbitrary nonempty set, $\overline{}$ is a continuous t-norm, $s \geq 1$ is a real number and R is a fuzzy set on $\mathcal{E} \times \mathcal{E} \times (0, \infty)$ such that following conditions are verified:

- (1) $R(u, v, 0) = 0$,
- (2) $R(u, v, r) = 1$ for all $r > 0$ if and only if $u = v$,
- (3) $R(u, v, r) = R(v, u, r),$
- (4) $R(u, w, s(r + q)) \geq \mathbb{I}(R(u, v, r), R(v, w, q)),$
- (5) $R(u, v, .): [0, \infty) \longrightarrow [0, 1]$ is left-continuous and nondecreasing for all $u, v, w \in \mathcal{E}$ and $r, q > 0$.

When we take $s = 1$ then $(\mathcal{E}, R, \mathcal{L}, 1)$ became a fuzzy metric space in the form of Kramosil and Michalek [3].

Afterward, we assume for the b-Menger space $(\mathcal{E}, F, \mathbb{k}, s)$ that the t-norm $\overline{\mathsf{I}}$ is continuous, and we represent by $C(\mathcal{E})$ the class of all nonempty closed subsets of \mathcal{E} , also we consider the gauge functions among the class Γ of all mapping $\nu : [0, \infty] \to [0, \infty]$ such that $\nu(u) < u$ for all $u > 0$.

Definition 2.9. Let $(\mathcal{E}, \mathcal{F}, \mathbb{k})$ be a b-Menger space, a multi-valued mapping $f : \mathcal{E} \to C(\mathcal{E})$ is continuous if for each $\epsilon > 0$ we can found $\lambda \in (0,1)$ such that

$$
F_{x,y}(\lambda) > 1 - \lambda \Rightarrow \forall p \in fx, \exists q \in fy: F_{p,q}(\epsilon) > 1 - \epsilon.
$$

3. Main result

Here we will prove a new fixed point theorem of multivalued (ν, \mathcal{C}) -contraction in b-Menger spaces, and before stating the principal result, we introduce the next definition.

Definition 3.1. Let $(\mathcal{E}, F, \mathcal{T}, s)$ be a b-Menger space and $\nu : [0, \infty) \to [0, \infty)$. A mapping $f : \mathcal{E} \to C(\mathcal{E})$ is said to be a multi-valued (ν, \mathcal{C}) -contraction if for each $x, y \in \mathcal{E}$, and $u > 0$ we have

$$
\mathcal{F}_{x,y}(u) > 1 - u \quad \Rightarrow \quad \forall p \in fx \; \exists q \in fy: \quad \mathcal{F}_{p,q}(\nu(u)) > 1 - \nu(u).
$$

Theorem 3.2. Let $(\mathcal{E}, F, \mathcal{T}, s)$ be a complete b-Menger space and $f : \mathcal{E} \rightarrow$ $C(\mathcal{E})$ a multi-valued (ν, \mathcal{C}) -contraction in which the series $\sum_{n=1}^{\infty} s^n \nu^n(u)$ is convergent for some $u > 1$ with $\nu \in \Gamma$. If $\lim_{n \to \infty} \mathbb{I}_{i=1}^{\infty}(1 - \nu^{n+i-1}(u)) = 1$, then f admits a fixed point.

Proof. Let take $p_0 \in \mathcal{E}$ and $p_1 \in f(p_0)$. Since $u > 1$ we obtain that $\mathcal{F}_{p,q}(u) >$ $1 - u$ for each $p, q \in \mathcal{E}$, then we get $F_{p_0, p_1}(u) > 1 - u$. And by using the contractivity relation we obtain that there exists $p_2 \in f(p_1)$ such that

$$
\mathcal{F}_{p_1,p_2}(\nu(u)) > 1 - \nu(u).
$$

Hence, inductively we can construct a sequence $\{p_n\}$ that satisfy

$$
p_{n+1} \in f(p_n)
$$
 and $F_{p_n, p_{n+1}}(\nu^n(u)) \ge 1 - \nu^n(u)$, $\forall n \in \mathbb{N}$. (3.1)

Subsequently, we show that $\{p_n\}$ is a Cauchy sequence.

Let $\epsilon > 0$ and $\lambda > 0$. Since $\lim_{n \to \infty} \mathbb{I}_{i=1}^{\infty} (1 - \nu^{n+1-i}(u)) = 1$, there exists $n_1 \in \mathbb{N}$ such that

$$
\mathbb{T}_{i=1}^{\infty}(1-\nu^{n+i-1}(u))>1-\epsilon, \quad \forall n\geq n_1.
$$

On the other hand we have that the series $\sum_{n=1}^{\infty} s^n \nu^n(u)$ is convergent, so there exists $n_2 \in \mathbb{N}$ such that

$$
\sum_{n=n_2}^{\infty} s^n \nu^n(u) < \lambda.
$$

We take $j = \max(n_1, n_2)$, then for each $n \geq j$ and $l \in \mathbb{N}$ we have

$$
F_{p_n,p_{n+l}}(\lambda) \geq F_{p_n,p_{n+l}}\left(\sum_{i=n}^{n+l-1} s^i \nu^i(u)\right).
$$

And by the b-Menger triangle inequality we get

$$
F_{p_n,p_{n+l}}(\lambda) \geq \prod_{i=1}^{n+l-1} \left(F_{p_n,p_{n+1}}(s^{n-1}\nu^n(u)), F_{p_{n+1},p_{n+l}}(\sum_{i=n+1}^{n+l-1} s^{i-1}\nu^i(u)) \right).
$$

Continuing in this way, we obtain

$$
F_{p_n, p_{n+l}}(\lambda) \geq \mathbb{I}^l \Big(F_{p_n, p_{n+1}}(s^{n-1} \nu^n(u)), F_{p_{n+1}, p_{n+2}}(s^{n-1} \nu^{n+1}(u)), ...,
$$

\n
$$
F_{p_{n+l-1}, p_{n+l}}(s^{n-1} \nu^{n+l-1}(u)) \Big)
$$

\n
$$
\geq \mathbb{I}^l \Big(F_{p_n, p_{n+1}}(\nu^n(u)), F_{p_{n+1}, p_{n+2}}(\nu^{n+1}(u)), ...,
$$

\n
$$
F_{p_{n+l-1}, p_{n+l}}(\nu^{n+l-1}(u)) \Big)
$$

\n
$$
\geq \mathbb{I}^l \Big(1 - \nu^n(u), 1 - \nu^{n+1}(u), ..., 1 - \nu^{n+l-1}(u) \Big)
$$

\n
$$
\geq \mathbb{I}^{\infty}_{i=1} \Big(1 - \nu^{n+i-1}(u) \Big)
$$

\n
$$
> 1 - \epsilon.
$$

Finally we conclude that $\{p_n\}$ is a Cauchy sequence, and from that $\mathcal E$ is complete, then it follows that $\{p_n\}$ converges to some $h \in \mathcal{E}$.

It left to show that $h \in fh$. As fh is closed, then it suffice to show that $h \in \overline{fh}$, which is mean to prove that for every $\lambda > 0$ and $\epsilon > 0$ there exist $y \in fh$ such that $F_{h,y}(\epsilon) > 1 - \lambda$. From the condition that $\overline{\mathsf{I}}$ is continuous it follow that $\sup_{0 \leq a \leq 1} \mathcal{F}(a, a) = 1$, which is implies that for every $\lambda > 0$ there exists $\theta \in (0,1)$ such that

$$
\mathbb{I}(1-\theta, 1-\theta) > 1 - \lambda.
$$

Let $\epsilon > 0$ be given such that $\frac{\epsilon}{2s} < \theta$ and $n'_1 \in \mathbb{N}$ satisfying

$$
F_{p_n,h}(\frac{\epsilon}{2s}) > 1 - \frac{\epsilon}{2s} > 1 - \theta, \ \ \forall n \ge n'_1.
$$

Since $p_{n+1} \in f(p_n)$, we get by the (ν, C) -contraction that there exists $y \in fh$ such that for all $n \geq n'_1$ we have

$$
F_{p_{n+1},y}(\frac{\epsilon}{2s}) > F_{p_{n+1},y}\left(\nu(\frac{\epsilon}{2s})\right)
$$

$$
\geq 1 - \nu(\frac{\epsilon}{2s})
$$

$$
\geq 1 - \frac{\epsilon}{2s}
$$

$$
\geq 1 - \theta.
$$

From that $\lim_{n\to\infty} p_{n+1} = h$, it follows that there exists $n'_2 \in \mathbb{N}$ that satisfy

$$
\label{eq:1.1} F_{h,p_{n+1}}(\frac{\epsilon}{2s})>1-\theta,\;\;\forall n\geq n_2'.
$$

By taking $j' = \max(n'_1, n'_2)$, then for every $n \geq j'$ we get

$$
F_{h,y}(\epsilon) \ge \mathbb{E}\left(F_{h,p_{n+1}}(\frac{\epsilon}{2s}), F_{p_{n+1},y}(\frac{\epsilon}{2s})\right)
$$

\n
$$
\ge \mathbb{E}\left[(1-\theta, 1-\theta)\right]
$$

\n
$$
\ge 1-\lambda.
$$

Therefore the theorem is proved.

Example 3.3. Let (G, d) be a complete separable b-metric space with a constant $s = 2$, (Ω, Π, P) be a probability space and E the space of measurable mappings from Π to G. We assume that $(\mathcal{E}, F, \mathcal{I}_L, 2)$ is a complete b-Menger space, where

$$
\digamma_{\alpha,\beta}(u)=P\left(w\in\Omega,\ d(\alpha(w),\beta(w))
$$

Indeed, it's obvious that $\Gamma_{\alpha,\beta}$ satisfies the conditions (1), (2) and (3) of definition 6, it left to prove that the b-Menger triangular inequality hold. Since

$$
\frac{1}{2}d(\alpha(v), \chi(v)) \leq d(\alpha(v), \beta(v)) + d(\beta(v), \chi(v)), \quad \forall \alpha, \beta, \chi \in \mathcal{E} \text{ and } v \in \Omega,
$$

it follows that

$$
H \cap L \subset \{v \in \Omega, d(\alpha(v), \chi(v)) < x + y\},\
$$

where $H = \{v \in \Omega, d(\alpha(v), \beta(v)) < \frac{1}{2}\}$ $\frac{1}{2}x$ and $L = \{v \in \Omega, d(\beta(v), \chi(v)) < \frac{1}{2}\}$ $\frac{1}{2}y\big\}$. From that $P(H \cap L) = P(H) + P(L) - P(H \cup L)$, it implies that $P(H \cap L) \ge$ $P(H) + P(L) - 1$. Hence

$$
\mathcal{F}_{\alpha,\chi}(x+y) \ge \max\left(\mathcal{F}_{\alpha,\beta}(\frac{x}{2}) + \mathcal{F}_{\beta,\chi}(\frac{y}{2}) - 1,0\right) = \mathbb{I}_L\left(\mathcal{F}_{\alpha,\beta}(\frac{x}{2}), \mathcal{F}_{\beta,\chi}(\frac{y}{2})\right).
$$

Therefore $(\mathcal{E}, F, \mathbb{k}, 2)$ is a b-Menger space.

It clear that if (G, d) is complete then $(\mathcal{E}, F, \mathcal{I}_L, 2)$ is complete. Let d_2 be the function defined by

$$
d_2(\alpha, \beta) = \sup \{ u \ge 0, P(v \in \Omega, d(\alpha(v), \beta(v)) > u) > u \}, \quad \forall \alpha, \beta \in \mathcal{E}.
$$

It's not hard to show that d_2 is a b-metric with the constant $s = 2$. We consider $f : \mathcal{E} \to C(\mathcal{E})$ a multivalued mapping that verify

$$
\sup_{p \in f(\alpha)} \inf_{q \in f(\beta)} d_2(p,q) < \nu\left(\left(d_2(\alpha,\beta)\right),\right)
$$

where $\nu \in \Gamma$ is strictly increasing and the series $\sum_{n=1}^{\infty} 2^n \nu^n(u)$ is convergent. It's clear that for every $\alpha, \beta \in \mathcal{E}$ we have

$$
d_2(\alpha, \beta) = \sup \{ x > 0, \ F_{\alpha, \beta}(x) < 1 - x \}.
$$

So if we suppose that $\mathcal{F}_{\alpha,\beta}(x) > 1-x$, then we get $d_2(\alpha,\beta) < x$. And by the monotonicity of ν we obtain that

$$
\nu(d_2(\alpha,\beta)) < \nu(x).
$$

Therefore,

$$
\sup_{p \in f(\alpha)} \inf_{q \in f(\beta)} d_2(p,q) < \nu(x).
$$

That means for every $p \in f(\alpha)$ there exists $q \in f(\beta)$ such that $d_2(p,q) < \nu(x)$, which implies $F_{p,q}(\nu(x)) > 1 - \nu(x)$. Hence, by Theorem 3.2 f admits a fixed point.

Remark 3.4. It should mark that in our proof of Theorem 3.2, the condition of H-type was not necessary as in [10]. Also note that if f is (ν, C) -contraction then f is a continuous multi-valued mapping. In fact, let $\epsilon > 0$ be given and $\lambda \in (0,1)$ be such that $\nu(\lambda) < \epsilon$, if $F_{x,y}(\lambda) > 1 - \lambda$ then for each $p \in fx$ there exists $q \in fy$ such that $F_{p,q}(\nu(\lambda)) > 1 - \nu(\lambda)$, which implies that $\mathbb{F}_{p,q}(\epsilon) \geq \mathbb{F}_{p,q}(\nu(\lambda)) > 1 - \nu(\lambda) > 1 - \epsilon$. Hence f is continuous.

In what follows, we give some consequences of Theorem 3.2. Taking up $s = 1$, we get the result proved by Mihet in [8].

Corollary 3.5. ([8]) Let $(\mathcal{E}, \mathcal{F}, \mathcal{T})$ be a complete Menger space with $\sup_{0\leq x<1}$ $\mathcal{A}(x, x) = 1$ and $f : \mathcal{E} \to C(\mathcal{E})$ a multi-valued (ν, \mathcal{C}) -contraction in which the series $\sum_{n=1}^{\infty} \nu^n(u)$ is convergent for some $u > 1$. If $\lim_{n \to \infty} \mathbb{I}_{i=1}^{\infty} (1 \nu^{n+i-1}(u) = 1$, then f admits a fixed point.

If we take $\nu(u) = ku$ with $u > 0$ and $k \in (0, 1)$, then a (ν, C) -contraction becomes a C-contraction, i.e., for any $x, y \in \mathcal{E}$ and $u > 0$ we have:

$$
F_{x,y}(u) > 1-u \Rightarrow \forall p \in fx, \exists q \in fy : F_{p,q}(ku) > 1-ku.
$$

Corollary 3.6. Let $(\mathcal{E}, F, \mathbb{k}, s)$ be a complete b-Menger space and $f : \mathcal{E} \rightarrow$ $C(\mathcal{E})$ a multivalued C-contraction with $k \in (0, \frac{1}{s})$ $(\frac{1}{s})$. If $\overline{}$ is k-convergent then there exists $h \in \mathcal{E}$ such that $h \in fh$.

Since the condition $F_{p,q}(\infty) = 1$ have been not used in the proof of Theorem 3.2, we give the corresponding result in fuzzy b-metric spaces where $F_{x,y}(u) =$ $R(x, y, u)$ for all $u > 0$.

Corollary 3.7. Let $(\mathcal{E}, R, \mathcal{A}, s)$ be a complete fuzzy b-metric space with a continuous t-norm \exists and $f : \mathcal{E} \to C(\mathcal{E})$ be a multi-valued (ν, \mathcal{C}) -contraction in which the series $\sum_{n=1}^{\infty} s^n \nu^n(u)$ is convergent for some $u > 1$ with $\nu \in \Gamma$. If $\lim_{n\to\infty} \mathbb{E}[1 - \nu^{n+i-1}(u)] = 1$ for all $u > 0$, then f admits a fixed point.

4. Conclusion

In this work, we defined the multi-valued (ν, C) -contraction mapping and proved a fixed point theorem in b-Menger space which is a recent space of the literature. As a consequence of our result, we obtained Hicks's theorem for multivalued \mathcal{C} -contraction in b -Menger spaces by modifying the assumptions on the constant $k \in (0, \frac{1}{s})$ $\frac{1}{s}$) with the extended version on the b-fuzzy metric spaces. Also an example was presented in a particular b-metric space to support the results thus obtained. The results presented develop and generalize in a sense the fixed point theorems for multi-valued (ν , C)-contraction proved by Hadžić and Mihet.

REFERENCES

- [1] O. Hadžić and E. Pap, *Fixed Point Theory in Probabilistic Metric Spaces*, Kluwer Academic Publishers, Dordrecht, 2001.
- [2] T.L. Hicks, Fixed point theory in probabilistic metric spaces, Zb.Rad. Prirod. Mat. Fak. Ser. Mat., 13 (1983), 63–72.
- [3] O. Kramosil and J. Michalek, *Fuzzy metric and statistical metric spaces*, Kybernetika, 11 (1975), 326–334.
- [4] A. Mbarki and J. Hlal, Weakly-H contraction fixed point theorem in b-Menger spaces, Int. J. Appl. Math., 35(2) (2022), 225–232; doi: 10.12732/ijam.v35i2.2.
- [5] A. Mbarki and R. Oubrahim, Probabilistic b-metric spaces and nonlinear contractions, Fixed Point Theory Appl., 2017 (2017), 15–29.
- [6] A. Mbarki and R. Oubrahim, Common fixed point theorem in b-Menger spaces with a fully convex structure, Int. J. Appl. Math., $32(2)$ (2019), 219-238; doi: 10.12732/ijam.v32i5.1.
- [7] A. Mbarki and R. Oubrahim, Fixed point theorem satisfying cyclical conditions in b-Menger spaces, Moroccan J. Pure. Appl. Anal., 5(1) (2019), 31–36.
- [8] D. Mihet, Multi-valued generalization of probabilistic contractions, J. Math. Anal. Appl., 304 (2005), 464-472.
- [9] S. Nădăban, *Fuzzy b-metric Spaces*, Int. J. Comput. Commun., **11** (2016), 273-281.
- [10] E. Pap, O. Hadžić and R. Mesiar, A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory, J. Math. Anal. Appl., 202 (1996), 433-449.
- [11] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.